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Abstract 

In this paper, we present the asymptotic results of the quasi maximum 
likelihood estimator of the parameters of a C-convolution model based on the 
conditional copula (Patton [11]). The C-convolution operator determines the 
distribution of the sum of two dependent random variables with the dependence 
structure given by a copula function. We focus in particular on the case where 
the vector of parameters may be partitioned into elements relating only to the 
marginals and elements relating to the copula. We propose a three-stage quasi 
maximum likelihood estimator (3SQMLE) and we provide conditions under 
which the estimator is asymptotically normal. We examine the small sample 
properties via Monte Carlo simulation. Finally, we propose an empirical 
application to explain how our model works. 

1. Introduction 

In this paper, we consider the estimation of parametric multivariate 
density models where the data generating process is given by a 
conditional C-convolution. The C-convolution is an operator introduced 
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by Cherubini et al. [5], which recovers the distribution function of the 
sum of two dependent random variables. The dependence structure is 
provided by a copula function (see among others Nelsen [10] or Joe [9] for 
a detailed discussion on copulas and their properties). A bivariate copula 
function allows to decompose a joint distribution into its two univariate 
marginal distributions and a copula which describes the (non-linear) 
dependence between the variables. In statistical and econometric 
modelling, the main advantage of the use of copulas is in the construction 
of exible bivariate distributions, where we can combine different 
marginal distributions with any copula to create a specific bivariate 
distribution. In our case, the choice of the dependence structure reects on 
the distribution of the sum through the C-convolution. 

The importance of the sum of two random variables in financial 
econometrics is clear if we consider a concrete example given by a 
managed fund. Consider a managed fund Z promising to yield an excess 
return, say Y, with respect to a benchmark index X. Assuming we know 
the dynamics and the distribution of the excess return of X, the 
distribution of the excess return on the managed fund Z will depend on 
the investment policy implemented by the fund manager that will add up 
to the return on the benchmark .YX +  Moreover, the market return X 
and the excess return promised by the manager Y will be dependent, and 
such a dependence may be modelled by a copula function. So, the 
distribution of the managed fund return is given by a C-convolution. 

However, in financial econometrics, the data cannot be assumed to be 
independent and identically distributed (i.i.d.) since we develop the 
applications using time series. Therefore, we employ the concept of 
conditional copula, introduced by Patton [11], which allows us to handle 
conditioning variables. In this framework, we extend the definition of    
C-convolution in order to recover the conditional distribution of the sum 
of two random variables whose dependence structure is given by a 
conditional copula. 
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The main contribution of this paper is to provide the asymptotic 
behaviour of a three-stage quasi maximum likelihood estimator of the 
parametric conditional C-convolution model. The result is based on 
Theorem 6.10 in White [13]. Moreover, an application of the model to the 
sum of daily log-returns of two assets from Italian financial market (Eni 
and Fiat) is provided. In particular, we focus on the case where the 
conditional dependence structure is described by two of the most used 
archimedean copula functions: The Frank copula and the Clayton copula. 
We find significant evidence that the conditional C-convolution is the 
distribution of the sum of daily log-returns in the case of Frank copula. 

The remainder of the paper is organized as follows. Section 2 
introduces the C-convolution and its conditional version. In Section 3, we 
present the three-stage quasi maximum likelihood estimator of the 
parameters of the model. In Section 4, we prove the asymptotic normality 
of the estimator. Section 5 discusses the small sample properties in two 
particular cases via Monte carlo simulation. Section 6 presents an 
empirical application to a data set of daily log-returns of two stocks from 
Italian financial market. Section 7 concludes. Assumptions required for 
the asymptotic normality of the estimator and the proof of the main 
theorem of the paper are presented in the Appendix. 

2. The Conditional C-convolution 

Our data generating process is based on the C-convolution operator 
introduced by Cherubini et al. [5]. The C-convolution determines the 
distribution function of a sum of two dependent and continuous random 
variables X and Y. The dependence structure between X and Y is 
modelled by a copula function. The copula technique allows to write every 
joint distribution as a function of the marginal distributions. In our case, 
for example, we can represent the joint distribution of X and Y, say 

( ),,Pr bYaX ≤≤  with ℜ∈ba,  as a function of ( ) ( )aXaFX ≤≡ Pr  

and ( ) ( ).Pr bYaFY ≤≡  More formally, there exists a function 

( )vuC YX ,,  such that 
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( ) ( ( ) ( )).,,Pr , bFaFCbYaX YXYX=≤≤  

Conversely, given two distribution functions XF  and YF  and a suitable 

bivariate function ,,YXC  we may build joint distribution for the returns. 

The requirements to be met by this function are that: (i) it must be 
grounded ( ) ( )( );0,00, == vCuC  (ii) it must have uniform marginals 

( ( ) vvC =,1  and ( ) );1, uuC =  (iii) it must be 2-increasing (meaning that 

the volume ( ) ( ) ( ) ( )22122111 ,,,, vuCvuCvuCvuC +−−  for 21 uu >  and 

21 vv >  cannot be negative). The one to one relationship that results 

between copula functions and joint distributions is known as Sklar 
theorem. 

