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ABSTRACT Artificial screens based on metasurfaces (MTSs), also called metascreens (MetSs) are becom-
ing a very popular tool for electromagnetic field manipulation. While significant research efforts have been
devoted to the development of synthesis methodologies, less work has been done for the accurate modeling
of real structures based on this concept. This paper presents a method based on a Physical Optics (PO) for the
efficient description of the scattered field of metascreens consisting of a stack of MTS separated by dielectric
layers. The derivation of the PO currents is based on the definition of proper transmsission coefficients for the
electric and magnetic fields which, in turn, relies on an equivalent transmission line model of the multilayer
structure. In this model, the MTSs are represented through homogenized equivalent surface impedances.
The proposed model takes into account the non-local transmission properties and the finite thickness and
size of the MetS. The accuracy in the scattered field prediction has been verified through comparison with
full-wave simulations.

INDEX TERMS Metasurfaces, metascreens, equivalent impedance, physical optics, scattering.

I. INTRODUCTION
Metasurfaces (MTSs) have witnessed remarkable develop-
ment over the last two decades, exhibiting unprecedented
capabilities in guiding, manipulating, and tailoring elec-
tromagnetic fields from microwaves to optical frequencies
[1]–[3]. Various MTS-based applications have been put
forward, including transforming surface waves into leaky
waves [4]–[6], molding surface waves [7]–[9], and tailoring
emerging wave-fronts of localized sources [10]–[14]. The
latter application, which is the focus of this paper, is based
on the pioneering work of Capasso’s group [15]. Breaking
away from our trust in gradual phase accumulation, they
have shown the possibility to shape the wave-front of light
by a phase discontinuity. For example, imposing gradients
of phase discontinuities enables to bend light propagation
in any desired directions. This has led to the generalized
law of refraction [15], which includes the effect of a phase
discontinuity sheet of negligible thickness.

In the microwave and millimeter-wave regime, a gradient
phase discontinuity sheet can be engineered using a MTS
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obtained by periodically patterning subwavelength metallic
patches. At such a frequency range, the concept of MTSs
has been built upon earlier investigations on reflect- and
transmit-arrays. However, conversely to these earlier planar
structures, MTSs have periodicity smaller than the wave-
length of operation and, therefore, can be homogenized and
described in terms of smoothly varying impedance sheets.
Moreover, the equivalent homogenized impedance can be
accurately described by simple theoretical models [16]–[18].
In [19], [20] it was shown that by cascading three sheets
characterized by suitable impedance profiles it is possible
to systematicalley obtain a transformation of an input wave-
front to the desired output wavefront with a perfect match-
ing. Recent papers [20]–[22] have proposed the design of
highly efficient and low profile structures, consisting of a
subwavelength symmetric stack of three MTSs, for beam
steering, beam focusing, and polarization control.We are here
referring to these struactures as metascreens (MetSs). The
typical configuration of a system for steering a beam in an
arbitrary predefined direction through a MetS is shown in
Fig.1. The three MTSs composing the metascreen are sepa-
rated by two thin dielectric spacers and the two externalMTSs
are equal. The MetS is illuminated by an electromagnetic
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FIGURE 1. Schematic representation of a metascreen for steering, in an
arbitrary predefined direction, a beam radiated by an electromagnetic
source such as a horn antenna.

source such as a horn antenna. Upon transmitting through
the MetS, the incident beam will be steered by an angle
depending on the gradient phase discontinuity imposed by
the stack of three MTSs. Such metascreens can be very
appealing for several engineering applications, as they offer
the possibility to replace the bulky and costly conventional
dielectric lenses with low profile, low cost and easy to
realize planar structures. Thus, research on metascreens has
been aggressively pursued from the theoretical, performance,
and practical standpoints [22]–[27]. Modelization strategies
based on the definition of local boundary conditions have also
been proposed [28], [29]. However, a minor research effort
has been dedicated in computing the scattered fields from
such structures, accurately taking into account the non-local
transmission properties and the finite thickness and size of
the MetS.

