
processes

Article

EEG Synchronization Analysis for Seizure Prediction:
A Study on Data of Noninvasive Recordings

Paolo Detti 1,*,† , Giampaolo Vatti 2,† and Garazi Zabalo Manrique de Lara 1,†

1 Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;
garazizml@gmail.com

2 Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
giampaolo.vatti@gmail.com

* Correspondence: detti@dii.unisi.it
† These authors contributed equally to this work.

Received: 11 June 2020; Accepted: 10 July 2020; Published: 16 July 2020
����������
�������

Abstract: Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical
activity in the brain, affecting ~65 million individuals worldwide. Prediction methods, typically
based on machine learning methods, require a large amount of data for training, in order to
correctly classify seizures with small false alarm rates. Methods: In this work, we present a new
database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and
Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction
method, based on the detection of synchronization patterns in the EEG, is proposed and tested
on the data of the database. The use of noninvasive EEG data aims to explore the possibility of
developing a noninvasive monitoring/control device for the prediction of seizures. The prediction
method employs synchronization measures computed over all channel pairs and a computationally
inexpensive threshold-based classification approach. Results and conclusions: The experimental
analysis, performed by inspection and by the proposed threshold-based classifier on all the patients
of the database, shows that the features extracted by the synchronization measures are able to detect
preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.
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1. Introduction

Epilepsy is a disease characterized by an enduring predisposition to generate epileptic seizures,
due to abnormal excessive or synchronous neuronal activity in the brain [1]. Very importantly,
the main feature of epilepsy, epileptic seizures, is associated with a number of negative consequences
at both short- and long-term, including the risk of falls and injuries; eventual death; psychiatric
disturbances; cognitive deficits; and difficulties in achieving academic, social, and employment goals.
Pharmacological and surgical treatments are available that can stop or control seizures for most people
with seizures and epilepsy. However, antiepileptic drugs have limitations and side effects [2], and often fail
to control seizures in ~30% of the cases, while surgery cannot always applied. Therefore, seizure prediction
methods could be an important option. In fact, an early prediction might allow patients or caregivers to
take suitable actions, such as warning an alarm, applying short-acting drugs, and activating stimulating
devices.

Seizure prediction is a challenging research topic that has been explored for over 25 years. Many
approaches are based on the analysis of electroencephalogram (EEG) signals (e.g., see, in [3,4]), and on
the development of machine learning methods [5–8], usually requiring a large amount of data for
training. However, physiological data (e.g., EEG and EKG) including seizures are in general scarce,
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often including artifacts and noise. Furthermore, preictal and ictal morphologies may vary both
within the same patient (intra-patient specificity) and across different patients (inter-patient specificity).
Finally, the length of the preictal states are not univocally defined in the literature [9], implying that a
clear partition between inter-ictal and preictal states is difficult to perform.

Several works in the literature investigated the relationship between ictal and preictal states
and synchronization patterns in EEG through the use of bivariate measures (i.e., involving two or
more EEG channels). Such studies showed that synchronization phenomena in EEG may help to
highlight the dynamics of epilepsy [6,10–14]. Mormann et al. [12] measured synchronization in EEG
channels by the mean phase coherence, finding a decrease of the measure before seizure onset [13].
Mirowski et al. [6] combined nonlinear classifiers with phase-synchrony measures. Kuhlmann [11]
applied the mean phase coherence as a measure of bivariate phase synchrony, too. In this case,
the seizure prediction performance was evaluated for all possible channel pairs and for different
prediction methods, in order to find the best performing channel pair and method for both preictal
decreases and increases in synchrony. Myers [14] employed measures to determine synchronization
both in phase and in amplitude between pairs of EEG signals.

In general, bivariate measures can be naturally embedded on a graph model, i.e., a network,
in which nodes correspond to sources of the EEG signals and arcs between two nodes are weighted by
value corresponding to the synchronization degree between couple of EEG signals. Note that the arc
weights vary over time according to the changes in synchronization. Such a network model is also
justified by new findings of recent research in epilepsy, showing that the epileptiform activity in one
part may influence brain activity in other parts [15–17].

In this paper, we present a classification algorithm for seizure prediction that employs
phase-synchronization measures computed for all pairs of EEG signals, namely, Phase Lag Index
(PLI) and Weighted Phase Lag Index (WPLI) [18,19]. The phase-synchronization measures can be also
embedded on a network model that allows studying how epileptic events propagate throughout the
brain. An earlier version of the algorithm has been proposed and tested in [20], while in this paper we
present a new modified version in which new feature selection rules and postprocessing procedures
are employed, with the aim of reducing the number of false alarms. Furthermore, we also introduce a
new freely accessible database, containing scalp EEG data of different epileptic patients, and present
an experimental campaign, in which the seizure prediction method and the phase synchronization
measures are tested on all the data of the database. The data has been collected by the Unit of
Neurology and Neurophysiology at the University of Siena, Italy, during a regional research project,
called PANACEE [21], aiming at the development of noninvasive patient-specific monitoring/control
low-cost devices for the prediction of epileptic seizures.

In fact, the prediction method has been designed to be used on noninvasive (scalp) EEG data,
generally noisier than those obtained with other invasive (intracranial) techniques. However, the choice
of noninvasive techniques for data acquisition would allow a real-time use of the method also in portable
and wearable devices with limited discomfort for the patients.

