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Abstract: Let X be a real Banach space with dual X∗ and suppose that F : X → X∗. We give
a characterisation of the property that F is locally proper and establish its stability under compact
perturbation. Modifying an recent result of ours, we prove that any gradient map that has this
property and is additionally bounded, coercive and continuous is surjective. As before, the main tool
for the proof is the Ekeland Variational Principle. Comparison with known surjectivity results is
made; finally, as an application, we discuss a Dirichlet boundary-value problem for the p-Laplacian
(1 < p < ∞), completing our previous result which was limited to the case p ≥ 2.

Keywords: coercive operator; locally proper operator; Ekeland’s variational principle; operator of
type (S); p-Laplacian

1. Introduction

This is partly a research paper and partly a review paper, whose main purpose is to discuss
a variant of the surjectivity result that we have proved in [1]. The latter asserts the following: let X
be a real Banach space with dual X∗, let 〈x, y〉 denote the pairing with x ∈ X∗ and y ∈ X and let
F : X → X∗ be a continuous gradient operator. Suppose that F is strongly coercive in the sense that for
some c > 0 and some p > 1,

〈F(x), x〉 ≥ c‖x‖p (1)

for all x ∈ X, and suppose moreover that F is locally proper, by which we mean that given any closed
bounded set M of X, the set M ∩ F−1(K) is compact whenever K ⊂ X∗ is compact. Under the above
conditions, F(X) = X∗. In Section 4 of [1], we gave an example of an application of this abstract result
by considering a boundary-value problem for the p-Laplace equation in a bounded domain Ω of Rn,
as we shall better indicate at the end of this introduction.

With reference to [1], the purpose of the present paper was two-fold:

• to complete the discussion of the abstract result, Theorem 2.1 in [1], commenting both
on the coercivity condition (1) and on the local properness of F;

• to extend the application of the abstract result to the existence of solutions for the cited problem
for the p-Laplacian on considering the range 1 < p < 2: indeed in [1], only the range 2 ≤ p < ∞
was considered.

To explain the restriction to the range p ≥ 2 used in [1], let us briefly recall the concrete way
followed there in order to ensure the required local properness of the operator involved. Let α(A)

denote the measure of noncompactness (see, e.g., [2]) of a bounded subset A of either X or X∗,
and assume that F : X → X∗ is bounded on bounded subsets of X. For 0 < γ < ∞, put

ωγ(F) = inf
{
[α(F(A))]γ

α(A)
: A ⊂ X, A bounded , α(A) > 0

}
. (2)
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Then, if ωγ(F) > 0 for some γ ∈]0, ∞[, F is locally proper. This is proved in [1] (Proposition 3.3);
related results are to be found, for instance, in the papers [3–5] and in the book [2].

When we consider maps of the form F = T + N (as is the case if we deal with perturbed forms of
the p-Laplacian), the application of this criterion for local properness seems to be successful only when
T is strongly monotone in the sense that for some k > 0 and some p ∈ [2, ∞],

〈T(x)− T(y), x− y〉 ≥ k‖x− y‖p (3)

for all x, y ∈ X. As we have remarked in [1], the restriction of p to the interval [2, ∞] seems to
be unavoidable, because—at least in case X is reflexive—when 1 < p < 2 there are no maps F
satisfying (3). In addition, from the direct standpoint of existence results for solutions of differential
equations, it is well known (see, for instance, [6] (Exercise 6.2.13)) that for 1 < p < 2, the operator T
representing the p-Laplacian and defined by the equality

〈T(u), v〉X :=
∫

Ω
|∇u|p−2∇u · ∇vdx (4)

for u, v in the Sobolev space X =
0

W1
p (Ω), is not strongly monotone but merely strictly monotone,

this last meaning that for all x, y ∈ X with x 6= y,

〈T(x)− T(y), x− y〉 > 0.