While the concept of copula functions and their use both in finance 
and econometrics is well assessed, the application at hand raises a 
problem that must be handled with special caution. In fact, given the 
copula function ( )vuC YX ,,  linking X and Y, we are required to recover 

the copula function linking X and .YX +  Moreover, given the marginal 
distributions of X and Y and their dependence, we must come up with the 
probability distribution of the sum .YX +  It is clear that such a 
distribution results from the convolution of X and Y. This problem was 
solved in Cherubini et al. [5], with the introduction of the concept of 
convolution-based copulas. If YeX  be two real-valued random variables 

with corresponding copula YXC ,  and continuous marginals XF  and ,YF  

then the distribution function of the sum YX +  is given by 

( ) ( ( ( ))) ,, 1
,1

1

0
dwwFzFwCDzF XYYXYX

−
+ −= ∫  (1) 

where ( )vuCD YX ,,1  denotes 
( )

.
,,

u
vuC YX

∂
∂
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The main disadvantage of this approach is that the C-convolution 
may not be used when we model economic or financial variables. In fact, 
an economic time series is not generated by an independent and 
identically distributed sequence of random variables. In the other words, 

YXF +  is a static distribution. For that reason, we need to extend the 

notion of C-convolution in order to handle dynamic time series. One 
possible way to proceed is to employ the notion of conditional copula 
introduced by Patton [11]. 

The theoretical framework is the following: X and Y are the variables 
of interest and Z is the conditioning variable. Let XYZF  be the 

distribution of the random vector ( ) ZXYFZYX ,,,  be the conditional 

distribution of ( )YX ,  given Z and ZXF  and ZYF  be the conditional 

marginal distributions of X given Z and of Y given Z, respectively. The 
conditional copula of ( )YX ,  given ,zZ =  where X given zZ =  has 

distribution ( )zF zZX ⋅=  and Y given zZ =  has distribution ( ),zF zZY ⋅=  

is the conditional distribution function of ( )zXFU ZX≡  and ZYFV ≡  

( )zY  given .zZ =  Moreover, an extension of the Sklar’s theorem is 

proved by Patton [11]: there exists a unique conditional copula ( )zC ⋅⋅,  

such that 

( ) ( ( ) ( ) ) ( ) ,,,,,, Z∈∀×∈∀= zyxzzyFzxFCzyxF ZYZXZXY RR  

where Z  is the support of the conditioning variable Z. The key point of 
the ‘conditional’ version of Sklar’s theorem is that the conditioning 
variable Z must be the same for both marginal distributions and the 
copula and this is a fundamental condition. 

In the spirit of econometric time series analysis, we condition the 
variables involved to the information available at the time ,1−t  say 

.1−tF  Let tC  be the conditional copula of ( ) x
tttt GYX ,, 1−F  be the 

conditional marginal distribution of 1−ttX F  and y
tG  be the conditional 
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marginal distribution of ,1−ttY F  then the conditional C-convolution will 

be the distribution of the sum ,11 −− + tttt YX FF  i.e., by applying 

Equation (1) 

( ) ( )( )( ) ,, 1,
1

1

0
dwwGzGwCDzF x

tt
y
tttt

−−= ∫  

where tCD1  denotes the first partial derivative of the copula function. 

From a statical point of view, the data generating process is provided by 

( )t
y
t

x
t CGG ,,  whereas the conditional distribution tF  is the convolution 

of the three elements. 

3. The Estimator 

Let us suppose that the conditional marginal distributions of 1−ttX F  

and 1−ttY F  be parameterized as ( )0; vGx
t /⋅  and ( ),; 0γ⋅y

tG  where 0v/  and 

0γ  are vectors of parameters belonging to compact spaces Ψ  and ,Γ  

respectively. We assume that x
tG  and y

tG  are known but that the true 

parameters  0v/  and 0γ  must be estimated. By the conditional                  

C-convolution, we determine the distribution of the sum 1−ttZ F  in the 

case where the dependence structure of ( ) 1, −ttt YX F  is described by a 

conditional copula ( )0;, θvuCt  characterized by the true parameter 0θ  

belonging to a compact space .Θ  

The conditional distribution of tZ  depends on ,, 00 γ/v  and .0θ  For 

estimation purposes, it is useful to emphasize the dependence of the 
conditional C-convolution on the parameters. So we will write 

( ) ( )( )( ) .;;,,,,; 0001,
1

1

0
000 dwvwGzGwCDvzF x

tt
y
tttt θγ/−=θγ/ −∫  
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We can see that the copula parameter θ  may be a constant or time-
dependent in a manner similar to Patton [11], which uses a Gaussian 
copula with a correlation parameter at time t as a function of a constant, 
the correlation parameter at time 1−t  and the average of the products 

( ) ( )1
1

1
1

−
−

−
− ΦΦ tt vu  over 10 lags 

( ) ( ) .10
1 11

10

1
1 













ΦΦδ+βρ+αΛ=ρ −
−

−
−

=
− ∑ jtjt

j
tt vu  

In this case, we have that ( ).,, δβα=θ  Similarly, for Archimedean 

copulas, the dependence parameter may be modelled taking into account 
the correspondence value of the Kendall’s τ  coefficient. In what follows, 
we consider the case where the parameter is simply an autoregressive 
process. 