The article is organized as follows. Section 2 is organized into two sections: In Section 2.1 the
database is presented and described. The synchronization measures and the related network model
developed to study the synchronization patterns in EEG are introduced in Section 2.2. The seizure
prediction approach employing the synchronization measures presented in Section 2.2 is described
in Section 2.5. Section 3 provides experimental results on all the 14 epileptic patients acquired at
the Unit of Neurology and Neurophysiology at University of Siena. In particular, the trends of the
synchronization measures are shown (Section 3.1) and the performances of our seizure prediction
method are presented (Section 3.2). In Section 4, the experimental results are analyzed and discussed.
Finally, conclusions follow in Section 5.
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2. Methods

2.1. A Scalp EEG Database

The Unit of Neurology and Neurophysiology at the University of Siena, Italy, acquired the data of
14 epileptic patients, collected during the national interdisciplinary research project PANACEE [21],
aiming to describe, detect, and predict in a sufficiently short time epileptic seizures and wake–sleep
transitions in order to take appropriate actions to ensure the safety of the subjects. The data contain
recordings of cerebral (EEG) activity of pathological subjects acquired with a Video scalp EEG with a
sampling rate of 512 Hz, with electrodes arranged according to the international 10–20 system. Most of
the recordings contain EKG signals, too. The data were acquired employing EB Neuro and Natus
Quantum LTM amplifiers, and reusable silver/gold cup electrodes. Patients were asked to stay in the
bed as much as possible, either asleep or awake. Clinical and electrophysiological data of each patient
have been carefully revised by expert clinicians, that performed the diagnosis of epilepsy and the
classification of the seizures according to the criteria of the International League Against Epilepsy [22].
The Ethical Committee of the University of Siena approved the data in accordance with the Declaration
of Helsinki. At the time of admission at the clinics, each patient signed a written informed consent in
which agrees to the video registration and to the use of the data for a possible scientific divulgation.

The anonymous data of the 14 patients, 9 males (ages 36–71) and 5 females (ages 20–58), are freely
available. The data are freely available at [23]. The database, that we call the Siena scalp database,
consists of 14 folders containing EEG recordings in European Data Format (EDF) format from epileptic
patients. Each folder refers to a specific subject including between 1 and 5 data files with a maximum
size of 2.11 GB each, and a text file containing data sampling rate (in Hz), a list of electrodes positioned
on the scalp from which the EEG signals are extracted, start and end time of the registration, and start
and end time of each seizure.

Table 1 reports detailed overviews of the data. More precisely, Columns 2–6 report the clinical
information of the patients, including seizure classification according to the criteria of the International
League Against Epilepsy [22]. Columns 7–9 of the table show, for each patient, the number of EEG channels
(# EEG Chan.) and seizures (# Seiz.), and the total registration time in minutes (Time), respectively.

Table 1. Data of the patients in the Siena Scalp Database.

Pat. Id Age (Years) Gender Seizure Localization Lateralization # EEG Chan. # Seiz. Time

PN00 55 Male IAS T R 29 5 198
PN01 46 Male IAS T L 29 2 809
PN03 54 Male IAS T R 29 2 752
PN05 51 Female IAS T L 29 3 359
PN06 36 Male IAS T L 29 5 722
PN07 20 Female IAS T L 29 1 523
PN09 27 Female IAS T L 29 3 410
PN10 25 Male FBTC F Bilateral 21 10 1002
PN11 58 Female IAS T R 29 1 145
PN12 71 Male IAS T L 29 4 246
PN13 34 Female IAS T L 29 3 519
PN14 49 Male WIAS T L 29 4 1408
PN16 41 Female IAS T L 29 2 303
PN17 42 Male IAS T R 29 2 308

IAS: focal onset impaired awareness; WIAS: focal onset without impaired awareness; FBTC: focal to bilateral
tonic–clonic; T: temporal; R: right; L: left.

2.2. Synchronization Measures and Graph Model

Synchronization patterns in EEG have been studied in the literature [6,10–14,24] to highlight
connections between preictal/ictal states and synchronization. Many works employed phase
synchronization measures, such as mean phase coherence [12], and the recently introduced Phase Lag
Index (PLI) and Weighted Phase Lag Index (WPLI) [18,19]. More precisely, PLI has been introduced
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in [18] for the assessment of functional connectivity in the brain, and WPLI has been introduced in [19]
as an extension of PLI. All the above measures can be applied to EEG signal pairs and return values in
[0, 1], where 0 indicates that no phase locking occurs and 1 is a perfect phase locking.

In this work, we employ the recently introduced PLI and WPLI to compute the synchronization
levels of pairs of EEG signals. Given two time series xh(t) and xk(t) (e.g., series related to two EEG
signals) and a time window ∆t containing N time instants, PLI and WPLI can be defined as follows,

PLIh,k,∆t =

∣∣∣∣∣ 1
N

N

∑
p=1

sign(φh(p)− φk(p))

∣∣∣∣∣ , (1)

WPLIh,k,∆t =

∣∣∣ 1
N ∑N

p=1 sin (φh(p)− φk(p))
∣∣∣

1
N ∑N

p=1 | sin (φh(p)− φk(p))|
, (2)

where φh(p) and φk(p) are the phases at time instant p of signals xh(t) and xk(t), respectively,
determined by the Hilbert transformation (see in [20]).

