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Abstract

The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and

embryos, has received considerable attention in recent years. Of the organic components

present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class

of compounds responsible for toxic effects in marine organisms. Although evidence suggests

that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted

congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus

aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this

was caused by direct interaction with crude oil droplets, which adhered to the chorion of

exposed embryos. Such a phenomenon would increase the potential for uptake of less

water-soluble compounds, including alkylated PAHs. In the current study, we compared the

uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos

exposed to dispersed crude oil at a range of environmentally relevant concentrations (10–

600 μg oil/liter seawater). Although the species are biologically very similar, the cod chorion

does not become fouled with oil droplets, even when the two species are exposed to disper-

sions of crude oil droplets under similar conditions. A close correlation between the degree of

fouling and toxicological response (heart defects, craniofacial malformation) was observed.

Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH

uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggest-

ing differential metabolism of unsubstituted versus alkylated compounds.

Introduction

The impact of crude oil on marine fish and fisheries has received much attention in recent

years, particularly in relation to major spill events such as the 1989 Exxon Valdez (EV) spill in

the Prince William Sound, Alaska and the 2010 Deepwater Horizon (DWH) event in the
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northern Gulf of Mexico. Due to their high sensitivity to pollution, early life stages (ELS) of

fish, including embryo and larval stages, have been studied extensively. The main sub-lethal,

toxic responses in ELS of fish include cardiotoxicity and morphogenetic defects [1–3], but the

toxicological mechanisms are still not fully understood. Lasting cardiac defects in juvenile fish

could underlie population-level impacts years after a spill event [4]. As offshore oil exploration

moves north into the Arctic, it occurs in sensitive spawning areas for several commercially

important species of marine fish, such as in the Lofoten-Vesterålen area off the Norwegian

coast[5, 6]. Consequently, a large effort towards developing risk assessment tools for evaluating

the potential impact of oil exploration in these sensitive areas has been made [5–7]. However,

to develop robust models for the effects of spilled crude oil on ELS of cold water marine fish,

there is a need for more experimental data on bioaccumulation and critical body burdens of

toxic oil compounds [8]. Likewise, there is a lack of data on how dispersed crude oil droplets

affect fish ELS [8]. Along with dissolution of the water-soluble fraction (WSF), formation of

dispersed oil droplets is considered one of the most important processes influencing the fate of

spilled crude oil. Crude oil may be dispersed in the water column by turbulent wave action

and/or application of chemical dispersants in the event of a surface spill [9, 10] or through

high pressure jets during deep water oil and gas blowouts [11]. Formation of micron-sized oil

droplets may increase the bioavailability of toxic oil constituents to marine organisms [9].

Polycyclic aromatic hydrocarbons (PAHs) constitute 0.1–1% of most crude oils. 2–3 ring

PAHs (e.g. naphthalenes and phenanthrenes) are usually most abundant in fresh oils, while

4–6 ring PAHs become more dominant as the oil weathers. Alkyl substituted PAHs typically

comprise > 90% of the total PAH content in petrogenic oils [12, 13]. Previously, it was

believed that only water soluble oil constituents, mainly the PAHs, were the responsible for

crude oil toxicity in marine systems [14–17], but new observations suggests that the presence

of crude oil droplets in the exposure system leads to more severe effects than if only the water

accommodated fraction (WAF) is present [18]. Recently, it was established that the Atlantic

haddock (Melanogrammus aeglefinus) was particularly sensitive to dispersed crude oil, and it

was hypothesized that this was caused by direct interaction with crude oil droplets, which

adhered to the chorion of the exposed embryos [3, 19, 20]. Such behavior potentially creates a

second pathway for uptake of crude oil derived compounds into the embryos, in particular

increasing the potential for uptake of less water-soluble compounds, such as heavier and more

alkylated PAHs. Although limited data suggests that alkylated PAHs are more toxic, these

compounds remain much less studied than their unsubstituted ‘parent’ congeners [21, 22],

which are readily available from commercial sources.

Despite the vast number of PAH toxicity studies conducted, a limited number of these stud-

ies report PAH body burden concentrations in fish ELS [23–28]. This is due, in part, to the

need for large samples masses (1–10 g wet weight) to achieve the instrumental detection limits

[29, 30], particularly for samples that contain low PAH concentrations. Recently, methodolo-

gies were developed for the analysis of trace amounts of both parent and a wide range of alkyl-

ated PAHs in small (< 0.1 g) tissue samples [31, 32]. These methods enable the determination

of total PAH body burden in fish egg samples from low dose exposure experiments using as lit-

tle as 100 individuals or less per sample.

Atlantic haddock and cod are two of the most commercially important fish species in Nor-

way, representing the largest Norwegian fisheries both in landing and in value. Both species

have their main spawning grounds in the Lofoten-Vesterålen area [33]. The two species are

biologically very similar, both in terms of egg lipid content (0.6–0.7%) [32], egg size (1.3–1.5

mm diameter) [34] and developmental biology [35–37]. Although individual studies of crude

oil effects on ELS of Atlantic haddock embryos and larvae and cod larvae have previously

been published [3, 17, 19, 20, 38], there has yet to be a direct comparison of the toxicological
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response in the two species. In the current study, the aim was to compare the uptake of parent

and alkylated PAHs in cod and haddock embryos exposed to mechanically dispersed Norwe-

gian sea crude oil at a range of environmentally relevant concentrations (10–600 μg oil/L sea-

water). The body burden of parent and alkylated PAHs in the embryos was measured at

intervals during constant exposure starting at 1 day post fertilization (dpf) lasting until hatch-

ing of the larvae at 11 (haddock) or 12 (cod) dpf, when the exposure was stopped and the

decline in body burden was followed until 2 days post hatching (dph). Despite their similari-

ties, the cod chorion did not become fouled with oil droplets like the haddock even when the

two species are exposed to dispersions of crude oil droplets under the same conditions. A close

correlation between the occurrence and degree of oil fouling and morphological and heart

malformations was observed. This was explained by increased internal uptake of 3–6 ring

PAHs, in particular alkylated PAHs.

Materials and methods

Animal husbandry and oil exposure regime

Fertilized Atlantic cod and haddock eggs were collected from brood stocks kept at the Institute

of Marine Research (IMR), Austevoll Research station, transferred to indoor egg incubators,

and maintained at 7±1˚C until transfer to exposure tanks. At 1 day post fertilization (dpf),

the eggs were transferred into circular exposure tanks (50 L) of green poly ethylene plastic

(approximately 12,000 eggs in each tank). The flow of sea water through the tanks was 32 L/hr,

the water temperature maintained at 7±1˚C. The light regime for the exposure tanks was 12

hours light:12 hours dark provided by broad spectrum 2x36W Osram Biolux 965 (Munich,

Germany, http://www.osram.com) dimmable fluorescent light tubes with 30 min smooth tran-

sitions between light and dark.

