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Abstract

In this paper we extend the results of Kitamura (1997) for BEL to the more general
class of GEL estimators. The resulting BGEL estimator is proved to be consistent
and asymptotically normal and attains the semiparametric lower bound. In addition,
we define the BGEL version of the classical trinity of tests, Wald, Lagrange
Multiplier, and Likelihood Ratio tests. The resulting tests ate as expected chi square
distributed. We find via Monte Carlo experiments that the overidentification tests
that stem from the BGEL estimator have generally better small sample properties
than the J test.
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1 Introduction

Since Hansen’s (1982) seminal paper GMM estimation has become a standard tool among
applied economists in a wide variety of fields, such as business cycles analysis, covariance
structure models, capital asset pricing models, stochastic volatility models, just to name a
few (see Hall 2005, pp.3-4 for a more comprehensive list). The GMM framework may be
easily used both for estimation and testing. In addition, a number of well known estimators
may be described as special cases of GMM (for example OLS and Maximum Likelihood).

However, a major drawback is that GMM inference relies only on asymptotic approxi-
mations. In addition to that, a considerable amount of Monte Carlo evidence has pointed
at the fact that the finite sample properties of the GMM estimator and inference tend to
be very poor. In particular, it is well known that the J test tends to reject the null hypoth-
esis too often (see for example Altonji and Segal 1996, Clark, 1996, and the other papers
published in the 1996 and 2002 special issues of the Journal of Business and FEconomic
Statistics).

In order to avoid the problems that GMM estimation and inference imply, we may want
to concentrate our attention on some alternative estimators. In recent years the literature
has proposed a number of possible options, for example the Empirical Likelihood (EL)
estimator (Owen, 1988; Qin and Lawless, 1994), the Continuous Updating Estimator CUE
(Hansen, Heaton and Yaron, 1996) and the Exponential Tilting (ET) estimator (Kitamura
and Stutzer, 1997; Imbens, Spady and Johnson, 1998). Smith (1997) shows that EL and
ET belong to the more general class of GEL estimators, and Newey and Smith (2004, NS
henceforth) show that also CUE is a member of that class. All these estimators share with
the GMM estimator the desirable property of having the same asymptotic distribution,
even though they have different higher order asymptotic properties (see NS, and Anatolyev,
2005).



The purpose of this paper is twofold. First of all, we aim at extending the results of
Kitamura (1997) on blockwise EL to the wider class of blockwise GEL (BGEL henceforth).
The BGEL estimator includes as a special case the blockwise ET estimator. We study the
first order properties of the resulting estimator and work out the BGEL version of the
classical Maximum-Likelihood-based trinity of tests (i.e. Wald, Lagrange Multiplier, and
Likelihood Ratio) both for overidentifying restrictions and for general possibly nonlinear
restrictions. For the latter case we study the asymptotic distribution of a minimum chi
square statistic. As a further result we define a Kullback-Leibler-type of statistic for
overidentifying restrictions based on the BET estimator.

Second, we compare the performance of the J test in terms of size via Monte Carlo
experiments against a set of tests based on two BGEL estimators, namely the blockwise
EL (BEL) and the blockwise ET (BET). This type of analysis is interesting for two further
reasons: the first reason is that the J test has become a standard tool among practitioners,
despite its well-known problems in finite samples; hence, the use of statistics that enjoy
better (theoretical) finite sample properties seems to be desirable; the second reason is that
a comparison between tests based on BEL and BET estimators is almost natural as they
are the most used in practice.

The outline of the paper is the following: in Section 2 we describe the estimation
framework; Section 3 introduces the blockwise estimator. Section 4 gives account of the
asymptotic results; Section 5 describes the Monte Carlo experiments; Section 6 concludes.

Proofs and tables are in the appendix.

2 Estimation Framework

The starting point of our work is the classical (overidentified) moment condition model



E (g (x4, 8)) =0 (1)

where g : Rl* x B — RL9 given that B is the parameter space and 3, € B C R%?, where
Lg < L,. The vector of functions g (z;, §) is an Ly-vector and it is assumed to be twice
continuously differentiable and the Lg-vector § is some feature of the distribution of z;

the process that we consider, {z;}, is assumed to be an RE=-valued stationary process.

2.1 Generalized Method of Moments

The GMM estimator is computed by minimizing a quadratic form that includes the sample

analogue of the moment functions and a matrix of weights

B = argmin Q. (5)

where @), () is defined as

and

§8)==>"a(5). &)

and g (x¢, 3) = ¢+ (B), whereas the square matrix of weights W, is of size L, it is positive
definite, and converges in probability to a matrix of constants. Given some regularity
conditions (Hansen, 1982; Newey and McFadden, 1994) a GMM estimator is consistent

and asymptotically normal

\/ﬁ (B - 50) —a N (07 VW)



where Viy = (G (80) WG (80)) ™ (G (8) WQ(By) WG (8y)) (G (Bo) WG (55)) ", where

Q(Bo) = E Y gvs (Bo) 9: (B (3)