PLI is based on the idea of discarding the phase differences that center around 0 (mod π),
and quantify the asymmetry of the distribution of phase differences around zero. In WPLI, each phase
difference is weighted according to the magnitude of the lag. In this way, phase differences around
zero only marginally contribute to the calculation of the wPLI. This procedure reduces the probability
of detecting “false positive” connectivity in the case of volume conducted noise sources with near zero
phase lag and increases the sensitivity in detecting phase synchronization.

2.3. Embedding Synchronization Measures into a Network Model

The synchronization measures PLI and WPLI are bivariate measures that can be computed
for each pair of EEG signals extracted from the electrodes positioned on the scalp. In this context,
a natural network model of the brain connectivity can be defined [19,25], where the nodes of the
network represent the physical sites from which the EEG signals are extracted and the arcs between
the nodes and their weights model the brain connectivity. More formally, the network can be defined
by an undirected complete weighted graph G = (V, A), where V is set of nodes and A is the set
of arcs. One or more weights wh,k can be associated to each arc (h, k) ∈ A, that, in our case, can be
set to the values provided by the synchronization measures (e.g., PLI, WPLI, or both). Note that,
the synchronization measures and, therefore, the edge weights wh,k of the graph vary over time.
Consequently, observing how the graph structure is modified over time (i.e., the weights of the arcs),
we have an overall picture on how epileptiform events evolve throughout the brain. Two easily
computable graph measures of brain connectivity are the degree of a node, i.e., the number of edges
(with weights larger than a given threshold) incident to a node in G, and the strength of a node, i.e.,
the sum of the weights of the edges incident to a node in G. In the next sections, this last measure will
be used to detect variations in synchronization with the aim of predicting seizure occurrences.

2.4. Employing Synchronization Measures PLI and WPLI for Seizure Prediction

We developed a seizure prediction approach, in which the synchronization indices PLI and WPLI,
computed as in (1) and (2), respectively, and the graph embedding them are used to distinguish preictal
and inter-ictal states.

However, in our approach, PLI and WPLI are computed on signals obtained by raw EEG after
some preprocessing steps reported in Figure 1 and explained in the following.
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Feature Extraction

1. Filtering

2. Differentiating

3. PLI and WPLI
computation

4. Moving average

EEG 
Signals

Features

Figure 1. Block diagram of the feature extraction procedure.

EEG signals are first filtered in the [8, 13] Hz band (such a band has been identified by preliminary
experimental campaign in which different bands have been considered): The filtering process allows
the selection of the band of frequencies of interest, possibly removing undesired artifacts. Then, signals
are differentiated (i.e., the absolute value of the time-derivative of the signal is computed [26]): the
differentiation of the signal makes the basic noise nearly flat and sharpens the regions where the signal
exhibits its peaks (see [26,27]), which, as shown below, are most likely to be the regions where seizures
occur. As an example, Figure 2 shows the behaviors of PLI and WPLI without and with differentiation
on a time span of 1000 s preceding the first seizure of patient PN01 of the database, computed on the
channel pair (T5, Pz), and filtered in the [8, 13] Hz band. In the figure, the seizure starts (ends) at the
first (second) vertical dotted line.

Note that no significant changes occur in PLI and WPLI without differentiation, whereas, with
differentiation, PLI and WPLI increase as the seizure is approaching and peak just at the start of the
seizure (denoted by the first vertical dotted line).

Figure 3 reports the behavior over time of the strength of the node/channel F10, computed by
PLI, on a time period of ~1500 s containing the first seizure of patient PN00, starting at the second 1143.
The two vertical dotted lines delimit the ictal period. Note that the strength of the node increases as
the seizure’s onset is approaching and then decreases at the end of the ictal period.

On the other hand, such evident trends for PLI and WPLI on the filtered and differentiated
signals are not easy to detect in the original EEG data, as shown in Figure 4. In the upper parts of
Figure 4a,b, EEG data segments of given pairs of EEG channels of patients PN00 and PN05, respectively,
are reported. The segments refer to a time span of 300 s preceding the first seizures of patients PN00
and PN05, starting and ending at the first and at the second vertical dotted line, respectively. The lower
parts of Figure 4a,b shows PLI and WPLI on the same time span computed on the channels reported in
the upper parts of the figures. In all the figures, PLI and WPLI are computed using a time window ∆t

of 6 s (with an overlap of 1 s). Note that PLI and WPLI increase even before the seizure onset.
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Figure 2. PLIh,k and WPLIh,k with h = {T5} and k = {Pz} on the 1st epileptic seizure of patient PN01
before and after differentiation.

Furthermore, in our seizure prediction approach, a moving average procedure (described in [20]
in detail) is applied to all the measures introduced above. The moving average procedure aims to
smooth (e.g., by removing isolated peaks) the PLI and WPLI measures. Figure 5 shows the strength of
Figure 3 after the application of the moving average procedure.