It will not always follow that the parameters may be decomposed into 
three components associated with the two margins and the copula. 
However, examples where such a decomposition is possible are frequent 
in financial applications (first of all the Garch models). 

Our main purpose is to provide the estimate of the parameters by 
three steps. In the first two steps, we estimate the vectors of parameters 
of the marginal distributions, v/  and ,γ  by a quasi-maximum likelihood 

method. Let x
tg  and y

tg  be the conditional density function of x
tG  and 

,y
tG  respectively. Then the logarithm of the quasi-likelihood functions 

are 

( ) ( ),;ln1

1
1 vxgnv t

x
t

n

t
n /=/ ∑

=

A  

( ) ( ).;ln1

1
2 γ=γ ∑

=
t

y
t

n

t
n ygnA  
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Therefore, the quasi-maximum likelihood estimators of v/  and γ  are 

( ),;maxargˆ 1 vxv n
nn /=/

Ψ
A  

and 

( ).;maxargˆ 2 γ=γ
Γ

n
nn yA  

The third step is given by the estimator of the copula parameter ,θ  which 

may be obtained by the maximization of the quasi-likelihood function 
relative to the conditional C-convolution. The density function of the 
conditional C-convolution is the derivative of (1) with respect to ,tz  i.e., 

( ) ( )( )( )θγ/−=θγ/ −∫ ;;,,,,; 1,1

0
vwGzGwcvzf x

tt
y
tttt  

( )( ) ,;,1, dwvwGzg x
tt

y
t γ/−× −  

where tc  is the copula density. Denote by ( )θγ/ ,ˆ,ˆ3 nn vA  the logarithm of 

the quasi-likelihood function of the C-convolution computed at nv̂/  and 

.ˆnγ  We have 

( ) ( ).,ˆ,ˆ;ln1,ˆ,ˆ
1

3 θγ/=θγ/ ∑
=

nntt

n

t
nnn vzfnvA  

We can see that by construction n3A  is a function of θ  only. Therefore, 

the quasi-maximum likelihood estimator of θ  will be 

( ).,ˆ,ˆ;maxargˆ 3 θγ/=θ
Θ nn

n
nn vzA  

We call the vector of estimators ( )θγ/=η ,ˆ,ˆˆ nnn v  the three-stage quasi 

maximum likelihood estimator (3SQMLE). 
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4. Asymptotic Normality of the 3SQMLE 

In this section, we study the behaviour of the 3SQMLE as .+∞→n  
The assumptions listed in the appendix are sufficient to ensure that nη̂  

has a Gaussian limit distribution. This is very important in econometric 
and statistical applications to generate robust statistical tests on the 
parameters of the model. 

Our main result is the following: 

Theorem 4.1. Under Assumptions 1-11 (see the Appendix 1) the 

estimator 





















θ

γ

/

=η

n

n

n

n

v

ˆ

ˆ

ˆ

ˆ  satisfies 

( ) ( )

( )

( )

( )

( ),1

,,;

;

;

ˆ
0

000
3

0
2

0
1

100
Po

vZ

Y

vX

nAn

n
n

n
n

n
nv

nn +





















θγ/∇

γ∇

/∇

−=η−η

θ

γ

/

−

A

A

A

 

and  

( ) ( ) ( ),,0ˆ 00210 INABn d
nnn →η−η−  

where I is an identity matrix of appropriate dimension, [ ],00
nn HA E=  

where 0
nH  is the block matrix of the second order partial derivatives 

=0
nH  

( )

( )

( ) ( ) ( )

,

,,;,,;,,;

0;0

00;

000
3

000
3

000
3

0
2

0
1





















θγ/∇θγ/∇θγ/∇

γ∇

/∇

θθγθθ/

γγ

//

vZvZvZ

Y

vX

n
n

n
n

n
nv

n
n

n
nvv

AAA

A

A
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and [ ],00
nn BB E=  where 

=0
nB  

[ ( ) ] [ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ] [ ( ) ]

,

0
3

0
31

10
2

0
31

10
1

0
31

1

0
3

0
21

10
2

0
21

10
1

0
21

1

0
3

0
11

10
2

0
11

10
1

0
11

1























⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

∑∑∑
∑∑∑
∑∑∑

===

===

===

T
tt

n

tn
T

tt
n

tn
T

tt
n

tn

T
tt

n

tn
T

tt
n

tn
T

tt
n

tn

T
tt

n

tn
T

tt
n

tn
T

tt
n

tn

ssssss

ssssss

ssssss

 

where ( ) ( ) ( ) y
ttttt

x
tvttt gyssvxgvxss ln;,;ln; 0

2
0
2

00
1

0
1 γ/ ∇=γ=/∇=/=  

( ),; 0γty  and ( ) ( )000000
3

0
3 ,,;ln,,; θγ/∇=θγ/= θ vzfvzss ttttt  are the 

score functions. 