j=—c0

is the long-run covariance matrix and

0
G (By) = E%Qt (Bo) (4)

is the expected value of the first derivative of the moment function. An important issue
in the context of the GMM estimation procedure is the choice of the weighting matrix.
An appropriate choice of the weighting matrix, in fact, causes the GMM estimator to be
asymptotically efficient. The optimal unfeasible weighting matrix is the inverse of the long-
run covariance of g (x, 3,), Q (8,) . The estimator for Q (3), is typically a kernel weighted
average of sample autocovariances It is possible to show that the optimal weighting matrix

is an estimator (say a Newey-West estimator) of the long-run covariance matrix

A

Q(8) =Ta (B) + Y wie (T (8) + T (8))

where w;,; is a kernel function, while f‘j (B) = %nij 9: () 9115 (B)". The early literature

suggested to use as a weight w;, = 1, the so—calledl :ulniform or truncated kernel. Unfortu-

nately, this kind of solution does not ensure (B) to be positive definite. Other popular

choices for w;,, are the Bartlett kernel, the Parzen kernel and the spectral quadratic kernel.
Thus, given a preliminary consistent estimator 8 the minimization problem is

B = argminQ, (8, 5)

BeB

while the updated criterion function becomes



This estimator is sometimes called two-step GMM estimator. Such approach can be gen-

eralized by repeating the procedure above a number k(> 2) of times

By = argmin Qu (8.5 )

which is called iterated GMM estimator. Both the two-step and the iterated estimator are

normally distributed:

Vi (B=50) =a N (0.(G (80 2(80) 1 G (5) ). (5)

Finally, the normalized objective function evaluated at the estimated parameter J, <B) =

nQ, (B) converges to a chi square with L, — Lg degrees of freedom

I (B) =ad, 1, (6)

which is used to test the overidentifying restrictions. Notice that B in (6) is either the

two-step or the iterated GMM estimator.

2.2 Generalized Empirical Likelihood

As proven by NS, the GEL estimation problem has a dual nature, and it may be inter-
preted as a Minimum Distance (MD) estimation problem, where the parameters of interest

are computed by minimizing the distance between the empirical density and an artificial



density, given a certain set of constraints (Corcoran, 1988). The GEL objective function is

= 3 P (Xa () 7)

where the carrier function p (v) is concave in its domain, and it is normalized to be p; (0) =
py (0) = —1, given that p; (v), j = 1,2 is the jth derivative of p(v) with respect to v

(Smith,1997). This method reduces the problem to finding the following saddle point:

n

NN .
<B ,A) = argmin sup Zp(x\/gt (B8)),
B Nehn(8) 1=1
where A, (3) = {A: Ng,(8) € V,t =1,...,n} and V is an open set containing zero. The
moment condition model may be framed into a MD constrained optimization problem,

which essentially is a nonparametric maximum likelihood problem,

™, 8,7, 1) Z¢ (7, +M(I—Z7rt) +7 <Z7Ttgt )

where the convex function v (-) is our (pseudo) likelihood function and 7, t =1,...,nis a

set of probabilities such that m; > 0 for all t and )} , 7, = 1. Whenever ¢ (-) belongs to the

(nme)Y -1

Cressie-Read (Cressie and Read, 1984) family of discrepancies, i.e. v (m;) = % MEEE

it admits a dual representation as a GEL estimator (see NS). From the limiting cases
v = —1and v = 0, we get the EL and the ET estimators respectively, while from v = 1 we
obtain the EU estimator, or its dual CUE (Hansen, Heaton, and Yaron, 1996). The GEL
estimator is consistent and Normally distributed

3 — Vs 0
7 vl

A—0 0

n



where Vs = (G (By)" (ﬁo)_l G (50))_1 and V) = (50)_1 (I — G (By) VsG (8y)' @ (ﬁo)_1)7
and Q (8,) = E (g: (8o) 9: (B,)), while G (3,) is as in (4).

3 A Blockwise Approach to GEL Estimation

In this section we provide a generalization of Kitamura’s (1997) Blockwise EL estimator
to the more general family of Blockwise GEL estimators. We assume that the following

strong mixing conditions are satisfied

a, (k) — 0, k— o0

where (k) = sup, z|Pr(ANB) —Pr(A)Pr(B)|, A € F°, B € F, and o=
o(x;:m' <i<m”). We also assume Y -, o, (k)l_% < oo for some constant ¢ > 1. Let
now M and L be two integers both dependent on the sample size n, where M — oo as
n—oo, M=o (n%>, L =0 (M) and L < M. Furthermore, let z;, i € N be a row vector
of M consecutive observations (a:(,;_l) L1y - T(i1) L+M). The parameter M is the block
length, while L is the distance between the first observation of z; and z;,;. Note that, if
M = L, the blocks are adjacent, whereas in all the other cases we have a certain degree of
overlapping.

In order to describe the features that derive from the time series properties of the data,
we apply to the GEL framework the block structure of Kitamura (1997) and originally
devised by Kiinsch (1989) (see also Carlstein, 1986). The estimating functions (2) are

redefined as a mapping of the blocks. Hence,

M

hi (5) = % Zg (x(ifl)L+ja 5) (8)

j=1

where the function h is h : RE=M x B — REs, b = [27M] 41 is the new sample size and []



is the integer part of -.
A general framework can be introduced in the same way of NS. The Blockwise GEL

(BGEL) criterion function is then defined as

R(BAN) =~ Z p(Nhi (B)) (9)

b

NN . /
(1) oty s 3 009,
EAy(B) =1

where Ay, (8) = {\: Ng, (8) € V,i=1,..,b} and V is an open set containing zero. It is
also possible to define a formula for the probability of the observations associated to each

(B)GEL estimator (see NS). The resulting general expression is

pL(Xhi (8))
35—t (Nhi (8))

P =

fori=1,....b.