In Figure 1, a block diagram summarizing all the operations performed on the EEG signals are
reported. At the end of the process, we get time-series, hereafter called features, that will be given as an
input to our for seizure prediction method.
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Figure 3. Strength for channel F10 on the first seizure of patient PN00.
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Figure 4. (a) Electroencephalogram (EEG) on channels h = {Fc5} and k = {Fc6}; PLIh,k and WPLIh,k
on the 1st seizure of patient PN00. (b) EEG on channels h = {T3} and k = {FP2}; PLIh,k and WPLIh,k
on the last seizure of patient PN05.
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Figure 5. The strength reported in Figure 3 after the application of the moving average procedure.

2.5. A Classification Approach for Epileptic Seizures Prediction

The problem of predicting epileptic seizures can be formulated as a classification problem, which
can be solved by a classifier (i.e., an algorithm) operating in two phases, called Training and Test phases.
In the Training phase, the classifier is learned to recognize positive and negative records on a given set
of data (Training data). In the Test phase, the classifier is tested on a different set of data (Test data) in
order to evaluate its ability of correctly classifying (as positive or negative) the unlabeled records of
the Test data.

The classifier we propose is a modified version of the threshold-based algorithm, called ThAlgo,
introduced in [20]. In the modified version, denoted as ModThAlgo in the following, new feature
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selection rules and a postprocessing procedure are considered, with the aim of reducing the number of
false alarms

In Training and Test phases, ModThAlgo works on the features obtained by applying all the
operations of Figure 1. Namely, as already stated in Section 2.2, the EEG signals are first filtered
(by means of a pass-band FIR filter) on prespecified bands (Step 1) and differentiated (Step 2); in Step
3, the resulting time series are then used to extract the synchronization measures PLI and WPLI for
each pair of signals (i.e., EEG channels) and each time-window through Formulas (1) and (2). Finally,
a moving average procedure is applied to each measure (Step 4).

Classification and Postprocessing

As the length of the preictal states are not univocally defined in the literature, ModThAlgo employs
the concept of prediction interval, i.e., a time window immediately preceding a given seizure. The length
of the time window is a parameter given as an input to the algorithm and it is experimentally detected.
All records inside a prediction interval belong to the positive class, and all the records outside the
prediction interval belong to the negative class. During the Training phase, ModThAlgo learns from the
positive and negative records of the Training data and employs such information to compute a set of
thresholds to separate as accurate as possible the positive and negative classes. During the Test phase,
ModThAlgo is applied on unlabeled Test data and employs the thresholds computed in the Training
phase to discriminate positive and negative classes. A seizure is correctly predicted if at least a record
inside the prediction interval is classified as positive. In this case, the prediction time is the time span
between the first record correctly classified inside the prediction interval of a seizure and its onset.
On the other hand, a false positive is generated when the algorithm classifies as positive a record outside
the prediction interval. Note that, actually, at least a positive record of a prediction interval must be
correctly classified (i.e., separated) to predict the corresponding seizure.

During the Training phase, a feature selection procedure is carried out in order to identify subsets
of features that are relevant and reliable for correctly classifying the Training data. Such selected features
are then used in the Test phase. In ModThAlgo, the feature selection phase has two steps: In the
first step, a set of thresholds θh,k is computed, one for each feature derived by the synchronization
measures PLIh,k and WPLIh,k, by taking the minimum of the maximum values of the features over
all the prediction intervals (or a suitable subset of them) of the training data. In the second step,
the features are ranked according to given rules. More precisely, while in ThAlgo features are selected
by simple ranking rules based on the number of times each feature is above (below) its threshold inside
(outside) the prediction intervals, in ModThAlgo a function is used to rank the features, depending on
the difference between their thresholds and the maximum of the values of the features outside the
prediction intervals. In fact, the bigger this difference is, the easier the computation of a line separating
negative and positive records is.

In the subsequent Test phase, the features are ordered according to the ranking obtained in the
Training phase. Then, the first features in the ranking and their corresponding thresholds are linearly
combined to obtain a single feature and a corresponding single threshold Θ. (The coefficients of the
linear combination are parameters of the algorithm.) The classification in positive and negative records
of the Testing data is performed by evaluating whenever the combined feature (computed on the
Testing data) is above (below) the threshold Θ inside (outside) the prediction intervals.

At the end of the Testing phase, a postprocessing procedure is carried out on the classified records
obtained so far. The procedure tries to remove isolated positive records, with the aim of reducing
false positives (i.e., negative records classified as positive in the Testing phase). More precisely,
the postprocessing procedure iteratively scans k consecutive classified records: If at least one of the k
records is negative, then all the k records are set to negative. The procedure is applied several times,
each time with a different value of the parameter k. (In the experimental campaign presented in
Section 3, we execute the postprocessing procedure with different k values, i.e., k = 0, 1, . . . , 6.)
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3. Results

In this section, we apply the synchronization measures presented in the Section 2.2 on the data
of the Siena Scalp Database introduced in Section 2.1. The aim is to evaluate whether changes in
synchronization may help in predicting seizure occurrences through a patient-specific approach.

Note that classification algorithms require a large amount of data to be reliable and effective.
Therefore, a sufficient number of seizures is required for each patient to properly training a patient-specific
algorithm. As reported in Table 1, six patient datasets of the Siena Scalp database contain either one or
two seizures, not enough to apply a training and a test phase of a patient-specific classification procedure.
On these six datasets, we perform an analysis by inspection, by detecting the channel pairs on which the
features extracted by the synchronization measures show useful trends for seizure prediction. On the data
of the eight remaining patients (with at least three seizure occurrences), we apply the classification
algorithm described in the previous section, and evaluate it through a cross-validation scheme.