The crude oil used in the exposure was supplied by SINTEF Materials and Chemistry

(Trondheim, Norway), and was a crude oil blend from the Heidrun oil field of the Norwegian

Sea. Prior to use, the oil was artificially weathered using a well-established evaporation proce-

dure where evaporation of the lighter components from the fresh oil was achieved as a one-

step distillation to the vapor temperature of 200˚C. This results in a residue with an evapora-

tive loss corresponding to approximately 0.5–1 day of weathering on the sea surface (water

temperature of around 10˚C) [39]. The principle of the oil exposure system is detailed else-

where [40], and oil exposure was performed as described previously [3]. Briefly, crude oil dis-

persions were made by mixing clean seawater with crude oil using an oil droplet generator. A

mechanical valve system allowed systematic dilution of the stock dispersion to nominal oil

doses of 10–600 μg/L. In the current study, the results of three separate experiments (per-

formed in the same way) were included. Un-exposed control groups were included for both

species in all experiments. The first and second experiment included exposure doses spanning

the entire nominal oil dose range for cod and haddock, respectively. Due to high mortality

observed at the highest dose for haddock, the third experiment included four low-intermediate

doses for haddock embryos (30–300 μg/L nominally). To study the effect of the oil fouling on

the haddock egg chorion an exposure with filtered dispersion (referred to as the water-soluble

fraction, WSF) of the second highest exposure dose (300 μg/L) was included in the second

haddock experiment. To create the WSF, the 300 μg/L dispersion was continuously filtered

through a custom-made filter containing fine glass wool on top of a Whatman GF/F glass

microfiber filter (Whatman Ltd., Maidston, UK) with nominal particle retention of 0.7 μm.

The filter was replaced every 24 hours to prevent clogging. The exposure conditions were oth-

erwise identical to the oil droplet exposures. All exposure experiments started at 1 dpf and

were stopped when 50% hatching of embryos was observed, this happened at 12 dpf (11 days
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of exposure) for cod and 11 dpf (10 days of exposure) for haddock. The hatched larvae

remained in clean water until 2 days post hatching (dph). A schematic overview of the experi-

ment can be found in S1 Fig.

Analytical chemistry

Chemical and materials. Certified standard solutions (100–1000 μg/mL) of n-alkanes

(C14-C32, only even + pristane/phytane), PAHs, alkylated PAHs, heteroaromatics and deuter-

ated PAHs were purchased from Chiron AS (Trondheim, Norway). Spike and calibration stan-

dards were prepared by dilution in n-hexane or, for body burden analysis, in a matrix extract

of unexposed haddock and cod eggs [31]. Details on all analytes are compiled in S1 Table. The

deuterated internal standard used as a surrogate spike contained naphthalene-d8, biphenyl-d8,

acenaphthylene-d8, anthracene-d10, pyrene-d10, perylene-d12 and indeno[1,2,3-cd]pyrene-

d12. Dichloromethane (DCM) and n-hexane were of GC Suprasolv1 analytical grade and

supplied by Merck (Oslo, Norway).

Analysis of cod and haddock eggs. Body burden samples (pooled ~100 mg eggs or exactly

100 individual larvae) were collected at selected time-points during exposure (12 hours, 1, 2, 3,

5, 7, 9 days) and after exposure end (0, 1, 2 days). Triplicate samples were taken from each

exposure tank, including controls. Pools of crude oil exposed eggs were quickly rinsed in clean

seawater with the purpose to eliminate free oil droplets from the sample. All eggs were exam-

ined under the microscope, and any dead eggs were removed from the sample. At day 10 (dur-

ing hatching), 100 individual unhatched haddock eggs from the highest exposure dose were

sampled. The chorions and embryos of these eggs were manually separated using fine forceps

and each matrix was analysed separately. The samples were preserved by flash-freezing in liq-

uid nitrogen and stored in poly ethylene cryovials at -80˚C until further handling. Extraction

was performed as described in Sørensen et al [32]. After transfer to glass vials and addition of

surrogate standards (100 ng/g sample), the samples were homogenized in n-hexane-dichloro-

methane (1:1 v/v, 2 mL) using a microprocessor (Virtis Tempest IQ 2.0), followed by addition

of sodium sulphate (150 mg), vortex extraction (30 s) and centrifugation (2000 rpm, 2 min).

The supernatant was collected and the extraction step was repeated two additional times. The

combined organic extract was concentrated to ~1 mL prior to clean-up by solid phase extrac-

tion (SPE) using silica (Agilent Bond Elut SI, 500 mg, Agilent Technologies, USA). The extract

was eluted with dichloromethane in n-hexane (1:9, v/v, 6 mL). Immediately prior to the analy-

sis, the volume of the cleaned extract was reduced to 100 μL under a gentle stream of N2. Labo-

ratory blank samples (empty vials) were included in the extraction daily. Background levels of

PAHs identified in laboratory blanks were subtracted from the samples. Quality assurance

samples comprised of unexposed cod or haddock eggs (150 mg) spiked with a mixture of

PAHs (1 ng of each) were included weekly and demonstrated the procedure repeatability over

time (% RSD< 25). Recovery of surrogate internal standards were in the range 40–110%.

Water samples. Water samples (1 L) were taken from each exposure tank at the begin-

ning, during and at the end of each experiment (total three samples). The samples were pre-

served by acidification (H2SO4, pH<2), addition of dichloromethane (30 mL) and stored

at4˚C in the dark until further processing (no samples were stored longer than one week). The

samples were extracted twice by partitioning to dichloromethane (2x30 mL) in a separatory

funnel (2 min). Deuterated internal standards were added immediately prior to extraction to

account for analyte loss during extraction. Laboratory blank samples (deionized water) were

included for each batch extraction, and no significant level of background contamination was

observed. Recovery of surrogate internal standards were in the range 60–100%. Water concen-

trations for individual exposures are reported as the mean of the three samples.
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PAH, alkyl PAH and alkane analysis. An Agilent 7890 gas chromatograph coupled with

an Agilent 7010 triple quadrupole mass spectrometer fitted with an EI source and collision

cell was used (Agilent Technologies, Santa Clara, CA, USA). Two Agilent J&W DB-5MS UI

GC-columns (15 m × 0.25 mm x 0.25 μm) were coupled in series through a purged ultimate

union (PUU). The carrier gas was helium at constant flow (1.2 mL/min). Samples (1μL)

were injected at 280˚C splitless. The oven temperature was held at 60˚C for 1 min, then

ramped to 120˚C by 40˚C/min and finally ramped to 310˚C by 5˚C/min. The temperature

was held at 310˚C for 5 minutes while the first column was back-flushed. The transfer line

temperature was 280˚C, the ion source temperature was 230˚C and the quadrupole tempera-

tures were 150˚C. The EI source was operated at 70 eV. N2 was used as collision gas at a flow

of 1.5 mL/min and helium was used as a quench gas at a flow of 4 mL/min. Target PAH ana-

lytes were identified by two unique multiple reaction monitoring (MRM) transitions and

quantified by the most intense peak [32]. Alkyl PAH clusters were determined by MRM

using transitions from the molecular ion, as described previously in Sørensen et al [31]. Cali-

bration tandards were run daily to monitor system performance and a variation of no more

than 25% was accepted. Method performance characteristics are reported in Sørensen et al

[31, 32]. Alkanes were measured by GC-MS/MS using MRM transitions 99+! 57+ and 127+

! 85+. The analytical system and conditions were otherwise as described above, except that

an Agilent 7000C mass spectrometer was used and the quench gas flow was 2.25 mL/min.