4 Asymptotic Results

In this section we analyze more in detail the asymptotic properties of the BGEL estimator
we briefly described above.They are analyzed through the results provided in their classical
papers by Wald (1949) and Wolfowitz (1949), and then adapted by Kitamura (1997) to his
blockwise empirical likelihood estimator (see also Kitamura and Stutzer, 1997). We also
exploit the results of NS.

Assume that:

Al. {w4},o, is a strictly stationary strong mixing sequence of size —a/ (v — 2) where

9



a > 2.

A2. (i) B is the parameter space and is compact, (ii) F (g: (5y)) = 0 and [, is unique,

(71) for small enough § > 0 and 7 > 0, Esupg-cps.4) |9 (ﬂ*)H2(1+’7)

< oo for all
B € B, where N (/3,0) is an open sphere in B centred in 8 and of radius §, (iv)
{Bj}jez is a sequence that converges to a certain § € B as j — oo, then ¢, (ﬁj)

converges to g, () for all x; except perhaps on a null set, which may depend on the

limit point 3, (v) Q(8y) = lim, .« Var (v/ng (B,)) is positive definite.

A3. (i) B, € int (B) and g; (/) is twice continuously differentiable at the true value g, (i)
Elg: (Bo)I* < 00 for ¢ > 1, Esupgcpy o5 9t (B BI*E < 00, M = o (n¥/271/2+9)
for some & > 0, Esupy-cs, ) 1091 (3°) /051 < o0, (iid) Bsupy-cxrs, 1001 (87) /0808'| <
oo for all j, where g;; (8) is the jth element of g; (3), (iv) G (8,) = E (9¢: (B,) /98")

is full column rank.

A4. p(+) is twice continuously differentiable in an open neighborhood of 0, and p, (0) =

py (0) = —1.

The following theorem proves consistency and asymptotic Normality of the BGEL esti-

mator. Such a result is new in the sense that it generalizes the result of Kitamura (1997).

Theorem 1 If assumptions A1-Aj hold, then, the BGEL estimatorB 1s consistent and

asymptotically Normal

n1/2 (B - 60> Vﬁ 0
R —d N 07
M-1pl/2 </\ _ 0) 0 Vi

where Vg = (G (8,) Q2 (Bo) ™" G’(ﬂo))f1 corresponds to the optimally weighted covariance
matriz of the GMM estimator, and Vy = Q (3,) " (I —G(B,) V3G (By) Q2 (,60)71) :

10



Let us suppose we want to test the following hypothesis (i.e. overidentification):

H, : By € B such that E (g: (8,)) = 0.

The resulting testing functions are the following distance (D), blockwise J (BJ), and

Lagrange multiplier (LM) statistics

DBGEL (5) — oM ' (132 (B, X) —p (0)) (10)
o () = i () 40 o
LMBGEL (5) = M2)Q (ﬁ) A (12)

The distance statistic D accepts as a special case the BELLR of Kitamura (1997). The

following theorem gives the asymptotic distribution of the above statistics.

Theorem 2 If assumptions A1-A4 hold then

BGEL BGEL BGEL 2
DBCEL B BGEL [ nf —a X3, 1,

Similarly to all the BGEL estimators, BET estimator has a dual nature, and it can be

also defined as the solution of a Lagrangian problem:

L(m,p,7,0) = Zm log (176) + (1 — Zﬂ'l> —n7’ <Z mih; (6)) )

The BET objective function

b
T
KL (m;,1/b) = le log (1_/5) (13)
is actually the sample counterpart of the Kullback-Leibler discrepancy:

11



KL (dw,dv) = /log <Z—j) dw

where dw and dv are two density functions. The quantity K L (dw, dv) is zero only when
dw = dv. The following corollary analyzes the asymptotic behaviour of the optimal

KL (7;,1/b) criterion.

Corollary 1 If assumptions A1-A/ hold then

2KL (73, 1/b) —a X1, 1,

- —_ n N\ s 7y C_— __exp(\hi(B))
where KL (7;,1/b) = % >, 7t;log (1/b> and ; ST exp OV (3)

Let us suppose that there exists a subset of B, B,, such that a (5,) = 0 and that we

are interested in testing the following hypothesis
Hy: 8 € B, C B such that a(8) =0 (14)

where the subset of B, B,, defines the collection of § such that a (5) = 0. Then, following
Qin and Lawless (1995) and Kitamura (1997), we can work out the BGEL version of
the classical trinity of test statistics (Wald, Lagrange Multiplier and Distance tests) and

minimum chi square, MC:

= M N GVGN (17)

) 5
o (3) = na () (25, 20N ) 16)

) /

) = n(B-8) v (B-5). (18)

12



where (B, 5\> and (B, 5\> are the unconstrained and the constrained estimators respectively.

