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Abstract
The paper copes with the task of automatic assessment of sec-
ond language proficiency from the language learners’ spoken
responses to test prompts. The task has significant relevance to
the field of computer assisted language learning. The approach
presented in the paper relies on two separate modules: (1) an
automatic speech recognition system that yields text transcripts
of the spoken interactions involved, and (2) a multiple classi-
fier system based on deep learners that ranks the transcripts into
proficiency classes. Different deep neural network architectures
(both feed-forward and recurrent) are specialized over diverse
representations of the texts in terms of: a reference grammar,
the outcome of probabilistic language models, several word em-
beddings, and two bag-of-word models. Combination of the in-
dividual classifiers is realized either via a probabilistic pseudo-
joint model, or via a neural mixture of experts. Using the data of
the third Spoken CALL Shared Task challenge, the highest val-
ues to date were obtained in terms of three popular evaluation
metrics.
Index Terms: computer aided language learning, L2 profi-
ciency, speech recognition, deep learning, mixture of experts.

1. Introduction
The problem of automatic proficiency scoring in second lan-
guage learning (L2) [1] has been largely investigated in the
past in the framework of computer assisted language learning
(CALL) [2]. Approaches have been proposed for two input
modalities: written and spoken. In both cases, specific com-
petencies of the human learners are processed by suitable profi-
ciency classifiers. The goal is to measure L2 proficiency relying
on some ground truth provided by human experts. To this aim,
the paper proposes and investigates the use of models for pro-
ficiency classification on a public data set released for the third
Spoken CALL Shared Task [3] challenge. This took place in
2019 (hereafter “2019 challenge”), and addressed the automatic
scoring of sentences uttered by Swiss German teenagers learn-
ing English in their second and third year.

Most of the approaches used by participants in the 2017
and 2018 editions of the challenge [4, 5] rely on hand-crafted
features, extracted from both audio signals and automatic tran-
scriptions of utterances, fed to a traditional classifier (e.g., based
on logistic regression). These approaches, used also in most
commercial systems (see [6] for a review), exhibited good per-
formance on the task of the challenge. In both 2018 and 2019
challenges [5, 3] some approaches based on word embeddings
[7] were investigated, as well.

In the work reported in [8], sentence similarities among
ASR transcripts and the corresponding responses contained in
a reference “grammar” (i.e. a non-exhaustive, prompt-specific
list of appropriate responses, provided by the organizers of the
challenge) are used as features for a scoring system based on

a neural network (NN). The performances obtained using sev-
eral in-domain and out-of-domain word embeddings (namely,
Word2Vec and doc2vec [9]) are compared in [8], as well. An
alternate approach based on word embeddings was presented
in [10] for the 2019 challenge. The scoring system proposed
in [10] relies on a NN fed with 918-dimensional word vectors.
Each vector is formed by concatenating the outputs of the Bidi-
rectional Encoder Representations from Transformers (BERT)
[11] and a NN-based language model (LM) [12] trained on the
data sets delivered for the challenge. Also, alternative word em-
beddings (i.e. word2vec, doc2vec, and ELMO [13]) were eval-
uated experimentally in [10].

In the present paper, building on the aforementioned ex-
periences, we propose an approach that properly combines the
outputs of several scoring systems, including the system win-
ner of the 2019 challenge [14]. A speech recognizer is applied
first, so as to obtain transcripts of the noisy responses uttered by
the students. Feedforward and recurrent deep neural networks
(DNN) are then used to model different representations of the
automatic transcriptions. For each of these representations, a
DNN is trained (hence, specialized) over a corresponding set of
features, namely: (i) the scores yielded by a reference grammar,
(ii) the likelihoods estimated by a number of probabilistic LMs,
(iii) sequences of word embeddings of different type, and (iv)
two variants of the bag-of-words representation. Besides apply-
ing individually each of these DNN-based “experts”, multiple
classifier systems are presented that combine all of them into
a higher-level, more robust classifier capable of exploiting the
specific capabilities of the individual experts. The combination
is accomplished by either applying a pseudo-joint probability
criterion over the individual DNN estimates [15], or by means
of a mixture of DNNs [16]. In so doing the highest values to
date are obtained in terms of the evaluation metric used offi-
cially for the challenge, as well as of other popular metrics.