Following White [13], the asymptotic covariance matrix of the 
estimator is given by 

( ) ( ) ( ) ,ˆ 10010 −−=η nnnn ABAarAV  

and it may be consistently estimated using the Hessian and the outer 
product matrix of the scores evaluated at the 3SQMLE 

n ( ) 1 1ˆˆ ˆˆ ,n n n nAV ar H OP H− −η =  

where nĤ  is the Hessian matrix evaluated at [ ]nnnv θγ/ ˆ,ˆ,ˆ  and nPÔ  is 

given by 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

,

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆ

331
1

231
1

131
1

321
1

221
1

121
1

311
1

211
1

111
1























⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

=

∑∑∑
∑∑∑
∑∑∑

===

===

===

T
tt

n

tn
T
tt

n

tn
T
tt

n

tn

T
tt

n

tn
T
tt

n

tn
T
tt

n

tn

T
tt

n

tn
T
tt

n

tn
T
tt

n

tn

n

ssssss

ssssss

ssssss

PO  

where ( ) ( ),ˆ;ˆ,ˆ;ˆ 2211 ntttnttt yssvxss γ=/=  and ( ).ˆ,ˆ,ˆ;ˆ 33 nnnttt vzss θγ/=  
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Assumption 4 in the Appendix requires that the density of the 
conditional C-convolution is continuously differentiable of order 2 with 
respect to the parameters. Since ( )⋅⋅⋅ ,,;tt zf  depends on the copula 

function a reasonable requirement for the validity of Assumption 4 is 
that the integrand function and its partial derivatives are bounded from 
above by an integrable function, i.e., 

( )( )( ) ( )( ) ( ),,;,;;,, 0
1,1, wzhvwGzgvwGzGwc t

x
tt

y
t

x
tt

y
tt ≤γ/−θγ/− −−  

( )( )( ) ( )( ) ( ),,;,;;,, 1
1,1, wzhvwGzgvwGzGwc t

x
tt

y
t

x
tt

y
tt ≤γ/−θγ/−

θ∂
∂ −−  

( )( )( ) ( )( ) ( ),,;,;;,, 2
1,1,

2

2
wzhvwGzgvwGzGwc t

x
tt

y
t

x
tt

y
tt ≤γ/−θγ/−

θ∂

∂ −−  

where ( ) ( ),,,, 10 wzhwzh tt  and ( )wzh t ,2  are integrable with respect to 

w for all ....,2,1=t  Now, suppose that the conditional density y
tg  and 

its partial derivatives are bounded for all ,2,1 …=t  then if the copula 

density and its partial derivatives are bounded from above by a constant, 
i.e., 

( ) ( ),,,;, 0 vuvuct ∀≤θ k  

( ) ( ),,,;, 1 vuvuct ∀≤θ
θ∂
∂ k  

( ) ( ),,,;, 22

2
vuvuct ∀≤θ

θ∂

∂ k  

Assumption 4 is ensured. Gaussian copula, Student’s t copula and Frank 
copula satisfy the conditions above. Differently, for other Archimedean 
copulas like Clayton copula and Gumbel copula, the reader may find a 
detailed discussion on scores assumptions in Genest et al. [8] and Chen 
and Fan [2]. 



FABIO GOBBI 12

5. Small Sample Properties 

In this section, we present the results of a Monte Carlo simulation of 
the small sample properties of the estimators discussed above in the case 
where both marginals are conditionally Gaussian with the same Garch 
(1,1) specifications, whose parameters are designed to reect the high 
persistence conditional volatility. The simulated marginal models are 

,, ttxxt ehX +µ=  

( ) ,2
1,2,

2
11,0,

2
, −− ω+µ−ω+ω= txxxtxxtx hXh  

( ),1,0~iid1 Ne tt −F  

,, ttyyt qhY +µ=  

( ) ,2
1,2,

2
11,0,

2
, −− ω+µ−ω+ω= tyyytyyty Y kk  

( ),1,0~iid1 Nq tt −F  

with ,1.0,05.0,01.0 1,1,0,0, =ω=ω=ω=ω=µ=µ yxyxyx  and =ω 2,x  

.85.02, =ωy  The values of parameters are taken from Patton [11]. As for 

the dependence structure between the two variables, we examine the 
case of the Frank copula with two different dynamics for the parameter. 
Firstly, we consider the case where tX  and tY  are linked by a Frank 

copula with a time invariant parameter chosen so as to imply a Kendall’s 
τ  coefficient of 0.25 and 0.50. The correspondent values of the parameter 
are 37.2=θ  and .74.5=θ  The relationship between the copula 
parameter and the Kendall’s τ  coefficient is obtained by inverting the 
“Debye” function (see for more details Cherubini et al. [4] p. 126). In a 
second case, we develop simulations for studying a time-varying 
conditional dependence. More precisely, suppose that tθ  has an 

autoregressive dynamics 
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( ),1 ttt ε+βθ+αΛ=θ −  

where tε  is a random disturbance normally distributed with zero mean 

and standard deviation εσ  and ( ) xe
x

−+
=Λ

1
3  in order to ensure that 

the corresponding Kendall’s τ  remains in the interval ( ).6.0,0  We 

develop simulations with 2.0=α , 8.0=β  and .1.0=σε  We consider 

two possible sample sizes: .1000,500=n  We present only the results 

relative to the estimation of the copula parameter, which is the third step 
of the 3SQMLE. Tables 1 and 2 contain the averages of estimates and the 
mean squared error (MSE). The simulation results suggest that the level 
of dependence between the marginal variables affects the accuracy of the 
estimate in the case of constant parameter. A greater dependence leads 
to higher MSE for the same sample size. However, as the sample size 
raises the MSE rapidly decreases. Differently, in the case of time-varying 
dependence structure, the estimates show less accuracy even if the 
estimate of the autoregressive parameter is acceptable. The volatility εσ  

is overestimate in both sample sizes. 