In Section 3.1, the trends of the features (i.e., the synchronization measures) obtained as described
in Figure 1 on selected channels for the six patients of the Siena Scalp database with one or two seizures
are shown. In Section 3.2, results of our classification algorithm ModThAlgo are presented on the
remaining eight patients.

3.1. Trends of the Features for Patient Datasets with One or Two Seizures

In this section, we show the trends of the features obtained as described in Figure 1 on selected
channels (the selection has been performed by inspection) for the six patients of the Siena Scalp database
with one or two seizures. According to Table 1, datasets PN01, PN03, PN16, and PN17 contain two
seizures and PN07 and PN11 contain one seizure. On these datasets, Figures 6–11 show the trends of
the most meaningful features (extracted either from PLI or WPLI) in a time span preceding the onset
of each seizure of about one hour. In each figure, the first and the second dotted line correspond to
the start and the end of the ictal period. As already stated, the meaningful channel pairs have been
selected by inspection. We Note that, in all the cases, the selected features (that, by Definitions (1)
and (2), cannot be bigger than 1 on a channel pair) sharply increase as the seizure is approaching,
with a peak occurring approximately at the onset. The rising trends start before the seizure onsets,
implying that the proposed features could be used for seizure prediction.
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(a) First seizure of patient PN01.
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Figure 6. Features computed on PLI for channel pair T5–C4 of patient PN01.
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Figure 7. Features computed on Phase Lag Index (PLI) for channel pair F4–F8 of patient PN03.
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Figure 8. Features computed on Weighted Phase Lag Index (WPLI) for channel pair F9–Fc2 of
patient PN07.
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Figure 9. Features computed on WPLI for channel pair Fc1–FP2 of patient PN11.
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(a) First seizure of patient PN16.
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Figure 10. Features computed on PLI for channel pair F9–Cp2 of patient PN16.
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(a) First seizure of patient PN17.
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(b) Second seizure of patient PN17.

Figure 11. Features computed on WPLI for channel pair Fz–F10 of patient PN17.

3.2. Results of the Classification Algorithm

In this section, experimental results of the classification algorithm ModThAlgo introduced in
Section 2.5 on the patients of the Siena Scalp database with at least three seizures (see Table 1) are presented.

To prepare the data for our classification algorithm, all data have been subsampled at 256 Hz,
and the dataset of each patient has been segmented into a number of subsets, called instances, generally
lasting about 1 h each, in such a way that each instance may contain at most one seizure occurrence.
In what follows, we call seizure instances the instances containing one seizure, and non-seizure instances
the instances that do not contain seizures. In the seizure instances, we discarded all the ictal periods
and a postictal period of 1000 s after the end of each seizure. Therefore, a seizure is discarded if it lasts
less than 1000 s from another seizure. Table 2 reports an overview of the patient datasets after the
segmentation process described above. More precisely, for each patient, Columns 2 and 3 report the
number of seizure and non-seizure instances obtained after the segmentation process, while Columns
3 and 4 report the number of seizure instances used in the Training and Testing phase, respectively,
of algorithm ModThAlgo.

To assess the quality of the proposed seizure prediction algorithm, we use a cross-validation
scheme on each patient, consisting in executing the algorithm many times, varying the data for training
and testing at each execution. In such a scheme, the algorithm is executed different times on the data
set of a given patient, by changing each time the Training and the Test set, in such a way that each
seizure instance is included in the Test set at least once. At each execution, 60% of the instances of a
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given patient dataset is used for training and the remaining 40% is used in the Test phase. Furthermore,
at each execution, at least half of the seizures instances are included in the Training data (and the
remaining in the Test data). For each patient, q rounds of cross-validation have been performed,
with the additional condition that each seizure instance is selected for testing in at least one of the
q rounds. Parameter q has been set equal to 5 for patients with more than three seizure instances,
and equal to 3 for the other patients. Therefore, on each dataset we execute our classification algorithm
q times, each time with a different training and test set randomly selected. Then, we evaluate the
algorithm by averaging the performance indices over the q runs. Note that, on patient datasets with
three seizures the algorithm is executed three times, each time using a Test set including a different
seizure instance (while the training set contains the remaining two seizure instances). Columns 5
and 6 of Table 2, for each patient, report the average number of EEG hours over all the rounds of the
cross-validation process used in the training phase and in the test phase, respectively.

Table 2. Patients used in the cross-validation scheme.

Pat. Id Seiz. inst. Nonseiz. inst. Train Seiz. Test Seiz. Train Hours Test Hours

PN00 5 0 3 2 0.86 0.54
PN05 3 2 2 1 2.93 1.96
PN06 5 7 3 2 5.45 4.05
PN09 3 3 2 1 2.99 2.98
PN10 8 4 4 4 6.69 4.44
PN12 4 3 2 2 3.15 2.17
PN13 3 4 2 1 4.08 3.09
PN14 4 12 2 2 8.84 6.92

A preliminary experimental campaign has been performed to determine the best setting of the
parameters of the feature extraction phase (see Figure 1). According to the campaign, features are
extracted by EEG previously filtered by a FIR filter with band 8–13 Hz, and PLI (1) and WPLI (2) are
computed for each channel pair by using a time window of length ∆t = 6 s with an overlap of 1 s.
No additional artifact suppression method is used.