The combination of multiple DNNs for speech scoring was
proposed in [17], where two DNNs are employed to encode the
lexical and the acoustic information contained in a spoken ut-
terance, respectively. The lexical DNN encodes an automati-
cally recognized input sentence relying on a pre-trained model
(namely “GloVe”, described in [18]), while the acoustic DNN
encodes a corresponding sequence of word-level acoustic fea-
tures. A linear regression model is used to combine the scores
provided by the two DNNs. Different DNN architectures were
evaluated empirically in [17]. The best results were obtained
via a bidirectional LSTM (long-short term memory) [19] NN,
together with an attention mechanism.

Mixtures of experts (in the form of shallow NNs) have long
been investigated and successfully applied to a number of tasks
in the machine learning community [16]. Applications of mix-
tures of experts include acoustic modeling [20], language mod-
eling and machine translation [21], and other natural language
processing tasks [22]. Since the outbreak of deep learning [21],
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also mixtures of DNNs have been receiving increasing atten-
tion. We follow in the footsteps of [23], insofar that a hard mix-
ture of DNNs is built from independent experts that are indi-
vidually specialized on expert-specific features, and efficiently
trained in parallel. A probabilistic gating function can be ap-
plied that realizes a pseudo-joint likelihood of the independent
DNNs (provided that a proper probabilistic interpretation of the
DNNs outputs is given). More generally, a higher-level gating
network can be trained a posteriori to assign individual credit to
the pre-trained experts.

2. Task and systems description
The third Spoken CALL Shared Task [3] is composed by
(prompt, response) pairs where prompts are written questions
in German, while responses are speech recordings of spoken
utterances given in English by native German-speaking Swiss
teenagers. Each response was tagged by human raters with
two Boolean labels denoting the correctness of the responses
in terms of language and meaning, respectively. The task con-
sists in classifying utterances as accepted or rejected: a re-
sponse shall be accepted if both its language and its meaning
are labeled as “correct”. A reference grammar is made avail-
able by the organizers of the challenge, in the form of a list of
correct written responses to each given prompt. For the 2019
challenge, the two training sets of the past editions [4, 5] are
merged to form the training set (hereinafter called TrainingSet,
11919 utterances), the test set of the first challenge plays the
role of development set (DevSet, 995 utterances), and the test
set of the second edition is adopted as evaluation set (EvalSet,
1000 utterances). TrainingSet was used to train the acoustic
models and the LMs. DevSet and EvalSet were used to tune
hyper-parameters of the whole system and for applying model
selection, respectively. Finally, the test data of the 2019 chal-
lenge (TestSet, 1000 utterances) were used for testing the per-
formance of the resulting system.

The acoustic model, improved over [24], was trained us-
ing a popular Kaldi recipe [25] that relies on a time-delay NN
optimized using the lattice-free maximum mutual information
approach, i.e. with a sequence-level objective function. The
acoustic model was trained on an extended dataset that, in ad-
dition to TrainingSet, embraced (i) the subset of PF-STAR [26]
comprising the recordings of read English speech from German
children (about 3.5h), and (ii) the ISLE corpus [27], consist-
ing of 11484 utterances recorded by intermediate-level German
learners of English (about 18h). As for the LM, the 3-gram
stochastic LM provided by the organizers was adopted (details
in [3]), resulting in a 7.5% word error rate on EvalSet.

2.1. FBK baseline system

The winner of the 2019 challenge used the following sets of
features: standard, 4 features counting the number of words, of
content words, the number and percentage of out-of-vocabulary
(OOV) words; reference, 5 features computed using the refer-
ence grammar and the edit error (see [14]); LMs, features com-
puted using some LMs. For each LM, 5 features related to log-
probability, OOVs and number of back-offs were computed. A
maximum of 12 LMs were defined, 1-grams to 4-grams, com-
puted on 3 data sets: Generic, around 3 million words from
English TED talks; TrainRejRec, ASR outputs bounded by la-
bels start and end , corresponding to the incorrect utterances
of TrainingSet; TrainAccRec, the same but corresponding to the
correct utterances of TrainingSet.