Table 1. Average value and relative MSE of the Monte Carlo estimates 
for three different values of the sample size and two different values of 
the Frank copula parameter 

 500=n  1000=n  

37.2=θ  2.5363(0.6738) 2.4383(0.3473) 

74.5=θ  6.0671(2.4969) 5.9889(1.6427) 
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Table 2. Average value and relative MSE of the Monte Carlo estimates 
for two different values of the sample size and two different copula 
functions in the case of time-varying conditional dependence 

 500=n  1000=n  

2.0=α  0.2883(0.4580) 0.2663(0.3865) 

8.0=β  0.5665(0.3801) 0.6213(0.3125) 

1.0=σε  0.3575(0.4174) 0.2512(0.3454) 

6. Application 

In this section, we apply the model discussed above to a data set of 
daily log-returns of prices of two stocks from Italian financial market: Eni 
and Fiat. The data employed runs from 1st January 2008 to 31 December 
2010. The total number of observations is .750=n  Our technique 
requires the estimation of conditional marginal distributions. Since the 
standard Normal Garch (1,1) does not overcome the Kolmogorov-Smirnov 
(KS) test of goodness of fit, we decide to model the margins with a 
Student’s t Garch (1,1) process; the functional forms are 

,, txxt eX +µ=  

,2
1,2,

2
,1,0,

2
, −ω+ω+ω= txxtxxxtx heh  

( )
( ),~

2
iid

1,2
,

xte
h

ttx
xtx

x
ν

ν
ν

−
−

F  

,, tyyt eY +µ=  

,2
1,2,

2
,1,0,

2
, −ω+ω+ω= tyytyyyty heh  

( ) ( ) .~
2

iid
1,2

,
yte

h
tty

yty

y
ν

ν

ν
−

−
F  
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Observe that in our notation we have ( )xxxxxv ν,,,, 2,1,0, ωωωµ=/  and 

( ).,,,, 2,1,0, yyyyy νωωωµ=γ  The quasi-maximum likelihood estimates 

are reported in Table 3. The KS statistics show that both models 
overcome the goodness of fit test. Given that margins we can estimate the 
conditional C-convolution. For sake of comparison, we employ two copula 
functions to describe the dependence structure between the two assets: 
Frank copula and Clayton copula. First, we consider the case where the 
parameter is constant over time. The parameters estimates are 

1328.2ˆ =θ  for the Frank copula and 4709.0ˆ =θ  for the Clayton copula 
which correspond to a Kendall’s τ  coefficient equal to 0.2269 and 0.1906, 
respectively. Since the most interesting case is the time-varying 
conditional dependence parameter, we select two possible autoregressive 
dynamics similar to the case studied in the Monte Carlo simulation. In 
particular, for the Frank copula, 

( ),11 ttt ε+βθ+αΛ=θ −  

where tε  is a sequence of i.i.d. normally distributed r.vs. with zero mean 

and standard deviation εσ  and ( ) xe
x

−+
=Λ

1
5

1  in such a way that the 

parameter remains in the interval [ ].5,0  Similarly for the Clayton 

copula, 

( ),12 ttt ε+βθ+αΛ=θ −  

where ( ) xe
x

−+
=Λ

1
3

2  in such a way that the parameter remains in the 

interval [ ].3,0  In our notation ( ).,, εσβα=θ  Table 4 reports the quasi-

maximum likelihood estimates which are all significantly different from 
zero. In the other words, we find significant evidence of time variation in 
the conditional dependence. The parameter εσ  provides a measure of the 

variability of the dependence structure in the spirit of autoregressive 
processes. Figure 1 displays the evolution of the time-varying parameter. 
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Now, thanks to parameter estimates, we construct the estimated version 
of the conditional C-convolution, that is, the estimated distribution of the 
sum of daily log-returns of the two assets 

( ) ( )( )( ) ,ˆ;ˆ;ˆ;ˆˆ,ˆ 1,
1

1

0
dwvwGzGwCDzF x

tt
y
tttt θγ/−= −∫  

where x
tĜ  and y

tĜ  denote the estimated Student’s t Garch (1,1) margins 

and tC  may be the Frank copula or the Clayton copula. Figure 2 shows 

the distribution with both copulas: We see that the Clayton copula 
highlights a heavy left-tail. Nevertheless, the Kolmogorov-Smirnov test 
for the shape of the distribution indicates that only the C-convolution 
constructed with the Frank copula is accepted, whereas the case of 
Clayton copula is rejected. In fact, the p-value from the KS test for the 
first case is 0.1809 (we accept the null hypothesis) and for the second case 
is 0.0064 (we reject the null hypothesis). 

