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Abstract

In specific domains, such as cyber-physical systems,
platforms are quickly evolving to include multiple
(many-) cores and programmable logic in a single
system-on-chip, while including interfaces to commodity
sensors/actuators. Programmable Logic (e.g., FPGA)
allows for greater flexibility and dependability. However,
the task of extracting the performance/watt potential of
heterogeneous many-cores is often demanded at the ap-
plication level, and this has strong implication on the
HW/SW co-design process. Enabling fast prototyping
of a board being designed is paramount to enable low
time-to-market for applications running on it, and ulti-
mately, for the whole platform: programmers must be
provided with accurate hardware models, to support the
software development cycle at the very early stages of
the design process. Virtual platforms fulfill this need,
providing that they can be in turn efficiently developed
and tested in a few months timespan. In this position
paper we will share our experience in the sphere of the
AXIOM project, identifying key properties that virtual
platforms modeling next-generation cyber-physical sys-
tems should have to quickly enable simulation-based
software development for a these platforms.

1 Introduction

As the technological scaling for semiconductors predicted
by Moore’s law hit the so-called power wall, and energy
consumption became a primary concern for the market of
electronic devices, computing platforms shifted to many-
core heterogeneous designs [1, 2, 3, 4]. These platforms
are perfectly suited to meet the requirements especially of
next-generation cyber-physical systems (CPS), where a huge
number of peripherals interacting with the surrounding envi-
ronment are coupled to a computing board delivering high
performance/watt through many-core SMPs and hardware
accelerators. Sensors and actuators will be integrated in the
design through ad-hoc bridges/circuits, or more flexible re-
programmable logic (e.g., FPGAs), composing a systemmade
of several communicating nodes with one or more centralized
controllers running on general purpose SMP cores. Hardware
accelerators are application-specific circuits which increase
the power efficiency of portions (kernels) of applications by
orders of magnitude. The consequence is that, today, soft-
ware developers must write code that runs on multiple cores
and uses the hardware resources available in the platform,

in a productive and effective manner: extracting the tremen-
dous performance/watt potential of such a complex platform
essentially becomes also a software development problem.
Dependability is also improved when adopting programmable
logic: for example, systems based on programmable logic can
execute a function in a deterministic way, without the need of
a continuous push-pull to/from caches. Most systems based
on caches tend to offer a good average performance but may
fail to respect a hard deadline in the worst case. Moreover,
if the specific architecture fails, reconfiguration of the FPGA
can help. Concepts like Data-Flow Threads (DF-Threads)
[5, 6] can enable the repetition of the execution of a failed
thread.

Virtual platforms are the key to fight this problem, as they
enable fast software prototyping at the very early stages of
the design cycle of a board, where hardware is not yet 100%
available. Computer architects are well aware of this, and
in recent years a number of simulator infrastructures have
been developed [7, 8, 9], and eventually commercialized, that
model a generic or specialized computing fabric with also
high accuracy (e.g., cycle-accurate [9, 10]). Unfortunately,
correctly modeling the behavior of an hardware platform is
time-costly: fully cycle-accurate simulators1 can be orders of
magnitude slower than the corresponding hardware counter-
parts [11]. For this reason, recently, some virtual platforms
were proposed (such as Qemu [11]), for pure functional simu-
lation. They can be successfully adopted in an initial phase
to enable functional testing/debugging of the alpha versions
of applications, and to quickly exploring the hardware/soft-
ware partitioning of applications into kernels. Then, software
developers might resort to slower and fully cycle-accurate
simulators in advanced stages of debugging, until the first
prototypes of the board are available.

In this position paper we describe our preliminary analysis
on building a virtual platform for simulating cyber-physical
systems, in the context of the AXIOM project [12]. AX-
IOM explores energy-efficient, many-core platforms for next-
generation cyber-physical systems. We will briefly describe
the guidelines that drive the development of the AXIOM
board, in section 2. In section 3 we decompose a simulator
for many-core heterogeneous platforms in its basic building
blocks, and for each of them we discuss in detail the main
issues in simulating it, and how it can (should) be accurately
modeled in the quickest way possible. We will do this bring-
ing our expertise on already existing simulation platforms,

1cycle accurate virtual platforms mimic the behavior of each component
of a system at every clock cycle
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both industry [7, 8] and academical solutions [10]. Finally,
section 4 draws some conclusions.