Several feed-forward NNs (FFNNs) were used to perform
classification; then, majority voting was applied to the most
promising (on DevSet) classification outputs to contrast the high
variability of the results observed on DevSet.

2.2. Stand-alone DNNs and textual features used

Sections 2.2.1 and 2.2.2 present the stand-alone DNNs used in
the present paper, along with the corresponding features ex-
tracted from the prompts and the transcripts of the responses.
Unless otherwise stated, henceforth a categorical cross-entropy
loss function is used for training the networks.

2.2.1. LSTM on word embeddings (Word2Vec, BERT)

The LSTM model is considered first, and trained over sequences
of 300-dimensional real-valued Word2Vec [7] word embed-
dings (hereafter we write LSTM-W2V to refer to this approach).
The Word2Vec embeddings for any given (prompt, response)
pair are then concatenated in order to form a single sequence of
vectors, corresponding to the words in the prompt followed by
the words in the response.

An ad hoc version of the loss function to train the LSTM-
W2V is devised, as well, so as to account for the mismatch be-
tween the usual training criterion and the evaluation metric used
in the 2019 challenge, that is the Dfull [5]. The following cri-
terion is proposed:

L(y, ŷ) =


λMSE(y, ŷ), if y is correct in language and

ŷ is incorrect in meaning
MSE(y, ŷ), otherwise

where MSE denotes the mean squared error loss, whose value
is multiplied by λ (where λ > 1) whenever the meaning of the
current response is incorrect while the system accepts it (thus,
penalizing the gross false accept errors). We write LSTM-
W2V-L to refer to the LSTM trained over the modified loss.
Within the experimental framework reported in Section 3, a
grid-search model selection procedure singled out an empiri-
cally suitable value of λ = 3.

Another variant of LSTM-W2V is achieved by interpos-
ing an end-of-sentence marker amidst the sequence of embed-
dings representing the prompt and the sequence representing
the corresponding response. Roughly speaking, the marker is
expected to provide the network with explicit information on
when exactly to switch its internal state from prompt-processing
to response-processing, possibly easing the LSTM learning and
classification tasks. Henceforth, the approach is referred to as
LSTM-W2V-M. In practice, the present variant turns out to
yield the best performance when realized by means of an ad-
ditional component to the embedding vectors (which become
301-dimensional), where the additional component is perma-
nently set to zero except for the aforementioned marker, where
it is set to one (other components in the marker are set to zero).

Finally, we replaced Word2Vec with BERT embeddings
[11] (768-dimensional real-valued vectors) applying the same
concatenation procedure of the word encodings in the prompt
and in the response, respectively, separated by a marker (to this
end, an additional binary component was added to the BERT
vectors, as well, resulting in a 769-dimensional feature space).
The present variant is abbreviated as LSTM-BERT.

Note that the use we propose of LSTMs with sequences
of Word2Vec or BERT vectors is different from the use made
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in [8]. The latter relies on Word2Vec and doc2vec embed-
dings in order to compute individual sentence similarities be-
tween the responses and the reference grammar for the chal-
lenge. Such similarities are then used to train FFNN-based
classifiers. In like manner, our approach differs entirely from
that proposed in [10]. In fact, the latter averages over the se-
quence of embeddings in the prompt and in the corresponding
response, obtaining a single static vector, which is concatenated
with another vector drawn from a probabilistic LM. This flat,
fixed-dimensional representation is eventually fed into a shal-
low FFNN-based classifier [10].

2.2.2. Deep FFNN on Bag-Of-Words and TF-IDF

A deep FFNN was applied to two completely different encod-
ings of the transcripts, obtained by extracting either bag-of-
words (BOW) or term frequency-inverse document frequency
(TF-IDF) [28] vectors from the prompt and the response, re-
spectively. The BOW model considered herein is a plain
counter of the occurrences of individual words in the text. Both
BOW and TF-IDF representations rely on a 1020 word vocab-
ulary (embracing both German prompts and English responses
in the dataset). The 2040-dimensional input vector fed to the
FFNN was formed by concatenation of the encodings corre-
sponding to the current prompt and response.