This difficulty made us reconsider the local properness property itself, and seek different but
equivalent forms of expressing it. We discuss this point in Section 3, in the framework of the “generalized
monotonicity” properties introduced by F. Browder and illustrated for instance in his papers [7,8],
where they are named conditions of type (S); to this purpose, we introduce a new one that we call (S)2

and that is apparently weaker than many others in the same class. For continuous maps, condition (S)2

turns out to be equivalent to local properness (see Proposition 5); however, we believe that it is worth
keeping the (S)2 description because it facilitates comparison with the notion of monotonicity.

The remainder of this paper is organized as follows. In Section 2, we state and prove our main
result, Theorem 1, in which the strong coercivity assumption used in [1] is replaced by simple coercivity
(see below for the precise definition) at the expense of adding the requirement of boundedness on F.
For the proof of the desired surjectivity of F, this replacement of assumptions does not seem to be
trivial, and we put evidence on the necessary changes by demonstrating two new “ad hoc” results,
Lemma 1 and Proposition 2. However, the core of the proof of Theorem 1 remains—as in [1,9]—the
Ekeland variational principle (see, e.g., [10]), employed after converting the existence problem

F(x) = y

with y given in X∗, into a minimization problem for the potential f of F, or more precisely for
the perturbed functional f1 defined on X by putting

f1(x) = f (x)− 〈y, x〉, x ∈ X. (5)

As a whole, the overall demonstration of the surjectivity property for gradient mappings is here
reorganized with respect to that given in [1], and we believe that it gains in clarity, facilitating among
others a comparison with companion results for non-gradient operators that abound in the literature
(see for instance the books [6,11] and the recent review [12] by H. Brézis) and that have their prototype
in the famous Minty–Browder Theorem (see, e.g., Theorem 2 of [6]) stating that if X is a reflexive Banach
space and if T : X → X∗ is monotone, continuous and coercive, then T(X) = X∗. Another statement
of surjectivity, proved by Browder in the same paper (Theorem 5 of [6]) under somewhat different
assumptions, is reported here as Theorem 3 in Section 3. It is important to notice that while the proofs
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of these and similar results are based on the convergence of finite-dimensional approximations to
solutions of the equation T(x) = y, in the case of gradient operators we can rely upon the full strength
of the Ekeland principle as a general result for functionals defined on complete metric spaces that
makes no reference to finite-dimensional approximation. To give some more details about this point,
we devote part of Section 2 to the statements of the Ekeland principle itself (see Theorem 2) and to
the special version for C1 functionals on Banach spaces that it implies (see Corollary 1).

In the final Section 4, we point out the modifications with respect to [1] necessary to deal with
the problem

− ∆pu− λ1 |u|p−2 u + f (x, u) = h in Ω, u = 0 on ∂Ω (6)

for the whole range 1 < p < ∞. Here, ∆pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian, Ω is a bounded

open subset of Rn, h ∈ Lp′(Ω) (p′ = p/(p− 1)) and f : Ω×R→ R satisfies adequate assumptions;
moreover, λ1 is the first eigenvalue of the Dirichlet p-Laplacian in Ω [13]. We see (6) as a perturbation
of the same problem where f = 0, namely

− ∆pu− λ1 |u|p−2 u = h in Ω, u = 0 on ∂Ω. (7)

As recalled in [1], (7) is not solvable for every h ∈ Lp′(Ω), and we ask if perturbing (7) with
an appropriate additional term f we can restore surjectivity for the original problem (6). Indeed,
using the results of Section 2 we complete the discussion of this point made in [1] for the case p ≥ 2

by allowing any p in the range (1, ∞). Precisely, we prove that (6) has a solution u ∈
0

W1
p (Ω) for

any h ∈ Lp′(Ω) provided that f satisfies, besides the standard regularity and growth assumptions,
a coercivity condition of the form s f (x, s) ≥ m |s|p, for some m > 0 and all (x, s) ∈ Ω×R.