The following theorem establishes the asymptotic distribution of the above statistics.

Theorem 3 If assumptions A1-Aj hold and that there exists a L, X 1 vector of functions
a: REs — R such that a (B) is continuous and differentiable in its argument, and the
9a(B)

matriz of first derivatives is full column rank: rank (W) = L,. Then,

BGEL BGEL BGEL BGEL 2
DBOFL W aldPOPL [ MPEPL MCBGPE ) \32

Proofs are in the Appendix.

5 Experimental design

We carry out some Monte Carlo experiments considering a linear model and a nonlinear
model, in order to verify the small sample properties of the BGEL and GMM estimators
and of the corresponding overidentification tests. We focus our attention on the size of the
tests because we know that the J test performs poorly in finite samples and we want to
see if the size BGEL-based statistics get closer to the nominal levels. The null hypothesis
of an overidentification test is that F (g (z:, §)) = 0, where g is the vector of moment
functions. The initial step for the GMM estimator utilizes an identity matrix, while for
the subsequent steps we use a Newey-West matrix with Bartlett kernel. The associated
bandwidth parameter is computed by means of an automatic procedure, as described in
Newey and West (1994). The tests we implement are the J test for both 2-step (Jagarar)
and iterated GMM (Jgayr) estimators, and the D test, the LM test, and the BJ test,

computed both at the BEL and BET estimator. For the LM test we use two specifications

13



based on two estimators of the matrix €2 (5):

0. (3) =ar S (3) s (3
i=1

V. . eo(Vm(B))
(3 A= S (7))

for ﬁ'l =

ORS00

The two statistics are then named LM, and LMpgy,. In order to distinguish the results
from the two estimators, we use the superscripts #Y" and "#7". The KL test is computed
at the BET estimator only, but for consistency of notation in the comments and the tables
we refer to it as K L*T. The tables in the appendix outline the results. They include the
empirical size of the tests for two levels of (theoretical) significance i.e. 5% and 10%.

All the simulations are implemented in R and the algorithms we use are derived from

Bruce Hansen’s GAUSS code for EL.

5.1 Experiment I: the Linear Model

With the following experiment we aim at analyzing the behaviour of our set of statistics
when we increase the degree of overidentification of the system. The linear model is the
following

Y = 01 + 022y + 1y

14



(Inoue and Shintani, 2001; Allen, Gregory and Shimotsu, 2005). While the processes z; and

u; are defined as

Uy = pPup-1 + €1t

Ty = Pri—1+ et

where g;; ~ N (0,.16) i = 1, 2; the errors are, moreover, uncorrelated and the coefficient p
is set to 0.4, while #; = 6, = 0, where 6, is considered as given and 6, is the parameter
to be estimated. The vector of instruments is 2, = (24, 2,1)", 2 = (24, 71,21 2) and
2 = (T4, 741,74 2,7;3), i.e. L, = 2,3,4. That means that we end up having one, two,
and three overidentifying restrictions respectively. Finally, the sample sizes and the block
lengths are set to n = 256,512 and M = 4,8. The experiments are then repeated 5000

times. Results are reported in Table 1.

Table 1 approximately here

From our simulations we find that the sizes of the Jigaras test and the Jogaras test are
identical. The size of the Jiga (and of the Jigarar) test is accurate as long as there
is only one overidentifying restriction, whereas for L, = 3,4 the empirical size worsens
dramatically. Moreover, the effect of a larger sample turns out to have little effect on the
size of the tests. The D’ test and the DF” test provide a good approximation of the
correct sizes for any choice of L,. The size distortion that exists for n = 256 tends to
disappear when we increase the sample to n = 512. LMZEL test and BJFL test reproduce
approximately the same results as the distance statistic for L, = 2,3, whereas for L, = 4
the two tests overreject for both sample sizes. The uniformly weighted Lagrange multiplier
test LMEL does not benefit of the effect of the EL probabilities and tends to have sightly

worse empirical sizes than the efficiently weighted counterpart. The LME], and the LMET

15



tests are similar to their EL counterpart; however, the distortion of the LMEE, test is
generally larger than that of the LMEL, test. Hence, weights appear to have bigger impact
on the reduction of the size distortion. Interestingly, the BJT test is almost indifferent
to the degree of overidentification (it actually tends to be undersized) and it is close to the
asymptotic size for both n = 256 and n = 512. Finally, the K LT test is similar to the

corresponding distance statistic.