2.3. Combining multiple DNNs

A first probabilistic strategy for combining the different DNNs
is readily achieved in terms of a pseudo-joint probability model
as follows [15]. Henceforth, we write ω1, . . . , ωc to represent
the c different classes involved in the classification task. Let ψ1

and ψ2 be the continuous-valued random quantities yielded by
two distinct functions (or, regression models) of the outcome
x of a given random phenomenon (e.g., the transcript of the
response to a prompt). We refer to ψ1 and ψ2 as the “models”
(it is straightforward to extend the following discussion to an
arbitrary number of models). Different representations of x are
given in terms of model-specific random vectors of features (or,
sequences of feature vectors), say x(1) for ψ1 and x(2) for ψ2,
respectively. Assuming that the models are independent of each
other, for any state of nature ωi (i = 1, . . . , c) we can write:

P (ωi | ψ1, ψ2) =
p(ψ1, ψ2 | ωi)P (ωi)

p(ψ1, ψ2)
(1)

=
p(ψ1 | ωi)p(ψ2 | ωi)P (ωi)

p(ψ1)p(ψ2)

=
P (ωi | ψ1)P (ωi | ψ2)

P (ωi)

where Bayes theorem was used in the third step of the calcula-
tions. Equation (1) allows the computation of P (ωi | ψ1, ψ2)
is terms of a pseudo-joint probability (the product of quanti-
ties at the numerator) normalized by the class-prior. The ra-
tionale behind the use of the expression “pseudo” lies in the
fact that, in general, the models are actually not independent
of each other under real-world circumstances. Nonetheless,
equation (1) can still be applied, for practical intents and pur-
poses, in a naive-Bayes fashion. A discriminant function gi(.)
can thus be defined for each class ωi by revolving around
the usual maximum-a-posteriori probability given the models,
i.e. maxi P (ωi | ψ1, ψ2). In the light of equation (1) such
a discriminant function turns out to be defined as a normal-
ized pseudo-joint probability in the form gi(x) = P (ωi |

ψ1(x
(1)))P (ωi | ψ2(x

(2)))/P (ωi), and the resulting deci-
sion rule assigns x to class ωi if gi(x) ≥ gj(x) for each
j 6= i, as usual. Hereafter we assume that ψ1(.) and ψ2(.)
are the functions computed by two distinct stand-alone, feature-
specific DNNs to be combined, and we let P (ωi | ψj(x

(j))) ≈
ψj(x

(j)) in compliance with the formal probabilistic interpreta-
tion of the DNN outputs as estimates of the class-posterior prob-
abilities [29]. It is seen that equation (1) can be readily extended
to any number k of models ψ1, . . . , ψk with model-specific rep-
resentations x(1), . . . ,x(k) of x, allowing for a pseudo-joint
combination of an arbitrary number of feature-specific DNNs.

The second technique for combining the stand-alone DNNs
described in the previous sections relies on a hard mixture of
experts [23]. While in [23] the mixture is hard insofar that
the individual experts are trained independently over a crisp
partitioning into expert-specific clusters of the (shared) feature
space, herein the overall set of available features is partitioned
into homogeneous, non-overlapping subsets of specialized fea-
tures, and each DNN expert takes (independently) responsibil-
ity for the corresponding feature-specific representation of the
(prompt, response) pairs of the whole dataset. In so doing,
the stand-alone DNNs presented in the previous sections can
be used as the (pre-trained) experts. The different DNNs in
the mixture are then combined using a gating network, as fol-
lows. Assuming that k experts E1, E2, . . . , Ek are involved
in the mixture, let x(j) represent the specific feature vector
(or, sequence of feature vectors) for the generic j-th neural ex-
pert Ej (i.e. x(j) may represent the BERT-based embeddings
of current (prompt, response) pair, or the corresponding BOW-
based representation, etc.). Let yj = ϕj(x

(j)) be the func-
tion computed by Ej over x(j), and let y = (y1, . . . ,yk) be
the vector embracing all the experts outputs. The gating net-
work is trained to compute a mapping between its input vec-
tor y and a k-dimensional credit vector (α1(y), . . . , αk(y))
such that the overall output z of the mixture is defined as
z =