The rate of oil fouling on haddock eggs over the course of the exposure was estimated by the

rate of increase of the relative abundance of the S(nC19-nC32) to internal standard pyrene-

d12.

Imaging of live embryos/larvae and measurements of cardiac function

Digital still micrographs of live larvae were obtained with an Olympus SZX-10 stereo micro-

scope equipped with a 5Mp resolution camera (Infinity 2–5c, from Lumenera) while video

recordings where obtained using the same microscope and a Nikon SMZ-800, both with

1.2Mp resolution video cameras (Unibrain Fire-I 785c). Image magnification was calibrated

with a stage micrometer. BTV Pro 5.4.1 (www.bensoftware.com) was used to control the video

camera. Video microscopy was performed at 2 and 3 dph for cod and haddock embryos,

respectively. Animals were immobilized in a glass petri dish filled with 3% methylcellulose and

kept at 8˚C using a temperature controlled microscope stage. Length of larvae, ethmoid plate

and area of oedema were measured using ImageJ [41] with the ObjectJ plugin (https://sils.

fnwi.uva.nl/bcb/objectj/index.html). ImageJ was also used to measure the ventricular and atrial

diastolic (D) and systolic diameter (S) to estimate the fractional shortening (FS = (D−S)/D).

Measurements from both images and videos were performed blindly without information of

the exposure.

RNA collection and preparation

Embryos (before hatching) were collected at 10 and 11 dpf for haddock and cod, respectively.

All animals collected for RNA extraction were imaged under a microscope before they were

frozen in liquid nitrogen and stored at −80˚C. Two pools of embryos and larvae from each

tank were collected at all sampling times for total RNA extraction. Total RNA was isolated

from frozen pools of embryos using Trizol reagent (Invitrogen, Carlsbad, California, USA),

according to procedures provided by the manufacturer. All samples were homogenized in their

respective lysis buffer 2×20 seconds at 5000 rpm using a Precellys 24 apparatus. The amount of

RNA was quantified using a Nanodrop spectrophotometer (NanoDrop Technologies, Wilming-

ton, DE, USA), and quality checked using a 2100 Bioanalyzer (Agilent Technologies, Santa
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Clara, CA). cDNA was subsequently generated using SuperScript VILO cDNA Synthesis Kit

(Life Technologies Corporation), according to the manufacturer’s instructions. The cDNA was

normalized to obtain a concentration of 50ng/μL.

Real time qPCR

Specific primers and probes for real-time, qPCR analysis of Atlantic haddock and cod cyto-

chrome P4501A (cyp1a) and the technical reference ef1a (elongation factor 1 alpha, house-

keeping gene) were designed with Primer Express software (Applied Biosystems, Carlsbad,

California, USA) according to the manufacturer’s guidelines. Primer and probe sequences are

given in S2 Table. TaqMan PCR assays were performed in duplicate, using 96-well optical

plates on an ABI Prism Fast 7900HT Sequence Detection System (Applied Biosystems, Carls-

bad, CA, USA) with settings as follows: 50˚C for 2min, 95˚C for 20 s, followed by 40 cycles of

95˚C for 1 s and 60˚C for 20 s. Duplicates with standard deviation2 (SD2)� 0.05 were either

rerun or eliminated from the dataset. No template, no reverse transcriptase enzyme control

and genomic DNA controls were included. For each 10μl PCR reaction, a 2 μl cDNA 1:40

dilution (2.5 ng) was mixed with 200 nM fluorogenic probe, 900 nM sense primer, 900 nM

antisense primer in 1xTaqMan Fast Advanced Master Mix (Applied Biosystems, Carlsbad,

California, USA). Gene expression data for cyp1a was calculated relative to the control samples

after normalization to the reference gene (ef1a) using the ΔΔCt method as described in detail

in Bogerd et al. [42].

Statistics

Statistical analysis was performed with GraphPad Prism, version 6 (GraphPad Software Inc.,

1996, La Jolla, California, USA). Significant differences in structural and functional measure-

ments were tested with one-way ANOVA using the Tukey-Kramer multiple comparison.

The level of significance was set at p< 0.05 unless otherwise stated. Principal component anal-

ysis (PCA) was performed using singular value decomposition in R software [43]. Prior to sta-

tistical treatment, individual PAH or cluster alkyl PAH concentrations (pg/embryo) were

normalized to total PAH concentration in the sample, scaled to the mean of each variable and

centered. After initial assessment of the data, outliers, in form of samples or variables where

the primary variance was caused by analytical variation due to low concentrations, were

removed from the data set. Fitting of data was performed using Excel (linear functions) or R

(polynomial functions).

Ethics statement

All animal experiments within the study were approved by NARA, the governmental Norwe-

gian Animal Research Authority (http://www.fdu.no/fdu/, reference number 2012/275334-2).

All methods were performed in accordance with approved guidelines. No humane endpoints

were used during the experiment because the potential endpoint criteria due to their small size

had to be evaluated under a microscope when they were sampled. The animals were monitored

every day, and any dead larvae were removed. All embryos and larvae sampled were frozen in

liquid nitrogen. The Austevoll Research station has the following permission for catch and

maintenance of Atlantic haddock: H-AV 77, H-AV 78 and H-AV 79. These are permits given

by the Norwegian Directorate of Fisheries. Furthermore, the Austevoll Research station has a

permit to run as a Research Animal facility using fish (all developmental stages), with code 93

from the national Institutional Animal Care and Use Committee (IACUC); NARA.
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Results

Characterization of the exposure media

Parent and alkyl PAH concentrations in the studied crude oil and exposure groups are sum-

marized in S3 Table. For the range of applied nominal crude oil concentrations (10–600 μg oil/

L seawater), the measured concentrations of total PAHs (tPAHs), including alkylated C1-C4

benzothiophenes, naphthalenes, fluorenes, dibenzothiophenes, phenanthrenes, chrysenes and

pyrenes measured as clusters, in water samples were 0.1–9 μg/L. Since the focus of this paper is

on PAHs, the exposure groups are identified by their measured tPAH concentration. The

PAH profile in the water dispersions were similar to the crude oil profile, with naphthalenes

comprising more than half of the measured PAHs, followed by a significant fraction of 3-ring

PAHs (particularly phenanthrenes and dibenzothiophenes). The 4–6 ring PAHs, including

alkylated 4-ring compounds (e.g. C1-chrysenes) were present in quantifiable amounts in the

droplet dispersions (> 5% of tPAH), but mostly depleted (< 1% of tPAH) in the filtered solu-

tions (water-soluble fraction, WSF), indicating the absence of oil droplets.