5.2 Experiment II: the Nonlinear Model

The nonlinear model that we take into account is due to Hall and Horowitz (1996; see also
Gregory, Lamarche and Smith, 2005, and Schennach, 2007). With this experiment we want
to see how the size of our set of statistics behaves when we both increase the persistence
of the data and the degree of overidentification of the system. The model consists of two
parameters (u, 3)', given that their true value is (—0.72,3)". In the existent literature the
first parameter is considered as given and the second is to be estimated. We consider an
extension of such a model by estimating the whole parameter vector (x,3)". In order to

preserve overidentification, we add a further moment condition:

exp (1 — B (z¢ +ye) + 3y;) — 1 0
E ye (exp (1 — B (z¢ + ye) + 3y:) — 1) =10 (19)
(re = 1) (exp (1 — B (z¢ +ye) + 3y:) — 1) 0

16



A second specification with five moment functions (i.e. with three overidentifying restric-

tions) is considered:

exp (b — B (e + ye) + 3ye) — 1
Y (exp (1 — B (v + yi) +3y) — 1)
E (ri—1)(exp(p—B (v +y) +3y) —1) | =
(rae — 1) (exp (u — B (ze + i) +3y) — 1)

(rar — 1) (exp (p — B (w¢ + i) + 3ye) — 1)

(20)

o o o o O

The data generating mechanism develops along the following design

T = pri1+ V1= pPy
Y = pYi—1+ V1 —pPu

where p = .4, .6,.8. Note that, when p = 0, we end up having 7id data. The disturbances
u; and v; are both set to be N (0,1), while both r, and r; ¢ = 1,2,3 are chi square
distributed with one degree of freedom. Finally, sample sizes, block lengths and repetitions
are chosen to be equal to the ones selected for the experiment with the linear specification,
i.e. n =256,512, M = 4,8, and 5000 repetitions. Results for the model described in (19)
are reported in Table 2, whereas for (20) results are reported in Table 3. The performance
of the overidentification tests for the nonlinear model is analyzed along two dimensions:
the number of overidentifying restrictions (i.e. degrees of freedom) and the persistence of
the AR (1) processes that generate the data.

For all the cases we consider, the J;gyar test dominates the Jogpras. Therefore, only

the Jrgaar test is taken into account in the comments.

Table 2 approximately here

17



If we consider L, = 3 (one degree of freedom), for p = .4,.6, and n = 512 the Jigymm
test rejects the null at about 7% when the asymptotic size is 5%, while for p = .8 is
about 9%!. The only BGEL-based test that improves the Jquras test and provides a good
approximation of the nominal sizes is the LMET test. The DFL| the KLFT and the DFT
tests are similar but inferior with respect to the LMET test, while the LMEL and LMEE,
are the worst in the panel; interestingly, the LMEE, test seems to converge faster to the
nominal rejection rates than its E'T analogue. B.J tests also improve the J;garas test. More
specifically the BJ®T test is similar to the K LT test, while the BJF” statistic is the best
among the EL-based tests. In the majority of cases, overlapping blocks are better than the

nonoverlapping ones, and we can better appreciate the difference when p = .8.

Table 3 approximately here

For L, = 5 (three degrees of freedom), the Jgaa test reveals to be very inadequate,
since the rejection rate is never less than about 35%, for a 5% nominal size. Also in this
case the LMET test is the best, and provides good approximations to the true rejection
rates also in the more extreme cases. Also the K LT test provides good results: the
corresponding sizes at 5% and for n = 512 range between 7.3% and 14.6% for p = .4,
6.7% and 6.9% for p = .6, and 6.4% and 9.6% for p = .8. The sizes of the DFT test are
similar but not as good as those provided by the K L¥T test. Moreover, it seems to be
more sensitive than the D®T to the increase in the data persistence. The rejection rates
at 5% of the DL, LME],, and LMET statistics are quite high, well above 10% (and up to
40% for the LMZEL, when p = .8). That suggests the EL-based tests being less robust than

the LMET KLPT and DPT tests to an increase in degrees of freedom. Only the BJEEL

'The Jraarar test slightly improves the Jogarar; therefore only the former is taken into account. More-
over, we find, as we expected, improvements as the sample size increases, and that generally there is
consistency in the results between the two sample sizes. Thus, we constrain the comments on the results
to the larger sample case (n = 512).

18



test yields results that are comparable to some ET-based tests (such as the DFT test and
the BJET test), but its size at 5% is always about 10%. For L, = 5, we can still express
a preference for overlapping blocks, in particular when p = .6,.8 and when n = 256 and

p =4

6 Conclusions

The GMM setup is a powerful framework for estimation and testing. It has the advantage of
being easy to use, as it consists of minimizing a quadratic form in a set of moment functions
and a possibly arbitrary positive definite matrix of weights, and allows the researcher to use
more estimating equations than parameters; moreover, a number of well known estimators
may be viewed as being GMM (obviously MM, but also Maximum Likelihood, and Least
Squares). Such features have made the GMM estimator popular among practitioners, who
have applied it in a very diverse range of contexts. The use of GMM must be, however,
critical, as its finite sample properties have proven to be often poor.

In this paper we propose a generalization to Kitamura’s (1997) BEL estimator as an
alternative to GMM. The resulting BGEL estimator is consistent and asymptotically nor-
mal and attains the semiparametric lower bound of Chamberlain (1987). In addition, we
define the BGEL version of the classical trinity of tests, Wald, Lagrange Multiplier, and
Likelihood Ratio tests for overidentifying restrictions and for general possibly nonlinear
restrictions. A Kullback-Leibler-type of statistic for overidentifying restrictions is also
defined. The resulting tests are as expected chi square distributed.