∑k
j=1 αj(y)ϕj(x

(j)), where αj(y) ∈ (0, 1) is the
credit assigned by the gating network to the j-th expert, for
j = 1, . . . , k. In so doing, no arbitrary prior choices are im-
posed on the overall multiple-classifier combination criterion:
in fact, the machine learns from the available examples how
to assign credit to the individual experts of the mixture. The
gating network is trained over the modified criterion function
L(·, ·) presented in Section 2.2.1. It is seen that defining the
mixture this way allows for combining both FFNN experts and
recurrent LSTM experts within the same framework. The pro-
posed mixture generalizes the notion of linear regression model
over the regressors y1, . . . ,yk, insofar that the regression pa-
rameters α1(y), . . . , αk(y) are themselves parametric nonlin-
ear functions of the regressors themselves.

3. Experiments and results
The TrainingSet, DevSet and EvalSet were first merged and
then, applying a uniform random sampling, partitioned into two
subsets: the training set (80% of the data) and the validation
set (20% of the data). These subsets were used, respectively,
to train the DNNs and to accomplish model selection [30], re-
spectively. The selected models were eventually evaluated in
terms of different metrics on TestSet. Both the popular Adam
and RMSprop optimizers were applied for training the DNNs.
A grid-search model selection procedure was used [31], which
ended up prescribing a learning rate equal to 0.001 for all mod-
els except for the MIX2-3FbkB-F1 variant (see below), where a
learning rate of 0.0001 was selected. As for the number of train-
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ing epochs, we relied on the early stopping strategy based on
the validation loss. Early stopping resulted in an overall num-
ber of epochs in the range [30÷50], depending on the DNN and
on the features used. Table 1 reports the architectures (number
of layers and number of neurons per layer, in the order) of the
stand-alone DNNs as determined via model selection.

Neural Network Layers Neurons per layer
LSTM-W2V 3 300-300-4

LSTM-W2V-L 3 300-175-4
LSTM-W2V-M 6 301-75-25-25-20-4
FFN-BOW-WC 7 2040-150-150-150-170-15-4

FFN-BOW-TFIDF 7 2040-210-130-150-170-15-4
LSTM-BERT 6 769-100-100-20-20-4

Table 1: DNNs: no. of layers and no. of neurons per layer.

The metrics used are the Dfull (the official metric of the
2019 challenge [5]), the accuracy (percentage of correct classi-
fications), and the F-measure (F1). The test results in terms of
Dfull obtained from the selected stand-alone DNNs are shown
in the second column of Table 2, where they are compared
with the baseline performance yielded by the 2019 challenge-
winning system (FbkB) [14]. It is seen that the proposed net-
works (albeit competitive w.r.t. the other participants in the
Challenge [3]) did not improve the state-of-the-art. Cautions
are required in assessing the present relative comparison, inso-
far that the FbkB is a multiple-classifier system, exploiting sev-
eral different feature sets as well as a number of different NN
architectures at once. The best performing stand-alone DNN
turns out to be the LSTM-W2V-M, shown in boldface in Ta-
ble 2. It is observed that both the accuracy and the Dfull of the
LSTM-W2V-M are close to the corresponding metrics yielded
by the FbkB. All in all, the use of alternate textual feature turns
out to be viable and capable of performances that are in line
with the baseline, although the latter could not be improved.
The latter consideration suggests that exploiting the reference
grammar and the probabilistic LMs remains rewarding in facing
the task. Nonetheless, all the proposed stand-alone approaches
improved significantly in terms of Dfull over the best system
presented in [10] (that ranked 3rd in the 2019 challenge), in
spite of the latter exploiting also an underlying LM (beside the
word embeddings). Furthermore, three of the proposed DNNs
(LSTM-W2V-M, FFN-BOW-WC, LSTM-BERT) improved the
Dfull over the best system presented in [8] (that ranked 2nd in
the 2019 challenge), in spite of the latter exploiting the refer-
ence grammar besides Word2Vec. Noticeably, LSTM-W2V-M
yielded a 8.79% relative Dfull improvement over [8].