In the algorithm, the length of the prediction interval is set to T seconds, where T is given as an
input to the prediction algorithm: In the training phase, all the records contained in the time span of
length T ending at the actual onset of each seizure are set to true. All the other records are set to false
(interictal). The same prediction interval T has been used in the test phase to asses whether a seizure is
correctly predicted or not. In our experiments, two different lengths of T have been considered, i.e.,
300 and 900 s.

Tables 3 and 4 report the classification results for ModThAlgo on the data of Table 2 as well as a
comparison with the previous version of the algorithm, i.e., ThAlgo presented in [20]. In the tables,
pred% is the percentage of seizures of the test set correctly predicted and spec% is the specificity,
computed over all the q runs of the cross-validation scheme, with q ∈ {3; 5}. Recall that a seizure is
correctly predicted if at least one record inside the correspondent prediction interval is classified as
true. The specificity is computed as TN/(FP + TN)× 100, where TN and FP are the number of true
negative and false positive records, respectively, detected by the algorithm. Finally, for each patient
dataset, t̄p, tm

p , and tM
p report on the prediction time in seconds, computed over all the seizures and

over the q runs of the algorithm. In particular, t̄p is the average prediction time, and tm
p and tM

p are the
minimum and the maximum prediction time in seconds, respectively.

In Table 3, we evaluate the benefit of introducing the postprocessing procedure in the old version
of the algorithm ThAlgo [20]. To this aim, T = 300 is set. In the table, in Columns 2–6 and 7–8, the results
of ThAlgo with and without the postprocessing procedure (described in Section 2.5) are, respectively,
reported. Note that the postprocessing procedure allows to increase the percentage of correctly
classified seizures from approximately 96.3% to 98.8%. In terms of total number of false positives,
the postprocessing procedure is able to increase the specificity of ~0.7% on average, corresponding to a
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false positive reduction of ~35% on average. In summary, the postprocessing procedure reduces the
false positive rate and at the same time increases the number of correctly predicted seizures.

Table 3. Classification results of ThAlgo with and without postprocessing procedure with T = 300.

ThAlgo [20] ThAlgo [20] with Post Processing

pred% spec% t̄p tm
p tM

p pred% spec% t̄p tm
p tM

p

PN00 100 100 142.80 29 213 100 100 142.8 29 213
PN05 100 98.20 29.67 15 37 100 98.94 24.67 10 32
PN06 100 95.46 152.50 0 294 100 97.09 157.60 0 293
PN09 100 99.98 7.67 0 19 100 100 12.67 0 29
PN10 100 96.28 94.90 0 290 100 96.73 131.05 0 291
PN12 90 96.63 221.67 0 292 100 98.78 157.40 41 289
PN13 100 100 67.00 1 157 100 100 67.00 1 157
PN14 80 98.06 131.50 0 289 80 98.86 134.38 0 269

Av. 96.25 98.08 105.96 5.63 198.88 97.50 98.80 103.44 10.13 196.63

Table 4. Classification results of ModThAlgo with T = 300 and T = 900.

ModThAlgo with T = 300 ModThAlgo with T = 900

pred% spec% t̄p tm
p tM

p pred% spec% t̄p tm
p tM

p

PN00 100 100 166.3 64 248 100 100 166.3 64 248
PN05 100 99.11 18 2 32 100 99.62 598 420 767
PN06 100 98.4 86.6 0 202 100 99.66 357.3 107 649
PN09 100 100 25.6667 4 64 100 100 25.67 4 64
PN10 100 94.11 140.25 0 294 100 98.69 578.15 216 887
PN12 100 100 58.5 0 293 100 100 58.5 0 293
PN13 100 100 58.6667 1 127 100 100 58.67 1 127
PN14 100 99.39 212.2 33 273 100 99.38 341.2 33 697

Av. 100 98.88 95.77 13 191.63 100 99.67 272.97 105.63 466.5

Table 4 shows the classification results of ModThAlgo with a prediction interval T of 300 and 900 s.
Note that ModThAlgo always outperforms ThAlgo (Table 3) both in correctly predicted seizures and in
specificity, as also discussed in Section 4.

4. Discussion

The experimental analysis performed both by inspection and by a simple classification algorithm
performed on the patients of Siena Scalp Database shows that the EEG synchronization measures
based on indices PLI (1) and WPLI (2) are effective for seizure prediction. In fact, in Figures 6–11,
a rising trend of the indices is usually observed with a peak at the onset. Such trends are clearly
evident in all the figures with the exception of Figure 9 (related to patient PN11), where the heights of
the peaks immediately preceding the seizure’s onset are comparable with the heights of other peaks
located before and far from the seizure onset. Note that, during a real-time use, peaks located after the
end of a seizure occurrence can be included in a post-ictal period and can be ignored if the seizure is
correctly predicted. Furthermore, the classification results of Tables 3 and 4 show that the proposed
prediction algorithm ModThAlgo always outperforms the older algorithm version (i.e., ThAlgo) and
sensibly improves the performance both in correctly predicted seizures and in specificity: ModThAlgo
is able to predict all the seizures with a specificity of 99.67% on average when T = 900, corresponding
to about two false positives per hour. We also note that, when T = 900, ModThAlgo attains no false
alarm (i.e., spec% = 100) and a seizure prediction rate of 100% on four out eight patients. Concerning
prediction times, ModThAlgo is able to predict seizures, on average, about 90 s in advance when
T = 300 and more than 4 minutes in advance when T = 900. Obviously, even if larger T can be used,
we point out that the use of too long prediction intervals might increase the prediction times too much,
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introducing, during a real-time use, an uncertainty on the time in which suitable actions must be taken
(e.g., to rest in a safe position).