There is limited Monte Carlo evidence on the performance of BGEL estimators in the
context of time series (see for example Gregory, Lamarche and Smith, 2002), and what often
comes out is that, although BGEL estimators enjoy better theoretical features than GMM,

their finite sample properties are not always satisfactory and do not offer an acceptable
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alternative to the J test. Our Monte Carlo results to some extent provide a clearer point of
view on the behaviour of the BGEL-based inference in a variety of settings. We compute
distance, LM, and BJ statistics at the EL and ET estimator and we see that ET-based
tests tend to yield very good sizes (maybe with the exception of the LME{, test) and often
dominate their EL-based counterpart (and of course the standard J test). In addition,
EL-based inference is sometimes unable to improve the .J test. We also notice that efficient
weighting has a considerable effect on the results particularly on the ET-based LM test.
In fact, the LMET test turns out to be almost independent on the level of persistence of
the data and on the degree of overidentification. Similar results are found for the BJT
test, but only in the context of the linear model. On the basis of our simulations, then,
we strongly advise the use of BGEL estimators and inference, in particular the LMZPT
test. The LMZET test, based on the BET estimator and weights, is the only case where the
empirical size of the test (almost) matches the asymptotic size regardless the specification

of the model.

20



10.

References

. Altonji, J. G., L. M. Segal (1996): Small-Sample Bias in GMM Estimation of Co-

variance Structures, Journal of Business and Economic Statistics, 14, 353-366.

. Anatolyev, S., (2005): GMM, GEL, Serial Correlation, and Asymptotic Bias, Econo-

metrica, 73, 983-1002.

Andrews, D. W. A. (1997): A Stopping Rule for the Computation of Generalized

Method of Moments Estimators, Econometrica, 65, 913-931.

Bravo, F. (2005): Blockwise Empirical Entropy Tests for Time Series Regressions.

Journal of Time Series Analysis, 26, 185-210.

Bravo, F. (2004): Empirical Likelihood Based Inference with Applications to some

Econometric Models. Econometric Theory, 20, 231-264.

Carlstein, E. (1986): The Use of Subseries Methods for Estimating the Variance
of a General Statistic from a Stationary Time Series, The Annals of Statistics, 14,

1171-1179.

Chamberlain, G. (1987): Asymptotic Efficiency in Estimation with Conditional Mo-

ment Restrictions, Journal of Econometrics, 34, 305-334.

Christiano, L. J., W. J. den Haan (1996): Small-Sample Properties of GMM for

Business-Cycle Analysis, Journal of Business and FEconomic Statistics, 14, 309-327.

Clark, T. E. (1996): Small-Sample Properties of Estimators of Nonlinear Models of

Covariance Structure, Journal of Business and Economic Statistics, 14, 367-373.

Corcoran, S. A. (1998): Bartlett Adjustment of Empirical Discrepancy Statistics.
Biometrika, 85, 967-972.

21



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Davidson, R., J. G. MacKinnon (2003): Econometric Theory and Methods, OUP.

Fitzenberger, B. (1997), The Moving Blocks Bootstrap and Robust Inference for
Linear Least Squares and Quantile Regression, Journal of Econometrics, 82, 235-

287.
Greene, W. H. (2003): Econometric Analysis, Prentice-Hall.

Gregory, A. W., J.-F. Lamarche, G. W. Smith (2002): Information-theoretic Esti-
mation of Preference Parameters: Macroeconomic Applications and Simulation Evi-

dence. Journal of Econometrics, 107, 213-233.

Guggenberger, P. R. J. Smith (2005): Generalized Empirical Likelihood Estimators
and Tests Under Partial, Weak, and Strong Identification, Econometric Theory, 21,
667-709.

Hahn, J., A. Inoue (2002): A Monte Carlo Comparison of Various Asymptotic Ap-
proximation to the Distribution of Instrumental Variables Estimator, Econometric

Reviews, 21, 309-336.
Hall, A. R. (2005): Generalized Method of Moments. OUP.

Hall, P., J. L. Horowitz (1996): Bootstrap Critical Values for Tests Based on Gener-

alized Method of Moment Estimators, Econometrica, 64, 891-916.
Hansen, B. E. (2009): Econometrics, Manuscript, University of Wisconsin.

Hansen, L. P. (1982): Large Sample Properties of Generalized Method of Moments

Estimator, Econometrica, 50, 1029-1054.

Hansen, L. P., J. Heaton, A. Yaron (1996): Finite-Sample Properties of Some Alter-

native GMM Estimators, Journal of Business and Economic Statistics, 14, 262-280.

22



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Ibragimov, I. A., Y. V. Linnik (1971): Independent and Stationary Sequences of

Random Variables. Wolters-Noordhoff, Groningen.

Imbens, G. W., R. H. Spady, P. Johnson (1998): Information Theoretic Approaches

to Inference in Moment Condition, Fconometrica, 66, 333-357.

Kitamura, Y. (2006): Empirical Likelihood Methods in Econometrics: Theory and

Practice, Cowles Foundation Discussion Paper.

Kitamura, Y. (1997): Empirical Likelihood Methods with Weakly Dependent Processes,
The Annals of Statistics, 25, 2084-2102.

Kitamura, Y., M. Stutzer (1997): An Information-Theoretic Alternative to General-

ized Method of Moments Estimation, Fconometrica, 65, 861-874.

Kiinsch, H. R. (1989): The Jackknife and the Bootstrap for General Stationary

Observations, The Annals of Statistics, 17, 1217-1241.