In this paper, we present a simple yet accurate computa-
tional framework for the analysis of electrically large MetSs.
The key to analyze and optimize surfaces that can be several
wavelengths of diameter, with thousands of parameters and
subwavelenth details, is a fast solver for the scattered fields
based on a homogenization concept. To this end, thanks to
its conceptual simplicity and reasonable accuracy, a Physi-
cal Optics (PO) technique appears as an excellent solution.
Indeed, PO is an old and well-established technique for mod-
eling the interaction of an incident electromagnetic field with
electrically large and complex objects; and, it is extensively
applied for a variety of engineering applications, includ-
ing reflector antennas [30], radar cross section [31], [32],
and dielectric lens antennas [33], [34]. Here, building on the
work in [35], we present a new efficient PO-based technique
to compute the scattered fields from ametascreen illuminated
by a localized source. This technique is based on a proper
application of the equivalence theorem, whose equivalent
currents are constructed under the PO approximation. The
PO currents are derived incorporating the effect of the MetS
by properly including its transmission coefficient matrix.
Since the considered MetSs are designed to be reflectionless,

FIGURE 2. Side view of the MetS, feed, and enclosing surface S. For the
derivation of the electric E and magnetic H fields on S we distinguish
three different zones: (1) is coincident with the upper surface of the MetS
(blue region), (2) corresponds to the portion of S immediately
surrounding the MetS (shaded region), and (3) collects the points of S
very far away from the MetS (white region).

the proposed formulation does not include the reflection
coefficient matrix. However, the formulation can be easily
extended to surfaces with non negligible reflection coeffi-
cient. An important aspect for the accurate description of
the problem is the correct representation of the dependency
of the transmission coefficient matrix on the angle of inci-
dence, which is here derived in closed-form modeling each
local MTS metallic element through its equivalent surface
impedance value. Once the PO currents are obtained, they are
used in the far-field radiation integral for the scattered fields
determination.

The ejωt time dependence is assumed throughout the paper.

II. FORMULATION
A. APPLICATION OF THE EQUIVALENCE THEOREM
The geometry for the problem is depicted in Fig. 2: a localized
source (feeder) is illuminating a MetS (highlighted in blue).
Let us consider a closed surface S, with outward normal n̂,
enclosing the feeder and the MetS, which lies on the top
side of S. By invoking the equivalence theorem in the Love
formulation, the fields at any point outside S can be obtained
from the knowledge of equivalent electric (Jeq) and magnetic
(Meq) surface currents on S. These currents radiating in free-
space produce null field inside S and they can be expressed
as

Jeq = n̂×H Meq = E× n̂ (1)

where H and E are the total magnetic and electric field on
S, respectively. For the derivation of these fields, we can
distinguish three different regions, as shown in Fig. 2. As the
majority of applications involving the MetS employs direc-
tive feeders [20]–[23], the fields on the zone 3 of S, which is
far away from the illuminated area, are negligible and can be
assumed to be zero without loss of accuracy in the evaluation
of the scattered field. In zone 2, which is the portion of S
surrounding the MetS, the fields (Ei, H i) are assumed equal
to the ones radiated by the isolated feed on that area. This
zone accounts for the spillover radiation. It should be noted
that not considering the equivalent currents on zone 2 implies
assuming a MetS surrounded by perfect absorbing walls.
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FIGURE 3. Geometry for the calculation of spillover radiation and
transmitted fields through a MetS illuminated by a feed that is
characterized by equivalent electric and magnetic currents distributed
over a surface S′ .

Finally, in zone 1, which is coincident with the external MTS
of the MetS, the fields (EM , HM ) are obtained by means of
the local transmission coefficient matrix describing theMetS.
To sum up, we have:

Zone 1: E = EM , H = HM ;
Zone 2: E = Ei, H = H i;
Zone 3: E = 0, H = 0.

In the next section, we will discuss the details of the determi-
nation of the electric and magnetic fields in Zones 1 and 2.
Once these fields are obtained, we can derive the equivalent
currents (Jeq,Meq) using (1), and these currents can then be
used in the far-field radiation integral for the determination
of the radiation characteristics of the MetS. It is worth not-
ing that the radiation integral has to be evaluated on zones
1 and 2 only.

B. EQUIVALENT ELECTRIC AND MAGNETIC CURRENTS ON
THE METASCREEN SURFACE
In this section, the induced currents (Jeq, Meq) on the MetS
upper surface (zone 1) and on its neighboring surface (zone 2)
are constructed. Fig. 3 shows the system under study. It is
assumed that the MetS is illuminated broadside by a feed
whose near fields (Ea, Ha) are known on a surface S ′ large
enough to collect most of the radiated power. Using relation-
ships analogous to (1), Ea andHa can be converted to equiv-
alent magnetic (Ma) and electric (Ja) currents, respectively,
distributed over the surface S ′ with normal n̂a, as shown
in Fig. 3. Accounting for all contributions of Ja and Ma
over S ′ and introducing the angle-dependent local dyadic
transmission coefficient modeling the MetS, the electric and
magnetic field at any point (P) of the zone 1 and 2 can be
obtained by evaluating the following integrals:

E (P) = jk

×

∫∫
S ′
T ec
(
r̂
)
·
{
r̂×Ma (Q)

+ ζ r̂× r̂× Ja (Q)
} e−jkr
4πr

ds′ (2a)

H (P) = jk

×

∫∫
S ′
Tmc

(
r̂
)
·

{
−r̂× Ja (Q)

+
1
ζ
r̂× r̂×Ma (Q)

}
e−jkr

4πr
ds′ (2b)

where r = r r̂ is the vector connecting a source point Q to an
observation point P (see Fig.3), while k and ζ denote the free-
space wavenumber and impedance, respectively. In (2), it is
assumed that r is sufficiently large that only the terms radially
decaying as 1/r need to be taken into account. This assump-
tion can be applied for the majority of the practical applica-
tions, since it is validwhenever theMetS is located outside the
reactive near-field region of the radiating aperture. According
to (2), the fields (EM ,HM ) at any point of zone 1 are calcu-
lated as the superposition of the radiated field from all sources
(Ja,Ma) in the aperture feed, suitably weighted by the MetS
local dyadic transmission coefficient T e,mc dependent on the
direction of incidence r̂. The fields (Ei,H i) at any point of
zone 2 can also be calculated through (2) assumingT e,mc equal
to the unit dyad 1. To fully evaluate (2), the only problem
remaining is the derivation of an analytical expression of
the local dyadic transmission coefficient characterizing the
MetS. This is the subject of the next section.

C. METASCREEN LOCAL DYADIC TRANSMISSION
COEFFICIENT
The underlying assumption in the MetS design is the homog-
enizability of the constituent MTSs in terms of a slowly
varying impedance sheet, due to the subwavelength unit
cell size and the gradual variation of the metallic elements
arranged along the regular lattice. Under these hypothe-
ses, the equivalent impedance associated to each unit cell
can be derived from the analysis of the associated periodic
problem, based on a local periodicity assumption. Although
approximated, this approach has been found accurate also
for relatively fast impedance variations, provided that the
variation is smooth. Thus, as shown in Fig. 4(a), for each
polarization the MetS can be locally modeled by three shunt
admittances connected by two transmission line segments,
representing metallic elements and dielectric spacers, respec-
tively. As mentioned earlier, the two external layers of the
MetS are typically identical, so we assume that the two
external admittances are equal (see Fig.4a). The calculation
of transmission coefficients through the network depicted in
Fig. 4(a) is fully rigorous, from a ray tracing point of view,
only for normal incidence. Namely, when the direction of
incidence (r̂) of the local plane wave is parallel to the MetS
normal direction (n̂), which will be along ẑm using the local
coordinate system (xm, ym, zm) shown in Fig. 4(a). In fact,
the two-port network in Fig. 4(a) implicitly assumes that a
ray enters and leaves theMetS at the same coordinates xm and
ym. As shown in Fig.4(a), this condition is not true when the
direction of the incoming ray is not parallel to ẑm. An exact
evaluation of the transmission coefficient for oblique
incidence would require using ray tracing techniques, which
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FIGURE 4. (a) Left: illustration of transmission for a plane wave incident
on a subwavelength symmetric stack consisting of three impedance
surfaces. Right: equivalent local transmission line network. (b) Left:
illustration of transmission for a plane wave incident on an infinitesimally
thin sheet characterized by the MetS local dyadic transmission coefficient
and a phase compensation factor. Right: equivalent local transmission
line network. The green line in the middle indicates that the wave coming
in from port 1 is multiplied by the transmission coefficient Te,m

c .

can be very time-consuming. However, since the MetSs are
usually electrically thin, the equivalent network can also be
accurately used for skew incidence referring the transmission
coefficient to a nominal reference surface which coincides
with the external layer of the MetS, by using a phase com-
pensation factor. In this way, the MetS can be geometrically
assumed as an infinitesimally thin sheet from a ray tracing
point of view (see Fig.4(b)). The transmitted ray accounts for
multiple bounces inside the MetS via the local dyadic trans-
mission coefficient. Given the values of Y ‖,⊥1 and Y ‖,⊥2 ( the
analytical expressions of the admittances which provide per-
fect matching with arbitrary phase delay are reported in [19]),
the transmission coefficient for the network in Fig.4(a) can be
derived in closed form as follows

T ‖,⊥ = 2Z‖,⊥0 Z‖,⊥1

/{[
Z‖,⊥0 cos (kz1d)+ j (1

+ Y ‖,⊥1 Z‖,⊥0

)
Z‖,⊥1 sin (kz1d)