Finally, although ModThAlgo has been designed to take into account patient’s specificities,
ModThAlgo could be also executed on Training and Test data belonging to different patients. Such a use
could allow highlighting of the similarities in seizure and preictal morphologies of different patients
and assessment of how the inter-patient specificity is important in seizure prediction. We leave this
topic to a future study.

5. Conclusions

In this work, a database containing EEG scalp signals of epileptic patients acquired at the Unit of
Neurology and Neurophysiology at University of Siena is presented. A patient-specific threshold-based
algorithm for the prediction of epileptic seizures is also proposed, based on finding synchronization
patterns in the EEG by computing synchronization measures on all channel pairs.

The experimental analysis, performed by inspection and by the proposed prediction algorithm,
shows that the features extracted by the synchronization measures allow to detect preictal and ictal
states and that the computationally viable threshold-based classification algorithm is able to detect
preictal states few minutes before the onset. In order to reduce the false positive rates, and for
enhancing the reliability of the predictions, directions for future research include the application of new
preprocessing procedures able to reduce artifacts and noise in EEG signals, the use of state-of-the-art
classification algorithms in place of the simple threshold-based classifier, and the use of new features
derived from other physiological signals (e.g., EKG signals).

Author Contributions: P.D. and G.Z.M.d.L. developed the theory and performed the computational experiments.
P.D. wrote the manuscript with support from G.V. and G.Z.M.d.L., G.V. worked to the selection of patients and
performed the diagnosis of epilepsy. All authors discussed the results and contributed to the final manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the grant “PANACEE” (Prevision and analysis of brain activity
in transitions: epilepsy and sleep) of the Regione Toscana-PAR FAS 2007-20131.1.a.1.1.2-B22I14000770002.

Acknowledgments: We thank Marianna Curcio of the Department of Medicine, Surgery and Neuroscience and
Francesco Nicolelli of the Department of Information Engineering and Mathematics of the University of Siena for
their support in data recording and storage.

Conflicts of Interest: The authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

References

1. Epilepsy Foundations. Available online: https://www.epilepsy.com/ (accessed on 25 January 2019).
2. Deckers, C.L.P.; Genton, P.; Sills, G.J.; Schmidt, D. Current limitations of antiepileptic drug therapy:

A conference review. Epilepsy Res. 2003, 53, 1–17. [CrossRef]
3. Assi, E.B.; Nguyen, D.K.; Rihana, S.; Sawan, M. Towards accurate prediction of epileptic seizures: A review.

Biomed. Signal Process. Control 2017, 34, 144–157. [CrossRef]
4. Gadhoumi, K.; Lina, J.M.; Mormann, F.; Gotman, J. Seizure prediction for therapeutic devices: A review.

J. Neurosci. Methods 2016, 260, 270–282. [CrossRef] [PubMed]
5. Chisci, L.; Mavino, A.; Perferi, G.; Sciandrone, M.; Anile, C.; Colicchio, G.; Fuggetta, F. Real-Time Epileptic

Seizure Prediction Using AR Models and Support Vector Machines. IEEE Trans. Biomed. Eng. 2010, 57, 1124–1132.
[CrossRef]

6. Mirowski, P.; Madhavan, D.; LeCun, Y.; Kuzniecky, R. Classification of patterns of EEG synchronization for
seizure prediction. Clin. Neurophysiol. 2009, 120, 1927–1940. [CrossRef]

7. Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009.

8. Van Esbroeck, A.; Smith, L.; Syed, Z.; Singh, S.; Karam, Z. Multi-task seizure detection: Addressing
intra-patient variation in seizure morphologies. Mach. Learn. 2016, 102, 309–321. [CrossRef]

https://www.epilepsy.com/
http://dx.doi.org/10.1016/S0920-1211(02)00257-7
http://dx.doi.org/10.1016/j.bspc.2017.02.001
http://dx.doi.org/10.1016/j.jneumeth.2015.06.010
http://www.ncbi.nlm.nih.gov/pubmed/26099549
http://dx.doi.org/10.1109/TBME.2009.2038990
http://dx.doi.org/10.1016/j.clinph.2009.09.002
http://dx.doi.org/10.1007/s10994-015-5519-7


Processes 2020, 8, 846 15 of 15

9. Bandarabadi, M.; Rasekhi, J.; Teixeira, C.A.; Karami, M.R.; Dourado, A. On the proper selection of preictal
period for seizure prediction. Epilepsy Behav. 2015, 46, 158–166. [CrossRef]