2. A Variant of a Surjectivity Theorem

Let X be a real Banach space with norm ‖.‖ and dual X∗. We denote by 〈x, y〉 the pairing between
x ∈ X∗ and y ∈ X. Recall (see e.g., [14], Definition 2.5.1) that a map F : X → X∗ is said to be a gradient
(or potential) operator if there exists a differentiable functional f : X → R such that

F(x) = f ′(x) for all x ∈ X (8)

where f ′(x) ∈ X∗ denotes the (Fréchet) derivative of f at the point x ∈ X. In this case, the functional
f —the potential of F—is defined up to an additive constant, and is made unique by requiring—as
we do—that f (0) = 0. Assuming in addition that F is continuous, f is explicitly related to F via
the equation

f (x) =
∫ 1

0
〈F(tx), x〉 dt. (9)

We recall moreover that given a differentiable functional f : X → R, a point x ∈ X is said to be
a critical point of f if f ′(x) = 0. Therefore, the zeroes of a gradient operator are precisely the critical
points of its potential.

A map F : X → X∗ that is bounded on bounded subsets of X will be merely said to be bounded.
In the following, the coercivity of operators and functionals will play an essential role. To avoid

ambiguities and/or repeated distinctions, we define this property in a formal way.

Definition 1. A map F : X → X∗ is said to be coercive if

〈F(x), x〉
||x|| → +∞ as ||x|| → ∞. (10)
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A functional f : X → R is said to be coercive if

f (x)→ +∞ as ||x|| → ∞. (11)

Remark 1. Other notions of coercivity of a map F : X → X∗ are present in the literature. In particular,
such a map F is said to be strongly coercive if, for some c > 0 and some p > 1,

〈F(x), x〉 ≥ c||x||p (12)

for all x ∈ X, and weakly coercive if

||F(x)|| → ∞ as ||x|| → ∞. (13)

Evidently, we have the implications

F strongly coercive⇒ F coercive⇒ F weakly coercive.

The Lemma that follows establishes a useful relation between the two coercivity properties
reported in Definition 1.

Lemma 1. Let X be a real Banach space and let F : X → X∗ be a gradient operator. Suppose that F is
continuous, bounded and coercive. Then its potential f is bounded on bounded subsets of X and is also coercive:
more precisely, given any M > 0 there exists R > 0 such that, for all x ∈ X with ||x|| > R we have

f (x) ≥ M||x|| − (M + KR)R, KR = sup
||x||≤R

||F(x)||. (14)

Proof. The boundedness property of f follows immediately from that of F using the Formula (9). As to
coercivity, for x 6= 0 write x = ||x||u, u = x/||x||; then using again (9) we have

f (x) =
∫ 1

0
〈F(t||x||u, ||x||u〉 dt =

∫ ||x||
0
〈F(su), u〉 ds.

Given any M > 0, by (10) there is an R > 0 such that

〈F(x), x〉 ≥ M||x|| (||x|| ≥ R). (15)

Then for ||x|| > R, write

f (x) =
∫ R

0
〈F(su), u〉 ds +

∫ ||x||
R
〈F(su), u〉 ds. (16)

Using the definition of KR given in (14), we have |〈F(su), u〉| ≤ ||F(su)|| ≤ KR for 0 ≤ s ≤ R and
u ∈ X with ||u|| = 1, whence ∣∣∣∣∫ R

0
〈F(su), u〉 ds

∣∣∣∣ ≤ KRR. (17)

On the other hand, using (15), we have

∫ ||x||
R
〈F(su), u〉 ds =

∫ ||x||
R

〈F(su), su
s

〉 ds ≥
∫ ||x||

R
M ds = M(||x|| − R) (18)

The desired inequality for f now follows from (16), using (17) and (18).

Before stating and proving our main result, we recall that a map F : X → Y (X, Y metric spaces) is
said to be proper if the preimage F−1(K) is a compact subset of X whenever K ⊂ Y is compact, and is
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said to be proper on closed bounded sets (or locally proper) if given any closed bounded set M of X,
the set M ∩ F−1(K) is compact whenever K ⊂ Y is compact.

Theorem 1. Let X be a real Banach space with dual X∗, and let F : X → X∗ be a bounded continuous gradient
operator. Suppose that F satisfies the following assumptions:

(i) F is coercive;
(ii) F is proper on closed bounded sets.

Then F is surjective.