Oil droplet fouling on the haddock egg chorion

Droplet fouling on the chorion of haddock eggs was observed microscopically with exposure to

the higher doses of dispersed crude oil (3–9 μg/L tPAH). Identically treated cod eggs showed no

fouling, represented for the highest dose in Fig 1. To demonstrate this by a more sensitive and

quantitative method than microscopy, we used chemical analysis of large n-alkanes (S(nC19-

nC32)) in the extracted egg (not dechorionated) samples. These compounds are used as markers

of whole oil due to their high abundance in oil and extremely poor water solubility. Concentra-

tions of n-alkanes associated with haddock eggs increased linearly with time (Fig 1A) for the high-

est exposure doses (0.7–9 μg/L tPAH). This shows that the haddock egg extracts contain both

internally accumulated and externally adhered oil compounds. For the lowest doses of haddock,

all cod samples, and haddock eggs exposed to only water-soluble fraction (WSF) of oil, the alkane

pattern could not be distinguished from the background in the control samples (S4 Table).

Higher frequencies of toxicity phenotypes in haddock vs. cod

We quantified several toxicity phenotypes (cardiac and craniofacial defects) in both haddock

and cod. In addition, as a measure of effective exposure doses, we quantified expression of

cyp1a mRNA, an extremely sensitive biomarker for the presence of PAHs in tissues [44]. At

the highest exposure dose (8.6 μg/L tPAH), very few haddock embryos survived through

hatching (after 10 days of exposure). Surviving larvae (observed at 2 dph) had severe deformi-

ties, such as craniofacial malformations, spinal curvature and significantly shorter body length,

and combined yolk sac and heart oedema. Severe cardiotoxic responses were also observed (S5

Table). An overview of the distribution of observed phenotypes is found in Fig 2. A detailed

explanation of the applied phenotype characterization and measurement of other malforma-

tions can be found in Sørhus et al. [19]. Hatched cod larvae from the intermediate to high

exposure doses (2.8, 3.6 and 9.1 μg/L tPAH) showed malformations and defects of increasing

severity, but at significantly lower frequencies than observed in haddock exposed to equivalent

doses (2.7, 3.5 and 8.6 μg/L tPAH). Effects observed in haddock at a lower dose (0.76 μg/L

tPAH) were also more severe than observed in any of the medium cod exposure groups.

Defects in haddock exposed to only the WSF (1.6 μg/L tPAH) were at the same frequency as

observed in cod exposed at the same nominal dispersed oil concentration (~3 μg/L tPAH).

Few to none effects were observed in either cod or haddock embryos exposed to crude oil dis-

persions with tPAH < 0.3 μg/L.
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Fig 1. Haddock (B) and cod (C) embryos exposed to 600 μg/L crude oil dispersions for 12 hours, where fouling of oil droplets on the chorion of the

haddock egg can be observed. In panel A the relative response of alkanes (Σ(nC19-nC32)) normalized to the response of internal standard pyrene-
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Induction of cyp1a was linearly related to both dispersed oil concentration (Fig 3A) and tis-

sue dose (Fig 3B) for both haddock and cod. At any given dispersed oil concentration, cyp1a
induction was orders of magnitude higher for haddock than cod at the equivalent concentra-

tion (Fig 3A), consistent with higher tPAH body burdens. Based on tissue dose, there was also

a trend for much higher cyp1a induction in haddock relative to cod with the same tPAH body

burden (Fig 3B), but a statistical difference could not be determined due to sampling design.

The single concentration of WSF exposure in haddock led to cyp1a levels that were within

same linear range based on tPAH body burden (Fig 3B). The higher levels of cyp1a induction

at the same tPAH tissue dose for haddock relative to cod suggest that PAH composition in

haddock was different.

Oil droplets fouling on the haddock chorions leads to differential PAH

uptake

PAHs and alkyl PAHs (both individual compounds and clusters) were measured for embryos

(exposure days 0–9) and hatched larvae throughout and after exposure end (Table 1, S6

Table). As expected from the observed oil droplet fouling, there were key differences in had-

dock compared to cod. At each exposure concentration, haddock embryos generally showed a

plateau of associated tPAH by day 3 (Fig 4B and S2A and S2B Fig), while cod embryos showed

a peak at day 3 followed by a decline (Fig 4, S2 and S5 Figs). Notably, after hatch, the tPAH lev-

els for haddock showed a marked decline (S2A and S2B Fig) due to the loss of the oil-droplet

bearing chorion. In contrast to embryos exposed to dispersed oil droplets, haddock embryos

exposed to the WSF showed an uptake pattern similar to cod, with a peak at day 3 followed by

a decline (Fig 4B and S2B Fig). A similar pattern was observed for individual analytes, for

example, parent and methylated phenanthrenes and chrysenes (Fig 4). Most individual PAHs

followed the same pattern (S3–S5 Figs). Body burden in haddock embryos exposed at ~9 μg/L

tPAH could not be measured beyond day 10 due to high mortality and low hatching success.

The higher concentrations of embryo-associated PAHs in droplet-exposed haddock were

expected in part due to whole oil on the chorion. To assess if body burden in the embryo

proper was different, we compared PAH concentrations at day 10/11 in hatched larvae of cod

and haddock exposed to similar concentrations of dispersed oil (cod 2.8 μg/L tPAH, haddock

2.7 μg/L), and haddock exposed to just the WSF of the same dose just before hatch at day 9

(Fig 5). Prior to hatch (at day 9), haddock exposed to droplets had a tPAH of 4106 ± 219 pg/

embryo compared to cod with only 1006 ± 96 pg/embryo. Notably, haddock showed a dis-

tinctly different pattern of PAHs, dominated by higher degrees of alkylation for 3- and 4-ring

compounds (Fig 5). Although all three treatments showed a reduction in tPAH after hatch, the

drop was much larger for droplet-exposed haddock, consistent with loss of a large portion

associated with the chorion. However, the internal concentrations of both intermediate and

heavier compounds in newly hatched haddock larvae (day 10) were increased compared to

both droplet-exposed cod and haddock exposed to only WSF.