10. Fan, M.; Chou, C. Detecting Abnormal Pattern of Epileptic Seizures via Temporal Synchronization of EEG
Signals. IEEE Trans. Biomed. Eng. 2018, 66, 601–608. [CrossRef]

11. Kuhlmann, L.; Freestone, D.; Lai, A.; Burkitt, A.N.; Fuller, K.; Grayden, D.B.; Seiderer, L.; Vogrin, S.;
Mareels, I.M.Y.; Cook, M.J. Patient-specific bivariate-synchrony-based seizure prediction for short prediction
horizons. Epilepsy Res. 2010, 91, 214–231. [CrossRef]

12. Mormann, F.; Lehnertz, K.; David, P.; Elger, C.E. Mean phase coherence as a measure for phase synchronization
and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 2000, 144, 358–369. [CrossRef]

13. Mormann, F.; Kreuz, T.; Andrzejak, R.G.; David, P.; Lehnertz, K.; Elger, C.E. Epileptic seizures are preceded
by a decrease in synchronization. Epilepsy Res. 2003, 53, 173–185. [CrossRef]

14. Myers, M.H.; Padmanabha, A.; Hossain, G.; de Jongh Curry, A.L.; Blaha, C.D. Seizure prediction and
detection via phase and amplitude lock values. Front. Hum. Neurosci. 2016, 10, 80. [CrossRef]

15. Kramer, M.A.; Cash, S.S. Epilepsy as a disorder of cortical network organization. Neuroscientist 2012, 18, 360–372.
[CrossRef] [PubMed]

16. Lemieux, L.; Daunizeau, J.; Walker, M. Concepts of connectivity and human epileptic activity. Front. Syst.
Neurosci. 2011, 5, 12. [CrossRef] [PubMed]

17. Wendling, F.; Chauvel, P.; Biraben, A.; Bartolomei, F. From intracerebral EEG signals to brain connectivity:
Identification of epileptogenic networks in partial epilepsy. Front. Syst. Neurosci. 2010, 4, 154. [CrossRef]

18. Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi
channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193.
[CrossRef]

19. Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M. An improved index of
phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and
sample-size bias. Neuroimage 2011, 55, 1548–1565. [CrossRef]

20. Detti, P.; de Lara, G.Z.M.; Bruni, R.; Pranzo, M.; Sarnari, F.; Vatti, G. A Patient-specific Approach for
Short-term Epileptic Seizures Prediction through the Analysis of EEG synchronization. IEEE Trans.
Biomed. Eng. 2018, 66, 1494–1504. [CrossRef]

21. PANACEE Project. Available online: https://panacee.diism.unisi.it/ (accessed on 25 June 2020).
22. Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.;

Perez, E.R.; et al. Operational classification of seizure types by the International League Against Epilepsy:
Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530.
[CrossRef]

23. Siena Scalp Database. Available online: https://drive.google.com/drive/folders/1Xk0de2pMJhilrCul72QX
USOQ8DWuxT53?usp=sharing (accessed on 25 June 2020).

24. Zheng, Y.; Wang, G.; Li, K.; Bao, G.; Wang, J. Epileptic seizure prediction using phase synchronization based
on bivariate empirical mode decomposition. Clin. Neurophysiol. 2014, 125, 1104–1111. [CrossRef]

25. Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations.
Neuroimage 2010, 52, 1059–1069. [CrossRef]

26. Majumdar, K.K.; Vardhan, P. Automatic seizure detection in ECoG by differential operator and windowed
variance. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 356–365. [CrossRef]

27. Parvez, M.Z.; Manoranjan, P. Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG
signals using phase correlation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 158–168. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.yebeh.2015.03.010
http://dx.doi.org/10.1109/TBME.2018.2850959
http://dx.doi.org/10.1016/j.eplepsyres.2010.07.014
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1016/S0920-1211(03)00002-0
http://dx.doi.org/10.3389/fnhum.2016.00080
http://dx.doi.org/10.1177/1073858411422754
http://www.ncbi.nlm.nih.gov/pubmed/22235060
http://dx.doi.org/10.3389/fnsys.2011.00012
http://www.ncbi.nlm.nih.gov/pubmed/21472027
http://dx.doi.org/10.3389/fnsys.2010.00154
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1016/j.neuroimage.2011.01.055
http://dx.doi.org/10.1109/TBME.2018.2874716
https://panacee.diism.unisi.it/
http://dx.doi.org/10.1111/epi.13670
https://drive.google.com/drive/folders/1Xk0de2pMJhilrCul72QXUSOQ8DWuxT53?usp=sharing
https://drive.google.com/drive/folders/1Xk0de2pMJhilrCul72QXUSOQ8DWuxT53?usp=sharing
http://dx.doi.org/10.1016/j.clinph.2013.09.047
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1109/TNSRE.2011.2157525
http://dx.doi.org/10.1109/TNSRE.2015.2458982
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	A Scalp EEG Database
	Synchronization Measures and Graph Model 
	Embedding Synchronization Measures into a Network Model
	Employing Synchronization Measures PLI and WPLI for Seizure Prediction
	A Classification Approach for Epileptic Seizures Prediction 

	Results 
	Trends of the Features for Patient Datasets with One or Two Seizures
	Results of the Classification Algorithm

	Discussion
	Conclusions
	References