For expository convenience, we organize the proof of Theorem 1 in four essential steps.
Each of them—save the first—has some degree of complexity, that we choose to illustrate separately,
giving appropriate references in the text.

Proof. (a) Given y ∈ X∗, the map Gy : X → X∗ defined by putting

Gy(x) = F(x)− y

satisfies (i) and (ii). It is therefore enough to show that under the conditions (i) and (ii), F has a zero.
As F is a gradient, this is equivalent to showing that the potential f of F has a critical point, and in
turn this will be ensured by verifying the condition that f is bounded below on X and attains its
infimum on X.

(b) By our assumptions and by virtue of Lemma 1, f is coercive and is bounded on bounded subsets
of X. In turn, by virtue of Proposition 2 below, that we state and prove independently, this implies
that f is bounded below on X and that any minimizing sequence is bounded.

(c) As f is of class C1, the Ekeland Variational Principle (see, for instance, [10]) implies the existence
of a minimizing sequence along which the derivative of f tends to 0, that is, a sequence (xn) ⊂ X
such that

f (xn)→ c ≡ inf
x∈X

f (x) and F(xn) = f ′(xn)→ 0.

Some details explaining how Ekeland’s principle leads to the statement just made are given at
the end of this section.

(d) The last sentence in point b) ensures that the sequence (xn) is bounded. As F(xn) → 0 and as
F is proper on closed bounded sets by assumption, it follows that (xn) contains a convergent
subsequence: this is made clear looking at Definition 5 and Proposition 5 of the next section.
Letting (xnk ) denote this subsequence and putting x = limk→∞ xnk , we then see immediately by
the continuity of f and F that f (x) = c and F(x) = 0.

Wishing to give adequate space for a full discussion of point (d) in the proof above, we place
it separately in the next section. The rest of this section is thus devoted to illustrations of the steps (b)
and (c) of the proof. As to the former, we note that the same conclusion of Theorem 1 was reached
in [1] under a different set of assumptions, namely with no boundedness condition on F but with (i)
replaced by the condition that F should be strongly coercive. This condition, namely (12), immediately
implies—via (9)—that

f (x) ≥ c′||x||p+1 (x ∈ X)

with c′ = c/p, and this in turn led towards the conclusion on using the following result (Proposition 2.1
of [1]):

Proposition 1. Let X be a Banach space and let f : X → R be such that

f (x) ≥ φ(||x||) (19)
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where φ : [0,+∞[→ [0,+∞[ is bounded on bounded sets and such that φ(t) → +∞ as t → +∞. Then f is
bounded below on X. Moreover, any minimizing sequence is necessarily bounded.

For the proof of the present Theorem 1, we have available the weaker coercivity condition (10),
accompanied however by the boundedness of F. The technical Lemma 1 above shows that under this
different set of hypotheses the potential f maintains quite good properties in view of its minimization,
and in fact we can replace Proposition 1 with the following more general result.

Proposition 2. Let X be a real Banach space and let f : X → R be coercive and bounded below on bounded
subsets of X. Then, f is bounded below on X and any minimizing sequence is necessarily bounded.

Proof. We first claim that f is bounded below on X. Suppose on the contrary that infx∈X f (x) = −∞,
and let (xn) ⊂ X be such that

f (xn)→ −∞. (20)

The sequence (xn) is necessarily bounded (otherwise there would exists a subsequence (xnk ) with
||xnk || → ∞, and thus f (xnk )→ +∞ by (11), contradicting (20)). Then, by assumption, f (xnk ) must be
bounded below, contradicting again (20).

Therefore, f is bounded below on X. Using again (11) and reasoning as before, we also see that
any minimizing sequence is bounded.

As for step (c) of the proof of Theorem 1, this presents no novelty with respect to [1], but we find
it desirable both for completeness and for the reader’s convenience to give here some more details.
The original variational principle of Ekeland, in its “weak form” (see, e.g., [10] (Theorem 4.1)),
states the following:

Theorem 2. Let (X, d) be a complete metric space. Let f : X → R be lower semicontinuous and bounded
below. Put c = infx∈X f (x); then given any ε > 0, there exists xε ∈ X such that{

f (xε) < c + ε,

f (xε) < f (x) + εd(x, xε), ∀x ∈ X, x 6= xε.
(21)

We use Ekeland’s principle in the form given by the following statement, which is in fact a special
form of Theorem 4.4 of [10].