Newey, W. K., D. McFadden (1994): Large Sample Estimation and Hypothesis Test-
ing, in Handbook of Econometrics vol. 1V, ed. R. Engle and D. McFadden. North
Holland.

Newey, W. K., R. J. Smith (2004): Higher Order Properties of GMM and Generalized

Empirical Likelihood Estimators, Econometrica, 72, 219-255.

Owen, A. B. (1988): Empirical Likelihood Ratio Confidence Intervals for a Single
Functional, Biometrika, 75, 237-249.

Owen, A. B. (1990): Empirical Likelihood Ratio Confidence Regions, The Annals of
Statistics, 18, 90-120.

Owen, A. B. (2001): Empirical Likelihood, Chapman-Hall.

23



33.

34.

35.

36.

37.

38.

39.

40.

Otsu, T. (2006): Generalized Empirical Likelihood Inference for Nonlinear and Time

Series Models Under Weak Identification, Fconometric Theory, 22, 513-527.

Qin, J., J. Lawless (1995): Estimating Equations, Empirical Likelihood and Con-

straints on Parameters, Canadian Journal of Statistics, 23, 595-601.

Qin, J., J. Lawless (1994): Empirical Likelihood and General Estimating Equa-

tions, The Annals of Statistics, 22, 300-325.
Rao, C. R. (1966): Linear Statistical Inference and Its Applications, Wiley.

Schennach, S. M (2007): Point Estimation with Exponentially Tilted Empirical Like-

lihood, The Annals of Statistics, 2, 634-672.

Smith, R. J. (1997): Alternative Semi-Parametric Likelihood Approaches to Gener-

alised Method of Moments Estimation, The Economic Journal, 107, 503-519.

Wald, A. (1949): Note on the Consistency of the Maximum Likelihood Estimate,

The Annals of Mathematical Statistics, 20, 595-601.

Wolfowitz, J. (1949): On the Wald’s Proof of the Consistency of the Maximum
Likelihood Estimate, The Annals of Mathematical Statistics, 20, 601-603.

24



8 Appendix: Proofs and Tables

Some abbreviations are used throughout the appendix. ULLN stands for uniform law of
large numbers, while CLT and CMT indicate central limit theorem and continuous mapping
theorem respectively. In addition, we use the following notation: —, and —,; denote
convergence in probability and convergence in distribution; C' is a generic positive constant;
CS and T denote Cauchy-Schwarz inequality and triangular inequality respectively; |||
is the Euclidean norm of -. 1{-} is the indicator function, i.e., given a certain event A,

1{A} =1 and 1{nonA} =0.

8.1 Preliminary Lemmata

Lemma 1 Given assumptions A1-Aj and { € {0,1,2}

ot . ot
8—6&(5) - Ea_ﬁfg

J

sup
BeB

(5)" = 0p (1)
Proof. By Fitzenberger (1997)

ot . ot . M
=000, ()

uniformly in 8. Thus, by means of triangular inequality,

aé R a[ A ag R ag )
o= o5 (8)+ o5 (8) Eog? (5)” < op (1) + || 279 (8) = E-—9(5)

a3 a3

o5

The result follows from an application of the ULLN. m

Lemma 2 Given assumptions A1-Aj

ORI
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Proof. By Fitzenberger (1997)
b . A\ R 2
T = e ()a () o ()
- 2(8)+0, <%2)
n

then, by assuming \/n-consistency of B , by a mean value expansion of Q <B> about 3, and

CS, we get

HQ(B)—QWHsz(tf;;gguatw)n?y(tf;supngt ) |85

and, by Lemma and /n-consistency of B , we obtain

[2(5) - .60)

<0, (1). (21)

Consider now the following

J2(5) -2 = [2(5) - 2w + 260 -9
< 2o -2 +|26) -9|

by T; then by (21)

|2 (8) -] < [le@s -2 +o0
< suw (Bo) = 9| + 0, (1).

The result follows by ULLN. =
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8.2 Proof of the Main Theorems

Proof of Theorem 1. First, we want to show that A = A(8y) = O, (Mn~'/?). Let
us define a neighborhood of zero such that A (0,n V™) and A\ € N (0,n /M),
Morcover, since max, g (2 5o) | = oy (n1/%), max, supyey [Ng (50, 6o)] = oy (1), for ¢ >

1+ n/2. Let us now expand R <BO, 5\) about A = 0 with Lagrange remainder

R (003) = 0+ 72200 RO,

0 7 R(Bo,A v/ /
where A0 = 157 1, (5g) = —h (5o), and o) = 157, oy (Vi (80)) hs (Bo) B (5o
Then, similarly to NS (Lemma A2),

<% ZA pa (Nhi (B0)) wo)') A

A

l\DI»—t

ﬁ(go,x) = R(By,0) = Nh(B,) +

IN

o)+ [ 0] - 37 A

Recall that X is a maximizer for R (8,, \); therefore, p (0) = R (8,,0) < R (60, ;\> . Thus,

p 0 < & (50.4) <00+ 3] [Jr o) | - 5 A

where C' is a generic positive constant. Thus, for Hiz (BO)H =0, (n71/?),
3] =00 (7).