Table 3. Quasi-maximum likelihood estimates of the marginal returns 
distribution model. The asterisk denotes the parameters which are 
significantly different from zero at the 5% level 

Eni Fiat 

4100154.6 −×=µx  4102173.8 −×=µ y  

∗−×=ω 6
0, 107796.7x  5

0,2 104582.1 −×=ω  

∗=ω 8744.01,x  ∗=ω 9184.01,y  

∗=ω 1088.02,x  ∗=ω 0689.02,2  

∗= 6735.5xν  ∗= 2341.6yν  

( )1808.00398.0KS == p  ( )3799.00330.0KS == p  

 

welcome
Please check 2 or y

welcome
ω , y

welcome
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Table 4. Quasi-maximum likelihood estimates of conditional dependence 
parameters for both copulas. The asterisk denotes the parameters which 
are significantly different from zero at the 5% level 

Frank Clayton 

∗−=α 2617.0ˆ  ∗−=α 6030.0ˆ  

∗−=β 0552.0ˆ  ∗−=β 8987.0ˆ  

∗
ε =σ 0764.0ˆ  ∗

ε =σ 0498.0ˆ  

 

Figure 1. Conditional copula parameters dynamics: (a) Frank copula;    
(b) Clayton copula. 
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Figure 2. Comparison between estimated conditional C-convolutions. 

7. Conclusion 

This paper presented a three-stage maximum likelihood estimator of 
the parameters of a conditional C-convolution model for time series and 
determined its asymptotic normality. The assumptions required are not 
restrictive and they are standard in econometrics. The use of the 
conditional C-convolution is required because economic time series are 
not i.i.d. and conditioning variables are necessary. Moreover, numerous 
situations exist where the sum of two variables is required and the 
conditional C-convolution provides a model to recover the distribution of 
the sum. We performed the small sample properties of the 3SQMLE in a 
simulated model with marginal variables given by Garch processes and 
dependence structure given by a Frank copula with time-varying 
parameter. We found that the efficiency of the estimates rapidly 
increased with the sample size. Finally, our application focused on the 
Italian financial market with two time series of daily log-returns relative 
to Eni and Fiat. After estimating the appropriate conditional margins, we 
estimated the conditional C-convolution and we found evidence that this 
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is the appropriate distribution of the sum of log-returns when their 
dependence structure is described by a Frank copula with time-varying 
parameter. 
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Appendix 1 

We present in this appendix the assumptions required for Theorem 
4.1. Most of these assumptions are based on those presented in White 
[13]. 

In order to make more easier the reading of the assumptions below, 
we recall the notation. Let 

( ) ( ),;ln;1 vxgvxs t
x
tvtt /∇=/ /  

( ) [ ( )],;11 vXv n
nn /=/ AA E  

( ) ( ) ( ),;1;ln1; 1
11

1 vxsnvxgnvx tt

n

t
t

x
tv

n

t

n
nv /=/∇=/∇ ∑∑

=
/

=
/ A  

( ) ( ),;ln;2 γ∇=γ γ t
y
ttt ygys  

( ) [ ( )],;22 γ=γ n
nn YAA E  

( ) ( ) ( ),;1;ln1; 2
11

2 γ=γ∇=γ∇ ∑∑
=

γ
=

γ tt

n

t
t

y
t

n

t

n
n ysnygnyA  

( ) ( ),,,;ln,,;3 θγ/∇=θγ/ θ vzfvzs tttt  

( ) [ ( )( ],,,;,, 33 θγ/=θγ/ vZv n
nn AA E  

( ) ( ) ( ).,,;1,,;ln1,,; 3
11

3 θγ/=θγ/∇=θγ/∇ ∑∑
=

θ
=

θ vzsnvzfnvz tt

n

t
tt

n

t

n
nA  

Assumption 1. 

● (a) The sets of parameters ΓΨ,  and Θ  are compacts. 

● (b) ( ) ( ) ( )⋅⋅⋅⋅⋅ ,,;;,; ttt
y
tt

x
t zfygxg  are continuous on ΓΨ,  and 

Θ⊗Γ⊗Ψ  respectively, a.s., for all .,2,1 …=t  
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Assumption 2. 

● (a) [ ( )] [ ( )] ,;ln,;ln γ/ t
y
tt

x
t YgvXg EE  and [ ( )]θγ/ ,,;ln vZf ttE  exist 

and are finite for each Γ∈γΨ∈/ ,v  and for each ( ) .,, Θ⊗Γ⊗Ψ∈θγ/v  

● (b) [ ( )] [ ( )],;ln,;ln γ/ t
y
tt

x
t YgvXg EE  and [ ( )]θγ/ ,,;ln vZf ttE  are 

continuous on ΓΨ,  and ,Θ⊗Γ⊗Ψ  respectively, for all .,, ttt zyx  

● (c) { ( )} { ( )}tt
y
ttt

x
t YgvXg γ/ ;ln,;ln  and { ( )}ttt vZf θγ/ ,,;ln  obey the 

weak uniform law of large numbers. 

Assumption 3. 