Corollary 1. Let f be a C1 functional defined on the Banach space X and suppose that f is bounded below on
X. Let c = infx∈X f (x). Then, given any ε > 0, there exists xε ∈ X such that{

f (xε) < c + ε,

‖ f ′(xε)‖ ≤ ε.
(22)

Let us see how Corollary 1 follows from Theorem 2. First recall that the derivative f ′(x0) of f at
a given point x0 ∈ X is a bounded linear form on X, that satisfies the equality

f ′(x0)y = lim
t→0

f (x0 + ty)− f (x0)

t
(23)

for every y ∈ X, and whose norm in the dual X∗ of X is by definition

‖ f ′(x0)‖ = sup
{
| f ′(x0)v| : v ∈ X, ||v|| = 1

}
. (24)
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Now given ε > 0, let xε ∈ X be as in the statement of Theorem 2, so that the first inequality in (22)
is satisfied. Additionally, given v ∈ X with ||v|| = 1, take x = xε + tv, t 6= 0 in the second inequality
in (21): this yields

f (xε) < f (xε + tv) + ε|t|. (25)

Thus, taking t > 0, we obtain

f (xε + tv)− f (xε)

t
> −ε

and therefore, letting t→ 0+,
f ′(xε)v ≥ −ε. (26)

Similarly, taking t < 0 in (25) yields

f (xε + tv)− f (xε)

t
< ε

whence, letting t→ 0−,
f ′(xε)v ≤ ε. (27)

Using (24), (26) and (27) then yields the second inequality in (22).

3. Operators of Type (S)

In this section, except for the two final statements (Proposition 5 and Theorem 4), we suppose
that X is a reflexive Banach space. The definition and the theorem that follow are due to F. Browder:
see, for instance [7] (Theorem 5).

Definition 2. A map T : X → X∗ is said to be of type (S) (or to satisfy condition (S)) if for every sequence
(xn) ⊂ X which converges weakly to some x ∈ X and is such that

〈T(xn)− T(x), xn − x〉 → 0 (28)

we have that (xn) converges strongly to x.

Theorem 3. Let X be a real, reflexive, separable Banach space, and let T : X → X∗ be of type (S), and be
bounded, coercive and continuous. Then T(X) = X∗.

The condition (S) is called in [7] a generalized monotonicity condition. To understand this, let us
generalize—following, for instance, Amann’s paper [15]—the definition presented in the introduction
and say that a mapping T : X → X∗ is called strongly monotone if there exists a continuous function
α : [0, ∞) → [0, ∞) which is positive on (0, ∞) and satisfies α(r) → ∞ as r → ∞ such that, for all
u, v ∈ X,

〈T(u)− T(v), u− v〉 ≥ α(||u− v||)||u− v||.

Clearly, every strongly monotone operator satisfies condition (S).
Condition (S) was subsequently modified in various directions. Browder himself in [8]

strengthened it as follows:

Definition 3. A map T : X → X∗ is said to be of type (S)+ if whenever (xn) converges weakly to x ∈ X and

lim sup〈T(xn), xn − x〉 ≤ 0 (29)

we have that xn → x.
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That (S)+ is a strengthening of (S) is clear since condition (28) is equivalent to require that
〈T(xn), xn − x〉 → 0. On the other hand, H. Amann proposed in [15] to weaken condition (S)
as follows.

Definition 4. A mapping T : X → X∗ is said to satisfy condition (S)1 if for every sequence (uj) in X with
uj → u weakly and T(uj)→ v we have uj → u.