2 Requirements for a cyber-physical sys-
tem: The Axiom project

We are entering the cyber-physical age, where both objects
and people will become nodes of the same digital network
for exchanging information. This vision is also referred to
as “Internet of Things” (IoT) becauses the general expec-
tation is that “things” or systems will become somewhat
smart as people, allowing a tight system-to-human and device-
to-environment interaction. As a consequence, we expect
that such cyber-physical systems (CPS) will at least react in
real-times, consume the least possible energy for a given
task, scale up through modularity, and allow for an easy
programmability across performance scaling. The whole
set of these expectations impose scientific and technological
challenges that AXIOM project (Agile, eXtensible, fast I/O
Module[12, 13]) tries to address, exploring new hardware/-
software architectures for CPSs.

Communities [14, 15, 16] that are using CPSs are devising
more and more the need for more powerful embedded plat-
forms that could be: i) easy programmable through an almost
standard software toolchain; ii) be customizable with pro-
grammable logic (i.e., FPGAs), iii) be extensible to one or
more boards (e.g., two robotic arms that need to be closely
synchronized toward a single real-time task); iv) provide an
easy way to integrate sensors (e.g., through widely available
Arduino [15] shields). Current solutions providing enough
energy-efficient computational power for fulfilling this needs
are starting to rely more and more on multi- and many-core
architectures (e.g., UDOO [14] and RaspberryPi2 [16] rely on
a quad-core and GPUs) . For example, some current research
projects (such as ADEPT [17] or FP7 P-SOCRATES [18])
are already investigating how to join efforts from the high-
performance computing (HPC) and the embedded computing
domains, which are both focused on high power efficiency,
while GPUs and new dataflow platforms such as Maxeler’s
[19], or in general FPGAs, are claimed as the most energy
efficient.

AXIOM research mainly targets designs coupling power-
efficient multiple cores, such as ARM ones, and FPGA accel-
erators on the same die as in the Xilinx Zynq [1], and produce
prototypes of single-board computers, similar to UDOO [14],
Arduino [15] and RaspberryPi [16]. This architecture in-
cludes capability to high-speed board-to-board interconnects
and controllers for commodity CPS peripherals such as Ar-
duino Shields. AXIOM partners will start the development
using a virtual platform: this paper reports the preliminary
results of such investigations. At the same time, the tested
parts, when ready, are progressively migrated on the FPGA
prototype (a Xilinx ZC-706). As a consequence, the AXIOM
project requires a virtual platform which simulates general-
purpose cores, programmable logic (for accelerators), and
peripherals ASIC circuits that integrate sensors and actua-
tors. Figure 1 shows the scheme of a computing platform
including two general-purpose cores, FPGA logics and a few
peripherals/sensors connected to it.

From the software viewpoint, the AXIOM system will inter-
act with and react to the surrounding environment by properly
managing actions in real-time through an operating system
(such as Linux), a well-known parallel programming model:
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Figure 1: Heterogeneous computing platform with sensors

OmpSs [20]. By using OmpSs, applications will be hard-
ware/software partitioned, i.e., decomposed in parallel tasks
that can be mapped on multiple software execution units (OS
threads) and/or hardware execution units, e.g. the accelera-
tors in the FPGA. This provides a huge number of options
for mapping tasks to resources, considering the device on
which a task is mapped, the size of the input data, the data
transfer time, or the different speed of the devices in execut-
ing the task. Tools and techniques for quickly finding the
optimal HW/SW partitioning of applications according to
performance and power metrics, and to validate them against
real-time constraints, are therefore crucial for the project. The
issue is that, when all tasks are mapped either on hardware
or software, a complete FPGA synthesis flow for hardware
accelerators can spend from hours to days, depending on the
size of the computational kernels to process. With virtual
platforms, on the contrary, new accelerator elements can be
quickly added in the simulation environment, and we can run
a timing accurate full system simulation of the applications
partitioned on the SMP cores and FPGA accelerators in a
matter of minutes to few hours.

3 Virtual Platform requirements

This section describes how to build a virtual platform for a
computing system such as the one targeted by AXIOM. Start-
ing from AXIOM specifications, we will first describe its ba-
sic building blocks, and discuss how a proper design for each
of them will enable fast prototyping of the target board. We
will bring our expertise, previously gained using/developing
two simulator for heterogeneous systems, namely COTSon
[7] in the TERAFLUX project [21, 22], and a prototype built
after the open-source academical VirtualSoC [9] by Univer-
sity of Bologna: HC-VSoC [10, 23]. We will also refer to
other existing simulator infrastructure of potential interest.