We also attempted to quantify the relative amounts of chorion-associated PAH and true

body burden of pre-hatch (day 9) haddock embryos by manually removing the chorions of

embryos exposed to the highest dose (9 μg/L tPAH). Due to the difficulty of this process, the

yolk mass was lost from some embryos, which was likely to lead to an underestimation of the

actual body burden. Despite potential loss of yolk-associated PAHs, dechorionated embryos

d12, during the uptake period for three doses of crude oil exposed haddock and the highest exposure dose for cod. Error bars represent one

standard deviation (n = 3). A linear trendline is fitted to each group (R2 = 0.926, 0.921, 0.530 and 0.023 for haddock 8.6, 2.7, 0.76 and cod 9.1,

respectively).

https://doi.org/10.1371/journal.pone.0180048.g001
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had a body burden of 984 pg/embryo, roughly the same as cod exposed to only 3 μg/L (S7

Table). Intriguingly, the loss of compounds in manually dechorionated embryos was not

Fig 2. Craniofacial phenotypes in cod (A-D) and haddock (A’-E’) 3 days after hatching. (A,A’) Control and

four craniofacial abnormality phenotypes: Larvae with (B, B’) underdeveloped upper jaw, (C, C’), with an

underdeveloped upper jaw and posteriorly displaced lower jaw, (D, D’) underdeveloped upper jaw and hanging

lower jaw, and (E’) overall extremely reduced jaw structures. (F) and (G) show the distribution of craniofacial

phenotypes in increasing concentrations of dispersed crude oil and water soluble fraction in cod and haddock,

respectively. *: haddock experiment 2.

https://doi.org/10.1371/journal.pone.0180048.g002
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uniform across all PAH classes. We compared the percentage of compounds recovered on the

chorions, manually extracted embryo and hatched larvae relative to the total in intact eggs

(S10 Fig). On average, 50–70% of the heavier compounds (> 3-rings) were found on the cho-

rion, while most of the smaller compounds were found in the larvae. We also compared the

PAH compositions in hatched cod larvae exposed to droplets, hatched haddock exposed to

WSF (at roughly the same tPAH body burden), and hatched haddock larvae and manually

Fig 3. Expression of cyp1a relative to control measured two days prior to hatching (10 and 11 dpf for haddock and cod, respectively), expressed as a

function of exposure concentration (A) and body burden concentration (B). A linear regression is fitted to each of the cod and haddock data sets (R2 = 0.983,

0.953, 0.998, 0.724 for haddock and cod cyp1a compared to water concentration, and for haddock and cod cyp1a compared to body burden concentration,

respectively).

https://doi.org/10.1371/journal.pone.0180048.g003

Table 1. Total PAH body burden (including alkyl clusters) measured in cod and haddock eggs at day 3 and day 9 of exposure.

CW (μg/L) Body burden (pg/embryo) Body burden (ng/g wet weight) Body burden (ng/g lipid)

Day 3 Day 9 Day 3 Day 9 Day 3 Day 9

Cod 0.15 ± 0.01 101 ± 33 32.4 ± 7.6 22 ± 10 7.7 ± 1.2 3 143 ± 1 414 1 100 ± 171

0.29 ± 0.03 147 ± 15 91 ± 11 36.3 ± 2.5 22.7 ± 2.1 5 186 ± 357 3 243 ± 297

2.8 ± 0.5 1 902 ± 88 639 ± 98 542 ± 16 159 ± 12 77 429 ± 2 314 22 714 ± 1 722

3.6 ± 0.6 1 560 ± 41 1 006 ± 193 438 ± 29 258 ± 15 62 571 ± 4 143 36 857 ± 2 143

9.1 ± 1.4 4 455 ± 558 1 585 ± 153 1 101 ± 64 412 ± 41 157 286 ± 9 087 58 857 ± 5 891

Haddock 0.09 ± 0.11 239 ± 330 78 ± 37 18 ± 21 5.7 ± 2.1 2 571 ± 3 000 814 ± 300

0.17 ± 0.06 161 ± 96 78.5 ± 3.8 25.3 ± 3.2 15.7 ± 1.5 3 614 ± 457 2 243 ± 214

0.21 ± 0.03 238 ± 56 153 ± 41 43.7 ± 4.0 28.3 ± 5.5 6 243 ± 571 4 043 ± 786

0.76 ± 0.09 1 050 ± 46 1 128 ± 209 151 ± 13 99 ± 14 21 571 ± 1 857 14 143 ± 2 000

2.7 ± 0.5 3 280 ± 108 4 106 ± 482 594 ± 15 351 ± 30 84 857 ± 2 143 50 143 ± 4 286

3.5 ± 0.8 4 959 ± 199 5 983 ± 991 883 ± 64 439 ± 29 126 143 ± 9 143 62 714 ± 4 143

8.6 ± 1.4 8 790 ± 68 13 315 ± 2 532 1 080 ± 54 1 194 ± 111 154 286 ± 7 714 170 571 ± 15 857

https://doi.org/10.1371/journal.pone.0180048.t001
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Fig 4. The change in body burden of phenanthrenes and chrysenes in crude oil exposed cod and haddock

throughout the exposure period at two different exposure concentrations, ~3 μg/L tPAH (A) and ~9 μg/L tPAH (B).
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dechorionated embryos from the same droplet exposure (Fig 6). Importantly, the pattern of

PAHs in cod exposed to droplets and haddock exposed to WSF were virtually indistinguish-

able and dominated by 2-ringed naphthalene compounds. In contrast, both hatched haddock

larvae and manually-dechorionated embryos from the droplet exposure showed PAH patterns

with higher percentages of 3-ringed compounds, and in particular the alkylated homologs.

Differential elimination of alkyl-PAHs by both cod and haddock

The drop in tPAH observed in cod embryos between day 3 and day 9 occurred despite contin-

uous exposure, and was unexpected. We therefore examined this in more detail for individual

compounds. To investigate the significance of compound structure (ring size and degree of

alkylation) on this change in body burden over time, we calculated the relative change (in %)

for different compounds groups at day 9 relative to day 3 (Fig 7 and S6 Fig). For cod at all

doses (S6B Fig) and non-fouled haddock eggs (exposed to WSF and the lowest dispersed oil

Haddock embryos exposed to only the water-soluble fraction (WSF) at ~3 μg/L tPAH is also included. Body burden in

haddock embryos exposed at ~9 μg/L tPAH could not be measured beyond day 10 due to high mortality. Error bars

indicate standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0180048.g004

Fig 5. Body burden (pg/embryo or larvae) of PAHs and alkyl PAH clusters in eggs before hatching (left) and larvae (right) exposed to ~3 μg/L

tPAH and WSF fraction. Distribution of PAHs (mg/g oil) in the crude oil is shown for comparison. For visibility, all 5–6 ring compounds are grouped. Error

bars represent one standard deviation (n = 3). NAP = naphthalene, FLU = fluorene, DBT = dibenzothiophene, PYR = pyrene, CHR = chrysene.

https://doi.org/10.1371/journal.pone.0180048.g005
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Fig 6. Relative body burden (%) of select 2–6 ring PAHs and alkyl PAHs in larvae of cod exposed to ~9 μg/L tPAH,

haddock exposed to WSF and haddock exposed to ~9 μg/L tPAH who hatched in the tank and that was dechorionated.