● (a) ( )vn /1A  and ( )γn2A  are ( )1O  uniformly on Ψ  and .Γ  Moreover, 

( )⋅n1A  and ( )⋅n2A  have unique maximizers Ψ∈/ 0v  and ,0 Γ∈γ  where Ψ  

and Γ  are the interior of Ψ  and .Γ  

● (b) ( )θγ/ ,,3 vnA  is ( )1O  uniformly on .Θ⊗Γ⊗Ψ  

Assumption 4. ( ) ( ),;,; ⋅⋅ t
y
tt

x
t ygxg  and ( )⋅⋅⋅ ,,;tt zf  are continuously 

differentiable of order 2 on ΓΨ,  and ,Θ⊗Γ⊗Ψ  respectively, a.s., for 

all .,2,1 …=t  

Assumption 5. 

● (a) [ ( )] [ ( )],;,; 21 γ∇/∇ γ/
n

n
n

nv YvX AA EE  and [ ( )]θγ/∇θ ,,;3 vZ n
nAE  

are finite for each Γ∈γΨ∈/ ,v  and for each ( ) ,,, Θ⊗Γ⊗Ψ∈θγ/v  

respectively. 

● (b) [ ( )] [ ( )],;,; 21 γ∇/∇ γ/
n

n
n

nv YvX AA EE  and [ ( )]θγ/∇θ ,,;3 vZ n
nAE  

are continuous for each Γ∈γΨ∈/ ,v  and for each ( ) ,,, Θ⊗Γ⊗Ψ∈θγ/v  

respectively, uniformly in n. 

 



FABIO GOBBI 22

Assumption 6. 

● (a) [ ( )]vX n
nvv /∇ // ;1AE  is finite for each [ ( )]γ∇Ψ∈/ γγ ;. 2

n
n Yv AE  is 

finite for each [ ( )] [ ( )]θγ/∇θγ/∇Γ∈γ θ/θθ ,,;,,,;. 33 vZvZ n
nv

n
n AA EE  and 

[ ( )]θγ/∇γθ ,,;3 vZ n
nAE  are finite for each ( ) .,, Θ⊗Γ⊗Ψ∈θγ/v  

● (b) [ ( )]vX n
nvv /∇ // ;1AE  is continuous for each ,Ψ∈/v  uniformly in n. 

[ ( )]γ∇γγ ;2
n

n YAE  is continuous for each ,Γ∈γ  uniformly in n. 

[ ( )] [ ( )],,,;,,,; 33 θγ/∇θγ/∇ θ/θθ vZvZ n
nv

n
n AA EE  and [ ( )]θγ/∇γθ ,,;3 vZ n

nAE  

are continuous for each ( ) Θ⊗Γ⊗Ψ∈θγ/ ,,v  uniformly in n. 

Assumption 7. 

● (a) { ( )} { ( )} ,;,; 21 tttttt YsvXs γ/  and { ( )}ttt vZs θγ/ ,,;3  obey the weak 

uniform law of large numbers. 

● (b) { ( )} { ( )} { ( )} { ( ,;,,,;,;,; 3321 vZsvZsYsvXs ttvtttttttttv /∇θγ/∇γ∇/∇ /θγ/  

)} ,, tθγ  and { ( )}ttt vZs θγ/∇γ ,,;  obey the weak uniform law of large 

numbers. 

Assumption 8. [ ]00
nn HA E=  is ( )1O  and non-singular uniformly in n. 

Assumption 9. ( )θγ/ ,ˆ,ˆ3 nnn vA  has a unique maximizer .0 Θ∈θ  

Assumption 10. ( ) ( ) ( )






 θγ/γ/ 000

3
0

2
0

1 ,,;1;;1;;1 vZs
n

Ys
n

vXs
n tttttt  

obeys the central limit theorem with covariance matrix ,0
nB  where 0

nB  is 

( )1O  and positive definite. 

Assumption 11. 

● (a) The elements of 0
nB  are finite and continuous on ,Θ⊗Γ⊗Ψ  

uniformly in n. 
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● (b) The sequence 

[ ( ) ( ) ( )]{ 000
3

0
2

0
1 ,,;;;;; θγ/γ/ vZsYsvXs tttttt  

[ ( ) ( ) ( ) ]} ,,,;,;,; 000
3

0
2

0
1 t

T
tt

T
tt

T
tt vZsYsvXs θγ/γ/⋅  

obeys the weak uniform law of large numbers. 

Andrews [1], Gallant and White [7] and White [13] provide some 
results on uniform laws of large numbers and on central limit theorems 
for dependent, heterogeneously distributed random variables that may be 
used to justify Assumptions 2(c), 7, 10, and 11(b). White [13] also 
provides a review on these topics in a wide variety of situations. 

Appendix 2 

The proof of the Theorem 4.1 is based on some results due to 
Domowitz and White [6] and White [13] which we report here in form of 
lemmas. In particular, we refer to Theorems 6.10, 3.5, and 3.10 of White 
[13]. 