From AXIOM specifications, the simulator must enable quick
software prototyping of a system whose hardware architec-
ture is not 100% defined at early stages of the project. We
identify these four key requirements:

1)immediate availability of at least a first functional version
of the simulator, to let the software development cycle start;
2) possibility of defining architectures and their timing model
for cycle accurate evaluations, to be selectively used in com-
bination with functional models;
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3) the virtual platform must be capable of integrating multi-
ple modules (such as proximity sensors), that generate/simu-
late events coming from the surrounding environment, hence
whose behavior must be random, or driven by user/parametriz-
able;
4) we must be capable of easily putting new hardware models
in the design, and to replace (fast and inaccurate) behavioral
models of its components, e.g., sensors and actuators, with
more timing-accurate (and slower) versions.

Requirements 1) and 2) match the experience of the COT-
Son [7] simulator, while requirements 3) and 4) match the
experience of the HC-VSoC [10, 23] simulator, which mod-
els platforms with user-defined hardware accelerators called
HWPUs, i.e., whose functionality is defined by the end-user.
HC-VSoC architects reduce the problem complexity by speci-
fying a clearly-defined common communication contract and
infrastructure for all the blocks modeled in the systems. SMP
cores and HWPUs are equipped with a memory shell that
supports that communication protocol. Also the COTSon [7]
virtual platform, whose primary design requirement was to
build a highly scalable architecture, employs a similar solu-
tion, providing a well-defined communication API.

This brings us to the first component of a virtual platform, the
simulation engine, which supports/simulates the interaction
between modeled blocks. A number of tools for this exist,
both coming from industry and academia, and the most known
is probably SystemC [24] by Accelera. The SystemC package
is a very flexible macro library (C++ language) and a simu-
lation engine, to simulate the behavior of hardware blocks
with different levels of abstraction and accuracy, from RTL-
to cycle-accurate, to transactional-level modeling. Higly-
scalable infrastructures (such as – as explained before – COT-
Son [7], or OVP [8]) expose a very simple API to integrate
hardware blocks in their engines, and come with a few pre-
built architecture models. These are the best solution if the
architecture models included in these packages partially or
totally match the one being developed.

An second component that must be carefully designed at
early stages is the interconnection, which emulates on- or
off-chip connectivity. Designing an interconnection infras-
tructure with acceptable good tradeoff of simulation speed,
scalability, and timing accuracy is not trivial and it is probably
the most time-consuming part in developing virtual platforms.
In addition, in AXIOM, the interconnection must enable fast
integration of the future versions of the hardware models,
to meet requirement 4). An example of scalable communi-
cation medium is the one connecting multiple COTSon [7]
nodes, or the one of HC-VSoC [23], whose protocol is called
PINOUT. The difference between them is in the way they
are implemented: in the former it is exposed as a pluggable
model rigorously decoupled as a functional model and a tim-
ing model. Hence the simulated hardware blocks access to the
interconnection by directly invoking a simple given API. The
latter is itself an instantiated as a SystemC modules with its
own model of hardware ports, and a timing accuracy given by
design. An amenable property of a simulated interconnection
(although not a critical requirement for AXIOM), is that it
should be possible to customize its internals and the modeled
communication delay should be driven, e.g., via simulator pa-
rameters or configuration files. An example of configuration
files for a simulator is shown in Figure 2. It was developed in
the PREDATOR FP7 project [25].

Rows and columns in the figure simulate a hierarchical cross-
bar by specifying the communication delay among each mas-
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Figure 2: Parametrizable interconnection model

ter port (e.g., SMP cores) and each slave ports (memories and
peripherals), respectively. In this example, we are modeling
an N-to-M crossbar with user-defined delay for each master-
to-slave (core-to-mem bank) path: for instance, we note that
the M-th slave implements the controller for an off-chip DDR,
because the delay that each master “sees” to get to it (speci-
fied in the last column) are significantly higher than for other
memories.

General Purpose cores are the most complex component
of a simulator, as they must correctly mimic the functional
behavior, e.g., of modern superscalar cores, with branch-
prediction units and multiple deep pipelines, or the complex
hierarchical shared cache systems and prefetch buffers of
next-generation many-core architectures. Luckily, the choice
of the instruction-set architecture (ISA) and core model to
adopt is usually made at the very beginning of the project,
and it does not change in the following. Moreover, most of
the simulation infrastructures provide a portfolio of processor
models, which is often freely available as a library (see for
instance OVP [8]).