NAP = naphthalene, FLU = fluorene, DBT = dibenzothiophene, PYR = pyrene, CHR = chrysene.

https://doi.org/10.1371/journal.pone.0180048.g006
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dose, tPAH = 0.21 μg/L; S6A Fig), the body burden of all compound groups decreased over

time. However, in all treatments there was a lower decrease in body burden for 3 and 4-ring

PAHs with increasing alkylation (alkyl-fluorenes, -dibenzothiophenes, -phenanthrenes, -chry-

senes and -pyrenes/fluoranthenes). The trend was the opposite for naphthalenes, with increas-

ing alkylation leading to a larger decrease in body burden. Although the body burden of all

alkylated 4-ring PAHs and C3-C4 alkylated 3-ring PAHs increased dramatically from day 3 to

day 9 for droplet-fouled haddock eggs, concentrations of parent 3-ring, C1-alkylated, and in

some cases C2-alkylated homologs decreased (Fig 7 and S6A Fig). Thus, although tPAH con-

tinued to increase with continuous oil droplet exposure for haddock, for some individual com-

pounds concentrations declined.

To examine this phenomenon in further detail, we plotted the rate of decline of cod embryo

body burden from day 3 to day 9 as a function of log KOW for all reliably measured compounds

(Fig 8). The maximum decline was observed for compounds of intermediate log KOW (~5).

The values for 3–6 ring compounds (blue shades) could be fitted to a third-degree polynomial

function, but 2-ring PAHs (red) did not fit this model well and a linear function is fitted to

these data. A similar relationship was observed for both cod and haddock embryos using prin-

cipal component analysis (PCA) (S8 Fig). The temporal changes in body burden profile in the

cod and haddock embryos during the exposure experiment were clearly different. At maxi-

mum uptake (day 3), the uptake profile in all embryos was dominated by less alkylated 3-rings

compounds (fluorenes and phenanthrenes). At day 9, the embryo-associated chrysenes and

heavily alkylated chrysenes and pyrenes increased significantly in medium and high dose

droplet-exposed haddock, while the body burden of all larger compounds decreased in cod

and WSF exposed haddock embryos. The body burden of the latter was dominated by smaller

compounds, mainly 2-ringed naphthalenes and benzothiophenes. At day 10/11, after the loss

Fig 7. Deviation in body burden (pg/embryo) of PAHs and alkyl PAH groups between day 9 and day 3 for an intermediate exposure concentration

(~3 μg/L tPAH). Negative values indicate a decline in body burden of the compound group between the two time points. NAP = naphthalene, FLU = fluorene,

DBT = dibenzothiophene, PYR = pyrene, CHR = chrysene.

https://doi.org/10.1371/journal.pone.0180048.g007
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of chorion, the PAH profile in cod and WSF-exposed haddock was more similar to the profile

at day 9. However, the body burden in hatched haddock larvae from the droplet exposure

reverted to a profile more similar to what was observed at day 3, with a dominance of interme-

diate sized compounds.

Finally, we related the log KOW of PAHs associated with embryos to levels of cyp1a induc-

tion. Using the combined PAH data from both haddock (0.10, 0.76, 1.6 (WSF), 2.7 and 3.5 μg/

L tPAH) and cod (0.15, 0.29, 2.8, 3.6 and 9.1 μg/L tPAH) (S6 Table), we performed a “blind”

correlation of PAH body burden (both total, individual compounds and group clusters) at day

3 and day 9 with cyp1a induction measured immediately prior to hatching (Fig 9). A strong

correlation (R2 > 0.8) was observed for most compounds with log KOW > 5.

Discussion

Oil droplet fouling on the haddock egg chorion causes increased internal

body burden and more severe toxicity

While it was previously demonstrated that the chorions of haddock embryos are fouled by

crude oil droplets upon exposure [3, 19], here we directly compare the closely related species

Fig 8. Observed relationship between log KOW and rate of decline in body burden concentration from day 3 to day 9 during exposure of crude

oil exposed haddock embryos. The fitted line shows a third-degree polynomial fit for 3–6 ring compounds (blue circles). 2-ring PAHs (red circles)

showed a linear increase with increasing log KOW.

https://doi.org/10.1371/journal.pone.0180048.g008
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Atlantic cod, and expand on prior work with toxicokinetic data on PAHs. We confirm that

haddock eggs are fouled by crude oil, but the same phenomenon was not observed for cod

eggs. In the present study we started the exposure of the egg shortly after fertilization and the

oil droplets were evenly distributed across the entire haddock chorion, in line with Sørhus

Fig 9. Coefficient of determination (R2) as a function of log KOW for the fit of a linear relationship between cyp1a induction and single

compound body burdens.

https://doi.org/10.1371/journal.pone.0180048.g009
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et al [19]. In a previous study where exposure of haddock embryos began at a later stage of

development, oil droplets were found only to bind at discrete localizations of the chorion [3].

This suggests that the “stickiness” of the surface of the haddock chorion changes throughout

embryonic development and declines close to hatching. Measurement of presence and accu-

mulation of n-alkanes in the embryo extracts confirmed that only haddock eggs experienced

oil droplet fouling. Moreover, n-alkane quantification indicated a continuous, linear adhesion

uptake of whole oil to haddock embryos, without saturation even at the highest tested dose.

However, the lowest dispersed oil concentrations (< 0.7 μg/L tPAH) did not lead to oil fouling

on the haddock chorion. This is most likely because such low doses have a limited number of

droplets present in the exposure volume, and the statistical chance of egg-droplet interaction is

thus low.

Like other species with pelagic eggs, haddock and cod have a thin homogeneous, lamellated

chorion [45, 46]. However, haddock eggs have an additional membrane of adhesive material

covering the primary egg envelope [46]. Ongoing work includes a chemical characterization of

the haddock egg outer membrane, but at present the physical-chemical mechanism of oil drop-

let fouling is unknown. Nevertheless, these findings emphasize the contribution of the struc-

turally distinct haddock chorion [46] to an interaction with oil droplets that has profound

consequences for toxicity. Moreover, the concentrations of dispersed oil leading to toxicity in

both species are extremely low and environmentally realistic (< 10 μg/L tPAH). The toxicoki-

netic data indicate that oil droplet fouling on the haddock chorion influences PAH uptake

both quantitatively and qualitatively.