To prove that condition (S)1 generalizes condition (S), let (uj) ⊂ X with uj → u weakly and
T(uj)→ v. Writing

〈T(uj)− T(u), uj − u〉 = 〈T(uj)− v, uj − u〉+ 〈v− T(u), uj − u〉

we see immediately that the left-hand side tends to zero as j → ∞, and therefore that uj → u by
the assumption that T satisfies (S).

The following definition seems to be new, and we add it to the list of those concerning maps “of
type (S)” to the aim of facilitating the comparison of our Theorem 1 with others existing in the literature.

Definition 5. A map T : X → X∗ is said to be of type (S)2 if whenever (xn) ⊂ X is bounded and (T(xn))

converges to some y ∈ X, (xn) contains a convergent subsequence.

Proposition 3. Condition (S)1 implies condition (S)2.

Indeed, let F : X → X∗ satisfy (S)1. Suppose that (xn) ⊂ X is bounded and that F(xn)→ y, say.
Let (xnk ) be a subsequence of (xn) such that (xnk ) converges weakly to x0, say. As F(xnk )→ y, by the
assumption on F it follows that (xnk ) converges strongly to x0.

In summary, in the framework of reflexive spaces we have the following hierarchy for
the definitions given above:

(S)+ ⇒ (S)⇒ (S)1 ⇒ (S)2. (30)

Our next result proves that the newly defined operators share with most of those of type (S)
the property of being stable under a compact perturbation: for instance, Lemma 5.8.33 of [6] shows
this for operators of type (S)+. We recall that G : X → X∗ is said to be compact if G(B) is a relatively
compact subset of X∗ whenever B is a bounded subset of X.

Proposition 4. Suppose that F : X → X∗ is of the form F = T + G, with T of type (S)2 and G compact.
Then, F is of type (S)2.

Indeed, let (xn) ⊂ X be bounded and suppose that (F(xn)) converges to y, say. As G is
compact, there exists a subsequence (xnk ) of (xn) such that G(xnk ) → z, say. Therefore, T(xnk ) =

F(xnk ) − G(xnk ) → y − z; and as T is assumed to be of type (S2), it follows that (xnk ) contains
a convergent subsequence, whence the result.

We note that our Definition 5 can be given without change for a map F acting between any two
metric spaces X, Y. It is desirable to observe that in this quite general context, for continuous maps
the property under discussion is nothing else than local properness.

Proposition 5. Let X, Y be metric spaces and let F : X → Y be continuous. Then, F satisfies condition (S)2

if and only if it is proper on closed bounded sets.

Proof. Suppose first that F satisfies condition (S)2. Let M ⊂ X be closed and bounded and let K ⊂ Y
be compact. To show that M ∩ F−1(K) is compact, take a sequence (xn) ⊂ M ∩ F−1(K): then (xn) is
bounded and, by the compactness of K, a subsequence F(xnk ) of F(xn) will converge to some y0 ∈ K.
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By the assumption on F, a further subsequence of (xnk ) will converge to a point x0 ∈ M (M is closed)
with F(x0) = y0 by the continuity of F. Thus, x0 ∈ M ∩ F−1(K), proving that M ∩ F−1(K) is compact.

Suppose on the other hand that given any closed bounded M ⊂ X, the set M∩ F−1(K) is compact
whenever K ⊂ Y is compact. Let (xn) ⊂ X be bounded and suppose that F(xn)→ y0 ∈ Y. Then, the set

K = {F(xn) : n ∈ N} ∪ {y0}

is compact, so that if M ⊂ X is bounded and contains (xn), it follows that the set

{xn : n ∈ N} ⊂ M ∩ F−1(K)

is relatively compact, and therefore (xn) contains a convergent subsequence. This shows that F
satisfies (S)2.

By virtue of Proposition 5, our Theorem 1 can be restated in the following form, that allows for
a direct comparison with Browder’s Theorem 3:

Theorem 4. Let X be a real Banach space, and let T : X → X∗ be a gradient operator. Suppose that T is of
type (S)2, and is bounded, coercive and continuous. Then, T(X) = X∗.