The key point in integrating core models in a bigger design
is that, in order to support the development of software, each
core model must come with the required toolchain for compil-
ing the code of applications, deploying them on the simulator
and – possibly – to support debugging to do what ultimately
is the main purpose of a virtual platform: support software
development. In AXIOM, this is reflected in requirement 1).

A few examples can be:

• COTSon [7], which includes x86_64 processor models
together with the associated toolchain;

• The HC-VSoC package [10, 23] targets for ARM-based
embedded systems, and it comes with a “standard” GNU
Compiler Collection (GCC [26]) cross-compiled for it;

• Open Virtual Platforms by Imperas [8] provides a wide
portfolio of core models, including ARM (32 and 64
bit), Imagination MIPS (32 and 64 bit), PowerPC, Xilinx
Microblaze, and many more.

A project can also adopt a proprietary ISA from a specific
provider: they also usually come with a library/software pack-
age that simulates a single processing core, using “open” sim-
ulation engines (e.g., SystemC), or again with in-house en-
gines or define ISEs (ISA Extensions).

Due to its complexity, the processor model is usually the
component from which the development of a virtual platform
starts, together with the simulating engine. For this reason,
the preliminary version of the platform provided to program-
mers typically embeds only one or multiple SMP cores, the
interconnection model, and a few memories, with limited set
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of peripherals. Using this, software developers for an het-
erogeneous platform (such as AXIOM’s) can immediately
compile, deploy and test the “host/SMP part” of their code.

Programmable logic and peripherals (and sensors/actua-
tors). The platform template targeted by AXIOM embeds
on-chip programmable logic, as well as a number of periph-
erals controllers to interact, e.g., with sensors or Arduino
shields. Once the communication infrastructure has been set,
and a scalable model of the on-chip interconnection imple-
mented as explained before, it is extremely easy to include in
the simulator in-house customized models for peripherals and
hardware accelerators. For instance, the PINOUT interface
in [23] is implemented in the so-called COMU of HC-VSoC
HWPUs. Internally, each of HWPU model can be imple-
mented with a different simulation speed/timing accuracy
tradeoff, as required by project specification.

Integration with external components. In the AXIOM
project, peripheral components will either interact with the
surrounding environment, or connect the board to COTS com-
ponents or 3rd party subsystems such as the Arduino Shields,
and the virtual platform will simulate these behaviors. In the
first case, we can employ parameters or proper input files for
the simulator that mimic the surrounding environment. For
instance, the behavior of temperature sensors can be easily
defined via simple input text files describing the variation of
the temperature in time. The second scenario, in turn, has
a great impact on the simulation infrastructure, and raises a
potential problem. Simulator developers might need to in-
tegrate pre-existing models of the two platforms (e.g., the
core model running on SystemC, and the model of an Ar-
duino running on a proprietary simulation engine), which
are potentially not designed to communicate each other, or
can even be written in different programming language. This
possible incompatibility in the communication between sim-
ulator models, may require to implement stub functions to
transform the information between formats understood by the
two components.

Memories. In current virtual platforms, typically memories
are implemented as “wrappers” that simply add a delay for
accessing big arrays of data modeling the memory banks. For
this reason, it is not uncommon that virtual platform devel-
opers create their in-house simulation models of memories,
when possible. More complex or “fancy” memory models,
such as smart memories, can be easily implemented starting
from these components.

Support software libraries Applications running on the sim-
ulator might employ specific standard libraries, such as libc
and libsdtc++, or custom runtimes, such as nanos++
[27], or libhwpu (in HC-VSoC) to do their work. This is
also the case of AXIOM. In this case, the simulator infrastruc-
ture must support the same set of required APIs as the “real”
board, to ensure code portability.

4 Conclusions

We presented in this paper the approach used by the AX-
IOM project for flexibly simulating a realistic Cyber-Physical
System, soon to be implemented as single board computer.
Mainly, besides a FPGA prototype, we developed the pre-
liminary steps through virtual platforms. In particular two
platforms had been selected: COTSon and HC-VSoC as they
can provide the best support for our design needs. In par-
ticular, the inclusion of FPGA in the simulation toolchain
provides support for exploring dependability options.
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