Lemma 9.1. Given a complete probability space ( )P,, FΩ  and a 

compact subset H  of ,, NR ∈pp  let p
n R→×Ωξ H:  be a random 

function such that ( )η⋅ξ ,n  is measurable-F  for each H∈η  and ( )⋅ωξ ,n  

is continuously differentiable on …,2,1.,-, =na.sPH  Let H→Ωη :ˆ n  

be ,,2,1,- …=nmeasurableF  such that ,ˆ 0η→η P
n  where 0η  is interior of 

.H  Moreover ( ) .0ˆ, P→η⋅ξ nnn  Suppose there exists a sequence of pp ×  

matrices 0
nB  that is ( )1O  and uniformly positive definite such that 

( ) ( ) ( ).,0ˆ,210
pnnn INnB →η⋅ξ−  If there exists a sequence →H:nA  

pp×R  such that nA  is continuous on H  uniformly in n and ( )nn η⋅ξ∇η ˆ,�  

( ) 0P→η− nA  uniformly in H  and ( )00 η= nn AA  is uniformly non-

singular, then 
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( ) ( ) ( ) ( ),1ˆ,ˆ 100
PonAn n

nnn +η⋅ξ−=η−η −  

and 

( ) ( ) ( ) ( ).,0ˆ 010210
p

d
nnn INnAB →η−η−−  

Lemma 9.2. Given a complete probability space ( )P,, FΩ  and a 

compact subset H  of ,, NR ∈pp  let { }nnQ  be a sequence of random 

functions continuous on .-a.sPH  and ( ).;maxargˆ η⋅=η nn QH  If nQ  

( ) ( ) .-,0; a.sQn P→η−η⋅  uniformly on H  and if R→H:nQ  has 

identifiable unique maximizer ,0η  then ..-0ˆ 0 a.sn P→η−η  

Lemma 9.3. Given a complete probability space ( ),,, PFΩ  let { }nnX  

be a sequence of random vectors and X be a random vector. Then 

0P→− XXn  if and only if for any subsequence ,n′  there exits a further 

subsequence n ′′  such that ..-,0 a.sXXn P→−′′  

Proof. Proof of the Theorem 4.1. The proof is based on Lemma 9.1 
on random functions when we set the positions ( ) ⊗Ψ=θγ/=η H,,,v  

Θ⊗Γ  and 

( ) ( )

( ( ) )

( ( ) )

( ( ) )

.

,,,

,

,

,,

3

2

1





















θγ/ω∇

γω∇

/ω∇

=ηωξηω

θ

γ

/

vZ

Y

vX

n
n

n
n

n
nv

n

A

A

A

6  

Here we verify the assumptions required to prove the statements. For 
simplicity, we omit the checking of measurability conditions (see White 
[13] for more details). Lemma 9.1 requires four crucial assumptions to be 

applied. The first one is that the estimator nη̂  is consistent for 0η  and 

this is ensured by Assumptions 1, 2, 3, and 9 and Lemma 9.2. In fact, the 
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first two components nv̂/  and nγ̂  are strongly consistent for 0v/  and ,0γ  

respectively, if we apply Lemma 9.2 setting Ψ=H  and ( ) =/⋅ vQn ;  

( )vn /⋅;1A  and Γ=H  and ( ) ( ),;; 2 γ⋅=γ⋅ nnQ A  respectively. Given that, the 

strong consistency of the third component, ,ˆnθ  is ensured by applying 

Lemma 9.2 with the positions Θ=H  and ( ) ( ).,ˆ,ˆ;; 3 θγ/⋅=θ⋅ nnnn vQ A  

Under Assumption 10, we have 

( )

( )

( )

( )

( )

( )

( )

( ),,0

,,,

,

,

,,,

,

,

0
0

0
3

0
2

0
1

000
3

0
2

0
1

210 IN

vZ

Y

vX

vZ

Y

vX

nB d

n
n

n
n

n
nv

n
n

n
n

n
nv

n →





















θγ/∇

γ∇

/∇

−





















θγ/∇

γ∇

/∇

θ

γ

/

θ

γ

/

−

A

A

A

A

A

A

E  

but under Assumption 5, 

( )

( )

( )

( )

( )

( )

.0

,,,,,

,

,

000
3

0
2

0
1

000
3

0
2

0
1

=





















θγ/∇

γ∇

/∇

=





















θγ/∇

γ∇

/∇

θ
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/
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/
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n

n
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n
n

n
n

n
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A

A

A

A

A
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Thus 

( )

( )

( )

( )

( ),,0

,,,

,

,

000
3

0
2

0
1

210 IN

vZ

vY

vX

nB d

n
n

n
n

n
nv

n →





















θγ/∇

/∇

/∇

θ

γ

/

−

A

A

A

 

which is the second hypothesis of Lemma 9.1. 

Under Assumptions 6 and 7, we have ( ) ( ) 0,,,, P→θγ/−θγ/ vAvH nn  

uniformly on ,Θ⊗Γ⊗Ψ  where ( )θγ/ ,,vHn  denotes the block matrix of 

the second order partial derivatives evaluated at ( )θγ/ ,,v  and 

( ) [ ( )].,,,, θγ/=θγ/ vHvA nn E  This is the third hypothesis of Lemma 9.1. 
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Finally, the last assumption to be verified in order to apply Lemma 

9.1 is that 

( )

( )

( )

0

ˆ,ˆ,ˆ

ˆ

ˆ

3

2

1

P→





















θγ/∇

γ∇

/∇

θ

γ

/

nnnn

nn

nnv

v

v

n

A

A

A

 and this is ensured by Lemma 9.3 

and Assumptions 3 and 9. 
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