The sensitivity of the haddock embryos observed in the current study was in line with what

was observed in previous studies [3, 19, 20], while cod embryos exposed to the same concen-

trations of crude oil droplets were much less affected. The severity of effects observed in cod

embryos was similar to WSF exposed haddock eggs at the same PAH dose (Figs 2 and 3).

These results support the hypothesis that cod embryos are mainly affected by the water-soluble

fraction of crude oil PAHs, as previously proposed for other species [16, 17, 47]. Further, it

indicates that it is the attachment of crude oil droplets on the haddock chorion which is the

outer driving force for the increased sensitivity observed in haddock embryos. We propose

that the attachment of crude oil particles to the chorion leads to a secondary exposure pathway,

facilitating increased uptake of PAHs in the embryos, which further causes the increased sever-

ity of deformation and cardiotoxicity in haddock compared to cod.

The influence of chorion fouling on internal body burden in haddock embryos. From

day 3 to day 9, the oil-fouled haddock eggs showed a significantly different accumulation pat-

tern than the haddock eggs that have only been subject to the WSF and the cod eggs that were

not fouled (Fig 7). The measured body burden of (particularly) heavier PAHs is significantly

affected by the PAHs found in the droplets that adhere on the egg surface. For the heaviest

compounds (log KOW > 6) at the highest exposure dose (9 μg/L) the uptake pattern is strik-

ingly similar to the increase in fouling as measured by n-alkanes (comparing Fig 1 and S5 Fig),

indicating that the main burden of these compounds is found in the droplets on the egg exte-

rior. However, through measurements of accumulated body burden in hatched larvae, and in

dechorionated embryos from oil-fouled haddock eggs, we show that adhered oil droplets also

lead to an increased internal body burden of PAHs.

Investigation of PAH profiles in cod and haddock embryos at day 3, 9 and 10/11 indicate

that all PAHs measured in the cod and haddock WSF samples are mainly located in the inter-

nal embryo, as the PAH profiles do not significantly change after hatching (between days 9

and 10/11). However, the profile in hatched, chorion-free haddock embryos from oil droplet

exposed eggs revert to a PAH profile more similar to the uptake at day 3 (S8 Fig). This indicates

two things. First, the heavier compounds used in the analysis (alkylated 4 ring compounds)
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have been located mainly on the exterior of the chorion of the haddock eggs. Secondly, the pres-

ence of the oil droplet on the chorion during exposure has led to increased internal uptake of

alkylated three ring and some four ring compounds. Quantitative investigation of the same

samples (Fig 5), as well as samples of dechorionated embryos and hatched larvae from the high-

est exposure dose (Fig 6) confirm this interpretation. Haddock larvae from crude oil droplet

exposures are left with a surplus of larger (> 3-ring) compounds compared to cod and WSF

exposed haddock. The increased uptake of heavier PAHs in particular may explain the much

higher cyp1a induction in haddock embryos, as it is well established that heavier PAHs are

more potent cyp1a inducers [48–50].

PAH elimination has major impact on bioaccumulation in fish ELS

While PAH metabolism is known to be an efficient and rapid process in adult and juvenile fish

[51–53], it has not previously been considered an important factor in determining the bioaccu-

mulation of PAHs in fish ELS [24, 54]. An unexpected observation in the current study, most

obvious in the non-oil-fouled cod eggs and WSF exposed haddock eggs, was that the concen-

tration of internal PAHs generally declined through incubation despite constant exposure (Fig

4 and Table 1). Although the association of PAHs in whole oil on the haddock chorion makes

this determination more complicated, careful analysis of individual compounds showed the

same pattern.

After peak uptake at day 3, the body burden of all measured PAHs and alkyl PAHs in non-

fouled eggs (cod and WSF exposed haddock) declined towards the end of exposure. Both spe-

cies showed a much higher decline in body burden for non-alkylated compounds relative to

the corresponding alkylated homologs. For 3 and 4 ring compounds, there was an inverse rela-

tionship between increasing alkylation and loss of PAH body burden (Fig 7). This is in line

with previous observations on adult fish [55]. In the current study, we also observed a relation-

ship between log KOW and elimination, with maximum decline observed for compounds with

log KOW close to 5 (Fig 8). 2-ring PAHs showed a different elimination behavior than larger

PAHs, where increased alkylation had less impact on the elimination rate (Figs 7 and 8). No

steady-state in embryo body burden was reached for compounds below a log KOW value of 5

(S3–S5 Figs). For larger compounds (log KOW > 5), a steady-state condition was reached after

5–7 days of exposure and only a smaller change in body burden until exposure end at day 11

(after hatching). Given that cyp1a is robustly induced by embryos (even at early stages of life

and after short exposures [19]), we interpret the observed elimination of PAHs to indicate that

xenobiotic metabolism is induced in the embryos. This is in line with previous observations of

the effect of retene (a C4-phenanthrene) on rainbow trout ELS [56]. The current experimental

design did not allow for a direct, un-biased comparison of PAH elimination or metabolism

rates in haddock and cod, and it’s potential impact on toxicity in the two species. Future work

should address this by designing experiments where direct, physical interaction between had-

dock eggs and oil droplets are not possible.

The main reason why the dramatic influence of elimination on PAH accumulation in fish

embryos has not often previously been reported, is partly due to the use of radiolabeled chemi-

cals in uptake studies [24, 54, 57]. The use of such chemicals would lead to the co-determina-

tion of PAH and all PAH metabolites, and give no information of parent PAH degradation

within the egg/embryo. In the current study, elimination affected all PAHs and alkyl PAH

compounds groups studied, which is a larger suite of compounds than what have ever been

reported in a single study previously. The proposed cause of elimination is biotransformation,

metabolism in the embryos starting as early as 3–4 dpf. However, no information about poten-

tial degradation products is obtained in the current study. From previous studies, it is known
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that metabolic products predominantly produced may be dependent upon both PAH structure

and species [58–61]. Future studies should focus on confirming the metabolism potential of

fish ELS, as well as identifying the metabolites of alkyl and parent PAHs formed in embryos

and larvae of different species.