] [(
2+ 2Y ‖,⊥1 Z‖,⊥0

+ Y ‖,⊥2 Z‖,⊥0

)
Z‖,⊥1 cos (kz1d)+ j

(
2Z‖,⊥0

+ Y ‖,⊥2

(
1+ 2Y ‖,⊥1 Z‖,⊥0

) (
Z‖,⊥1

)2)
sin (kz1d)]}

(3)

where ‖,⊥ denote parallel and perpendicular polarization,
respectively, with respect to the local plane of incidence, kz1
is the dielectric longitudinal wavenumber, d is the thickness
of the dielectric spacers, Z‖,⊥0 and Z‖,⊥1 are the free-space and
dielectric wave impedances, respectively. The local dyadic
transmission coefficient for the electric field is derived as

T e = T ‖û‖û‖ + T
⊥û⊥û⊥ with

û⊥ =
n̂× r̂∣∣n̂× r̂∣∣ , û‖ = r̂× û⊥ (4)

Note that the dependence of the angle of incidence is not
only in the unit vectors û⊥ and û‖, but also in the quantities
composing (3). Their explicit expressions are not reported
here for the sake of brevity. As mentioned above, treating the
MetS as an infinitesimally thin sheet, as shown in Fig. 4b,
requires to compensate the phase of the local transmission
coefficient T ‖,⊥. The required phase factor can be readily
derived through the two-port network displayed in Fig. 4a.
For the sake of simplicity, we are going to deal with parallel
polarization only, as the compensation phase factor is iden-
tical for both polarizations. Using the standard transmission
line theory and considering reference planes of port 1 and
port 2 located at zm = −2d and zm = 0, respectively, of the
MetS local coordinate system (xm, ym, zm), the incoming and
outgoing voltage waves can be written as

V ‖1 (z) = V+1 e
−jkz(zm+2d) + V−1 e

jkz(zm+2d)

V ‖2 (z) = V+2 e
−jkzzm (5)

where V+2 /V
+

1 is the transmission coefficient (T ‖) in (3),
which is referenced to the plane zm = −2d corresponding
to the bottom layer of the MetS. Assuming zero reflection
(V−1 = 0), (5) can be rewritten as

V ‖1 (z) = V ′+1 e
−jkzzm

V ‖2 (z) = V+2 e
−jkzzm (6)

with V ′+1 = V+1 e
−jkz2d . From (6), we obtain the following

transmission coefficient

T ‖c = T ‖ej2kzd (7)

which consists of the previous reflection coefficient multi-
plied by a phase compensation factor accounting for theMetS
thickness. The local dyadic transmission coefficient for the
electric field (eq. (2a)) can then be expressed as

T ec = T ‖c û‖û‖ + T
⊥
c û⊥û⊥ (8)

Simply swapping T ‖c with T⊥c in the previous equation,
we obtain the local dyadic transmission coefficient for the
magnetic field (eq. (2b)), which is

Tmc = T⊥c û‖û‖ + T
‖
c û⊥û⊥ (9)

III. NUMERICAL RESULTS
In this section, two examples are presented to show the effec-
tiveness and accuracy of the proposed formulation. In partic-
ular, we analyze the transmitted field by two MetSs excited
by the horn antenna with MTS walls described in [36],
at an operating frequency f = 12GHz. In the following
results, the radius of the horn and of the MetS is 49.8mm;
the dielectric spacers have a thickness d = 3.175mm and
relative permittivity εr = 2.33; the distance between the horn
aperture and the MetS is 12.5mm.
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FIGURE 5. (a) Amplitude (left) and phase (right) distributions of the
x-component of the feed aperture electric field. (b) Amplitude (left) and
phase (right) distributions of the x-component electric field right after the
MetS and in its surrounding area. The white dashed lines denote the MetS
rim.

In the first example, the MetS admittance profiles have
been derived to operate on an incoming x-polarized broad-
side beam compensating its spherical phase distribution and
steering it by an angle θ = 10◦ in the plane φ = 0◦. This
is done by imposing the following phase of the transmission
coefficient

1φ = −kx sin(10◦)− 6 E incx + C (10)

where C is an arbitrary constant. Fig. 5a shows the ampli-
tude (left) and phase (right) distributions of the x-component
of the feed aperture electric field. Given the feed aperture
fields, the electric and magnetic fields on the external surface
of the MetS (EM , HM ) and in its surrounding area (Ei, H i)
were obtained using (2). Thewidth of the surrounding annular
area was set to be 30mm in order to capturemost of the energy
radiated by the feed. Fig.5b shows themagnitude and phase of
the x-component of EM (inside of white dashed line) and Ei