Obvious differences between these two results are that while Theorem 4 applies only to gradient
maps T, for such maps the conditions imposed are less demanding than those of Theorem 3: the space
X does not have to be reflexive and separable, and (S)2 is weaker than (S). However, these differences
in assumptions are, in our opinion, secondary to those of proof: the use of the notion of local properness
and the involvement of the measure of noncompactness offer a line of attack to establish surjectivity
for gradient operators that warrants further examination.

4. An Application to the p-Laplacian

Let p ∈ (1, ∞), let Ω be a bounded open subset of Rn, denote by ‖·‖p the usual norm

on the Lebesgue space Lp (Ω) and put X =
0

W1
p (Ω) , the closure of C∞

0 (Ω) with respect to the norm
‖·‖X given by

‖u‖X :=
(∫

Ω
|∇u|p dx

)1/p
.

When given this norm, X is a reflexive Banach space that is compactly embedded in Lp (Ω) .
The p-Laplacian ∆p is defined on appropriate functions u by

∆pu = div
(
|∇u|p−2∇u

)
. (31)

Associated with this is the map T : X → X∗ given by

〈T(u), v〉X :=
∫

Ω
|∇u|p−2∇u · ∇vdx (u, v ∈ X) , (32)

where 〈w, v〉X denotes the value of w ∈ X∗ at v ∈ X. We detail various interesting properties of T.
First, we have

〈T(u), u〉X =
∫

Ω
|∇u|p dx = ‖u‖p

X (u ∈ X) . (33)

Moreover, for p ≥ 2, T is strongly monotone (see, e.g., Section 4 of [1]), while for any p ∈ (1, ∞) T
is of type (S); in fact, it satisfies the stronger condition (S)+, as shown for instance in Lemma 5.9.14
of [6]. Additionally, use of appropriate inequalities in Rn [16], of Hölder’s inequality and of standard
procedures as in Section 4 of [1] show that for every p ∈ (1, ∞), T is bounded and continuous. Finally,
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we recall that T is a gradient operator since 〈T(u), v〉X—given by (32)—is the directional derivative
in the direction v ∈ X of the C1-functional

E(u) =
1
p

∫
Ω
|∇u|p dx (u ∈ X).

These results are summarised in the following

Proposition 6. The map T : X → X∗ defined by (32) is a bounded continuous gradient operator that satisfies
condition (S)+.

By an eigenvalue of the (Dirichlet) p-Laplacian is meant a real number λ such that there is
a function u 6= 0 (an eigenfunction) such that

− ∆pu = λ |u|p−2 u in Ω, u = 0 on ∂Ω. (34)

We interpret this eigenvalue problem in the weak sense, by which is meant that one asks whether
there exist λ ∈ R and u ∈ X\{0} such that for all v ∈ X,∫

Ω
|∇u|p−2∇u · ∇vdx = λ

∫
Ω
|u|p−2 uvdx. (35)

In terms of the operator T, this means that

〈T(u), v〉X = λ
∫

Ω
|u|p−2 uvdx. (36)

It is well known (see [13]) that there is a principal eigenvalue, that is, a least such an eigenvalue,
denoted by λ1, and that it is positive, simple, isolated and characterised variationally by

λ1 = inf
u∈X\{0}

‖u‖p
X / ‖u‖p

p . (37)

This characterization of λ1 and (33) show in particular that, for all u ∈ X,

〈T(u), u〉X = ‖u‖p
X ≥ λ1 ‖u‖p

p . (38)

We consider the problem

− ∆pu− λ1 |u|p−2 u + f (x, u) = h in Ω, u = 0 on ∂Ω, (39)

where h ∈ Lp′(Ω) (p′ = p/(p− 1)) and f : Ω×R→ R is continuous and satisfies the conditions

| f (x, s)| ≤ a |s|p−1 + b (40)

and
s f (x, s) ≥ m |s|p (41)

for all (x, s) ∈ Ω×R. Here a and b are non-negative constants and m is a positive constant; all of these
are independent of (x, s) . Problem (39) is also interpreted in the weak sense, so that we ask whether
there exists u ∈ X such that for all v ∈ X,∫