Conclusion

In the current study, the change in PAH body burden in dispersed crude oil exposed Atlantic had-

dock and cod embryos during a 10 or 11 days long exposure (1-11/12 days post fertilization (dpf))

was investigated. It was determined that haddock eggs, unlike cod, are fouled by crude oil droplets

adhering to the chorion when exposed to concentrations> 0.7 μg/L tPAH. This is correlated with

an increased body burden of both parent and alkylated PAHs, and a severe increase in toxicologi-

cal responses (malformations and cardiotoxicity). Due to the fouling of the haddock chorion with

crude oil droplets, total measured egg-associated PAHs prior to hatching is higher (particularly

for heavier compounds) than what is actually bioavailable to the embryos, and much higher than

what is measured in the non-fouled cod eggs. However, the increased cyp1a induction and

increased severity of cardiotoxicity and morphological malformations in haddock compared to

cod clearly indicate an increased uptake of PAHs in the embryos. This is consistent with a second-

ary uptake pathway caused by the oil droplets adhering to the surface of the eggs.

This work also highlights the importance of considering the influence of elimination or

transformation of PAHs on measured body burdens, even when working with earliest life

stages of fish. Both haddock and cod embryos are able to eliminate a wide range of both parent

and alkylated PAHs, starting as early as 3–4 dpf when exposed to crude oil dispersions. Fur-

thermore, future research should address the knowledge gap concerning the potential toxicity

of PAH metabolites formed in fish ELS.

For the purpose of oil spill damage assessment models, it is desirable to be able to predict

the body residue of toxic oil compounds (such as PAHs) in the body of organisms of concern

in a given spill scenario. However, as seen for the case of cod and haddock embryos, the body

burden of PAHs may be highly dynamic, even in the case of a constant exposure over a reason-

ably long time. This must be taken into consideration when planning experiments to provide

input into crude oil effects models.

Supporting information

S1 Fig. Exposure and sampling regime. Timepoints shaded in grey mark sampling dates for

body burden measurements.

(TIF)

S2 Fig. Uptake of sum PAHs over nine days. Sum of single compounds measured in eggs

during exposure at three doses (A = high, ~9 μg/L, B = medium, ~3 μg/L, C = low, ~0.3 μg/L

tPAH). Error bars represent one standard deviation (n = 3).

(TIF)

S3 Fig. Uptake of PAHs in low (~0.3 μg/L) dose dispersion exposure. Uptake of 28 single

PAHs in low dose crude oil exposed haddock (0.21 μg/L tPAH) and cod (0.29 μg/L tPAH)

embryos over nine days of exposure. Error bars represent one standard deviation (n = 3).

(TIF)

S4 Fig. Uptake of PAHs in medium (~3 μg/L tPAH) dose dispersion exposure. Uptake of 28

single PAHs in medium dose crude oil exposed haddock (2.7 μg/L tPAH) and cod (2.9 μg/L

tPAH) embryos, as well as water-soluble fraction (WSF) exposed haddock embryos (1.6 μg/L

tPAH) over 10 (haddock) or 11 (cod) days of exposure, followed by two days in clean water.
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Error bars represent one standard deviation (n = 3).

(TIF)

S5 Fig. Uptake of PAHs in high (~9 μg/L) dose dispersion exposure. Uptake of 28 single

PAHs in high dose crude oil exposed haddock (8.6 μg/L tPAH) and cod (9.1 μg/L tPAH)

embryos over 10 (haddock) or 11 (cod) days of exposure, followed by two days in clean water

for cod. Haddock embryos did not survive hatching in sufficient numbers to be followed fur-

ther. Error bars represent one standard deviation (n = 3).

(TIF)

S6 Fig. Relative change in body burden from day 3 to day 9 (%). Deviation in body burden

(pg/embryo) of PAHs and alkyl PAH groups between day 9 and day 3 for several exposure

concentrations for both haddock (A) and cod (B). Negative values indicate a decline in body

burden of the compound group between the two time-points, indicating dominating influence

metabolic transformation.

(TIF)

S7 Fig. Total body burden. Total body burden (sum of individual PAHs and alkyl PAH clus-

ters) at maximum measured uptake (day 3), last day of embryo sampling (day 9) and exposure

end (day 10 for haddock, day 11 for cod). Error bars represent one standard deviation (n = 3).

(TIF)

S8 Fig. Principal component analysis (PCA) comparing the uptake profile of PAHs. Com-

paring the change in body burden PAH profile from the point of measured maximum tPAH

uptake (day 3), and before (day 9) and after hatching (day 10 (haddock), 11 (cod)). PCA was

performed on individual compound or compound group concentrations (pg/embryo) normal-

ized to tPAH, scaled to the mean of each variable and centered.

(TIF)

S9 Fig. Principal component analysis (PCA) comparing the uptake profile of PAHs in cod

and haddock over time. Comparing the change in body burden PAH profile over the course

of the exposure for cod and haddock embryos separately. PCA was performed on individual

compound or compound group concentrations (pg/embryo) normalized to tPAH, scaled to

the mean of each variable and centered.

(TIF)

S10 Fig. Comparison of percentage of different PAH groups recovered on the chorions,

manually extracted embryo and hatched larvae relative to the total in intact haddock eggs

fouled by oil droplets. Eggs were sampled immediately prior to hatch, and hatched larvae

immediately post-hatch.

(TIF)

S1 Table. Properties of PAH analytes and their GC-MS/MS analytical conditions.

(DOC)

S2 Table. Real time qPCR primer and probe sequences for cyp1a.

(DOC)

S3 Table. Measured PAH exposure concentrations. Concentration of individual and alkyl

cluster PAHs measured in water samples (ng/L) of the individual exposure groups, and in the

crude oil (μg/g) used in the experiments, given with one standard deviation (n = 3). LOQ =

limit of quantification.

(DOC)
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S4 Table. Alkane uptake. Relative response of alkanes (S(nC19-nC32)) normalized to the

response of internal standard pyrene-d12. Given with one standard deviation (n = 3).

(DOC)

S5 Table. Characterization of cardiac function and morphology at 2 dph (cod) and 3 dph

(haddock). 1VFS, ventriclular fractional shortening; AFS, atrial fractional shortening; SV,

silent ventricle. a–dLetters indicate significant differences between groups within the same

experiment (p =<0.05) (groups with same letters are not significantly different from each

other). �very underdeveloped ventricle treated as silent ventricle.

(DOC)

S6 Table. Correlation between Cyp1a and PAH body burden. Linear regression performed

on data sets of body burden (pg) embryo and Cyp1a fold change normalized to control in for

both cod and haddock at day 3 and day 9. Correlation expressed in terms of the coefficient of

determination (R2) for the regression. ND = not determined (too many missing body burden

values).

(DOC)

S7 Table. Body burden data. Uptake of PAHs and alkylated PAHs in cod and haddock

embryos. Given as pg/embryo with one SD (n = 3). LOQ = limit of quantification. NA = not

analysed.

(DOC)

S1 File. NC3Rs ARRIVE guidelines checklist.

(PDF)
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