(outside of white dashed line). Due to the unitary transmission
amplitude of the MetS, the amplitude distributions of EMx
and Eax are very similar. On the other hand, as expected,
the spherical phase distribution of Eax has been converted
by the MetS to the linear phase distribution of EMx , while
the phase distribution of the field outside the MetS area is
still spherical. Due to phase shifts introduced by the MetS,
the phase distribution of EMx varies linearly along xm, with
a slope proportional to sin (10◦). Plugging (EM , HM ) and
(Ei, H i) into (1), we obtained the electric and magnetic PO
currents, which were then made radiate through the radiation
integrals to get the far-field. In order to assess the accuracy
of the proposed approach on a realistic structure, the designed
equivalent impedances have been implemented through prop-
erly shaped metallic patterns, and the resulting structure has
been analyzed with a full-wave code based on a Multilevel

FIGURE 6. Detail of the external MTS for MetS implementation showing
4× 4 unit cells.

FIGURE 7. Directivity pattern obtained with the approach proposed in the
paper and full-wave analysis of MetS designed with patterns of metallic
textures, whose geometry is depicted in the inset.

Fast Multiple method (MLFMM) by IDS [37]. Fig.6 shows a
detail of the external MTS implementing the MetS, compris-
ing 4 × 4 unit cells with gradually varying geometry. The
internal MTS consists of similar unit cells. Fig. 7 shows a
comparison between the directivity obtained with the
PO-based approach proposed in this paper and the full-wave
analysis. The agreement is pretty good for the main lobe and
the first sidelobes. As well-known, the PO lacks accuracy at
the grazing angles, and the difference becomes substantial
for far-out sidelobes. It is worth noticing that the results in
Fig.7 were obtained in less than 8 minutes with the proposed
approach on a laptop (1 Intel Core i5@1.6GHz with 16GB
RAM), and in about 10 hours with a full-wave code [37] on a
workstation (2 Intel Xeon Silver 4108@1.8GHz with 256GB
RAM).

In the second example, the MetS admittance profiles have
been derived to steer an incoming right-handed circularly
polarized beam by an angle θ = −9.25◦ in the plane
φ = 65◦. Fig.8 shows the amplitude (left) and phase (right)
distributions of the x-component of the electric field on the
feed aperture (magnetic field not shown here for the sake of
brevity). Following the same steps of the previous example,
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FIGURE 8. (a) Amplitude (left) and phase (right) distributions of the
x-component of the feed aperture electric field. (b) Amplitude (left) and
phase (right) distributions of the x-component electric field right after the
MetS and in its surrounding area. The white dashed lines denote the MetS
rim.

FIGURE 9. Directivity pattern obtained with the approach proposed in the
paper and full-wave analysis of MetS designed with patterns of metallic
textures.

we derived the electric and magnetic fields right after the
MetS (EM , HM ) and in its 30mm-width surrounding area
(Ei,H i). Then, to get the far-field, we evaluated the radiation
integrals with equivalent currents deriving from those fields.
As shown in Fig.8b (right), the aperture field phase distribu-
tion is converted into linear also in this example, but with a
variation along ym = tan(65◦)xm and slope proportional to
sin(−9.25◦). Fig.9 shows a comparison between the directiv-
ity obtained with our approach and the full-wave analysis of
the MetS whose admittance profiles are implemented with
patterns of metallic textures. As in the previous example,
the agreement is pretty good for the main lobe and the first
sidelobes. The difference becomes considerable for far-out
sidelobes due to the PO inaccuracy at grazing angles.

IV. CONCLUSION
A PO-based approach for the analysis of reflectionless MetSs
consisting of cascading MTSs separated by dielectric layers

has been presented. The approach is based on the homog-
enization of the MTS layers, leading to a representation
in terms of equivalent surface impedance, which is then
embedded in an equivalent transmission line circuit to derive
a MetSs transmission coefficient. This latter is used to
derive the PO-currents on an equivalent surface surround-
ing the MetS, from which the scattered field is calculated
after evaluating the relevant radiation integral. The accu-
racy of the approach has been verified through comparison
with full-wave simulations on a realistic MetS model; the
good agreement of the results validates both the PO-based
approach and the underlying homogenization principle. The
proposed methodology can be straightforwardly extended to
also account for possible MetS reflections by introducing a
dyadic reflection coefficient and treating the reflected fields
analogously to the transmitted fields. Furthermore, it can also
be applied when the impedance profile is known numerically
instead of analytically.
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