Ω
|∇u|p−2∇u · ∇vdx− λ1

∫
Ω
|u|p−2 uvdx +

∫
Ω

f (x, u)vdx =
∫

Ω
hvdx. (42)

In [17], Drábek and Holubová discussed such a problem with f = 0. When 1 < p < 2,
they gave conditions on h under which (4.18) has no solutions, and other conditions on h guaranteeing
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the existence of at least one solution; they expect that similar results can be obtained when 2 < p < ∞.
Completing our results in [1], here we show that for any p ∈ (1, ∞), the conditions on f given
above are sufficient to ensure that there is a solution of (4.18) for all h ∈ Lp′ (Ω) . To this purpose,
let K, N : X → X∗ be defined respectively by

〈K(u), v〉X =
∫

Ω
|u|p−2 uvdx, (43)

〈N(u), v〉X =
∫

Ω
f (x, u)vdx. (44)

Note that, in view of (41), we have

〈N(u), u〉X ≥ m ‖u‖p
p . (45)

About the properties of these operators, we refer to the discussion already made in [1], that leads
to the following result.

Proposition 7. The maps K, N : X → X∗ defined by (43), (44), respectively are bounded, continuous,
compact gradient operators.

The problem (42) is equivalent to the operator equation

T(u)− λ1K(u) + N(u) = ĥ, (46)

where ĥ ∈ X∗ is defined by 〈
ĥ, v
〉

X
=
∫

Ω
hvdx (v ∈ X) .

Put G = −λ1K + N. It follows by Proposition 7 that G : X → X∗ is a bounded, continuous,
compact gradient operator.

Proposition 8. For each p ∈ (1, ∞) the map F = T + G : X → X∗ is strongly coercive, that is,

〈F(x), x〉 ≥ c‖x‖p for some c > 0 and all x ∈ X.

Indeed, use of (33), (43) and (45) show that, for all u ∈ X,

〈T(u) + G(u), u〉X ≥ ‖u‖
p
X + (m− λ1) ‖u‖p

p . (47)

Thus, if m ≥ λ1,
〈T(u) + G(u), u〉X ≥ ‖u‖

p
X (u ∈ X). (48)

If 0 < m < λ1, using (38) we see that

(m− λ1) ‖u‖p
p ≥

(
m
λ1
− 1
)
‖u‖p

X ,

and using this in (47) yields

〈T(u) + G(u), u〉X ≥
m
λ1
‖u‖p

X (u ∈ X).

Proposition 9. For each p ∈ (1, ∞), the map F = T + G : X → X∗ is of type (S)2.

In fact, by Proposition 6 T satisfies the stronger condition (S)+, and to reach the conclusion it is
therefore enough to use the compactness of G and Proposition 4.
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The abstract surjectivity Theorem 4 can now be applied to give the following result.

Theorem 5. Let 1 < p < ∞. Suppose that f is continuous and satisfies (40) and (41) with m > 0. Then,
given any h ∈ Lp′(Ω) (p′ = p/(p− 1)), problem (42) has a solution u ∈ X.

Remark 2. Due to the reflexivity and separability of the Sobolev space X =
0

W1
p (Ω) , Theorem 5 could be

proved on the basis of Browder’s Theorem 3. It would be interesting to have specific applications of our Theorem 4
allowing to measure the real strength of property (S)2. In any case, we again stress the point that the proofs
of the two surjectivity results just cited (as well as the tools utilized) are entirely different, and we believe that
in the case of a gradient operator F the proof of the surjectivity of F via Theorem 4 is shorter and simpler.

5. Conclusions

We prove a new surjectivity result for gradient operators, formulated in the paper as Theorem 1
and in equivalent form as Theorem 4. This abstract result is then applied to prove existence of solutions
for a boundary-value problem involving the p-Laplacian (1 < p < ∞). It would be desirable—and
this remains as an interesting open problem—to produce examples of application (either in Operator
Theory itself and/or in existence results for boundary-value problems for Partial Differential Equations)
where the local properness condition is essential: namely, where our condition (S)2 holds, but stronger
conditions such as (S) or (S)+ do not hold.
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