Model Dfull Accuracy (%) F1
LSTM-W2V 5.65 86.1 0.88

LSTM-W2V-L 4.92 86.1 0.88
LSTM-W2V-M 6.19 87.3 0.88
FFN-BOW-WC 5.97 86.0 0.88

FFN-BOW-TFIDF 5.59 85.3 0.88
LSTM-BERT 6.04 85.8 0.90

FbkB 6.34 87.5 0.92
2nd-best [8] 5.61 n/a 0.91
3rd-best [10] 5.43 n/a 0.91

Table 2: Stand-alone DNNs: results on TestSet.

The subsequent experimental round revolved around the
multiple DNNs systems, investigating whether different fea-
tures/models could effectively combine and complement each
other. In the following we will write PJ-1FbkB-Dfull to rep-

resent the pseudo-joint (PJ) combination between the best net-
work in the FbkB multiple-classifier system and the best DNN
(among those evaluated in Table 2) in terms of Dfull, and PJ3-
3FbkB-F1 to denote the pseudo-joint combination of the 3-best
FbkB networks and the 3-best proposed DNNs in terms of F-
measure. Model selection was carried out over a number of
combinations of subsets of the 1-best/3-best/6-best Challenge-
winning network(s) reviewed in Section 2.1, and the 1st/2nd/3rd
best network(s) proposed in Sections 2.2.1 and 2.2.2. All avail-
able evaluation metrics were considered in the model selection
process. In short, it turned out that the best results yielded by the
pseudo-joint combination technique relied on the 1-best DNN
proposed in Sections 2.2.1 and 2.2.2 and the 1-best FbkB net-
work according to the Dfull (PJ-1FbkB-Dfull), as well as on
the 3-best models proposed in Sections 2.2.1 and 2.2.2 and the
3-best FbkB networks according to the F-measure (PJ3-3FbkB-
F1). As for the mixtures of experts, it was observed that the top-
notch performances were achieved by the 3-best FbkB networks
according to the F-measure, combined with the 1-best (MIX-
3FbkB-F1) or the 2-best (MIX2-3FbkB-F) DNNs presented in
Sections 2.2.1 and 2.2.2, respectively. The gating DNN selected
for the MIX-3FbkB-F1 model was a 7-layers architecture with
4, 175, 75, 90, 50, 75, and 4 neurons per layer. The gating DNN
selected for the MIX2-3FbkB-F1 model had 7 layers, as well,
having 5, 512, 126, 256, 126, 126, and 4 neurons per layer.

Model Dfull Accuracy (%) F1
PJ-1FbkB-Dfull 6.82 87.9 0.89
PJ3-3FbkB-F1 7.00 87.1 0.89
MIX-3FbkB-F1 7.56 89.1 0.92

MIX2-3FbkB-F1 8.08 88.7 0.92
FbkB 6.34 87.5 0.92

Table 3: Mixtures of DNNs: results on TestSet.

Results are reported in Table 3. It is seen that the mixtures
of experts yielded the highest Dfull, Accuracy, and F-Measure
on the data of the 2019 challenge to date. In particular, the
MIX2-3FbkB-F1 resulted in a 27.44% relative Dfull increase
over FbkB, and in a 9.60% relative error rate reduction w.r.t.
FbkB. The combination based on the pseudo-joint approach
proved effective, as well. In fact, the PJ3-3FbkB-F1 yielded a
significant improvement over FbkB in terms ofDfull, while PJ-
1FbkB-Dfull improved the baseline in terms of Accuracy. The
outcome of the experiments pinpoints the fact that the different
features used and the corresponding stand-alone DNNs do ac-
tually model diverse information on the linguistic phenomena
at hand, fruitfully complementing the grammar-specific knowl-
edge exploited by the FbkB models.

4. Conclusions
In their stand-alone versions, the DNNs proved competitive
w.r.t. the state-of-the-art, improving over previous attempts to
use NNs on word embeddings for the 2019 challenge. Both the
techniques proposed for combining multiple DNNs achieved
significant improvements over the winner of the 2019 challenge,
yielding the highest values of the metrics for the task to date.
Results confirm that different text representations and different
DNNs may actually capture diverse facets of the linguistic phe-
nomena at hand, complementing each other effectively. In fu-
ture we aim to address more complex tasks in speech scoring
(e.g., [32, 33]), and to extend the multiple classifiers so as to
consider also DNNs experts trained on acoustic features.
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