Since O, (M n~Y 2) goes to zero as the sample size increases, \ is consistent. Let us
define now the following set C,, = {z; : ||lg (z:, B)|| < nt/*2 V3 € B} and g, (z, 8) =
g(zt,8) x 1{Cy}. Also let ¢,53(¢) = E(p(¥gn(2+,5))). Then, by mean value the-

orem, we have that lim, .o 5¢ns(() = —FE (g (z¢,3)) uniformly in the neighborhood
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¢ € N (0,nY/@tm) . Moreover, let us define the set Ny, = {¢: £ =n~V/Ey |lul| =1},
and /,, (8) = argmaxepr, F (p (¢'gn (x4, 5))) . By means of mean value theorem, we expand

the maximand, and noting that lim,, ... u, = —E (g (24, 8)) / || E (9 (x4, 5))]| , we have,

lim B (n"/ (p (6, (8) g (20, 8)) — p(0))) = |IE (g (z2, 8)) |

n—oo

By A2(iv)

lim 1imn1/(2+”)E< sup (p (€(B") gu (21, 87)) —p(O))) =E(g(ze, ). (22)

n—00 510 B*EN (B,5)

By uniqueness of 3, and (22), the parameter space B can be covered by a finite number of

open spheres N (3., d;) ,with their center in 3, and radius J;. The radius is chosen so that
7077 J J

D (supye s ) (0 (057 gu (20, 87) = p(0))) + 0(1) = 2V, where j = L..v.

Moreover, assumption A2(iii) implies that

max  sup g (w, 87 = o (nV/EF).
B*eN(B;.55)

Hence, there exists a sufficiently large integer V; such that for a sufficiently small € > 0

P lz swp  (p (E(B7) gu (0, 57)) — p(0) < VIV b <
n t/a’*e/\f(,ﬁj,éj) 2v

where j =1, ..., v, and for all n > n;. Thus, it follows

P{ sup lzt (0 (€8 gn (1, 87)) = p(0)) < nl/(”")V} <3

B*eB(s) T
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for V' = min; V; and for all n > max; n; and B (0) = B\N (8,,0). Since A (5) is optimal

PSP R (B) 2 -3 (E(8) () + 0, (1)

n

Therefore, there exists a large enough ny4 € N, such that

{ sup(s 5 Z ( < ) — p(O)) < n—l/(2+n)v} < % (23)

B*EB(S)

for all n > ny4. Since A is a maximizer and is consistent, by a mean value expansion, we
get,

p(0) = (50, ) < p0) = Vi3 +.0, (7).

=

Thus, noting that Ah (Bo) is o, (n_§> :

NI

0§R<60,5\> —p(0) <o, (n_

)

That implies that there exists a large enough ng € N such that

(24)

N ™

PL S (o (W (0) = (@) > n2v ) <

for all n > ng. By (23) and (24), and for any ¢ small enough and n = max(na,ng) we
get P (H B — BOH > 5) < &, which implies B —p Bo- To prove asymptotic normality, let
us consider the first order condition from the BGEL criterion function, and let us expand
them by means of mean value theorem about the couple (f,,0), i.e. the true parameters

for (8 and A respectively:
0 = M 'n'/?R, (B, X) = MR, (8,,0)
FRor (B,0) M2 (A= 0) + M Ry (5.A) 02 (5 - 8, )
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A

0 = n'2R, (6, 5\> =n'2R, (53,,0)
Y MRy ([-3, X) M~1pl/? (X - 0)

+Rm <5> }\> n'/? <5 - 50)

Note that Rgy (8,A) = Ras (8,\)". The derivatives of the BGEL function are computed
following NS, by keeping constant, according to convenience, one element of the carrier
function. Moreover, the asymptotic behaviour of the components of the first order condi-
tions is analyzed following the results in Lemma 1, Lemma 2, and consistency of A:

MRy (5.4) = ﬁ Z o1 (Xh (9)) %A 0 (25)

R (5, A)' = Ry (3, A) _ %i o ()'\/hi (5)) Oh <5> . —G(8y) (26)

i (5.3) = 05 (K () (3) 1 () = 00 0

By summarizing the FOCs in matrix form and rearranging,

12 (p _ o =
M-1nl/2 ()\ - 0) = W 12, (B,)

/ — -1 — / —
where Vs = (G (80)' 2(B0) " G (80)) ", Va = Q(Bo) ™" (1 = G (Bo) VG (B0) 2(Bo) ),
and 2 = Q(8,)" G (B,) Vs. By CLT for strong mixing sequences (see e.g. Ibragimov
and Linnik, 1971) /nh (8,) is Normally distributed with zero mean and variance © (4,).

The thesis follows from an application of the CMT. m
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Proof of Theorem 2. Consider the optimized BGEL criterion function

b

> o (Vni (8)) (29)

i=1

R(33) =

S

~ ~\/
being (ﬁ , )\> consistent. Let us mean value expand the above function with Lagrange

reminder

R (A.X) =p(0) - X (B) - ¥ Mﬂp(l) A (30)

where h <B) = 2?21 h; (B), and, O <B) = MZle h; (B) h; <B>,/b Moreover, for a
given \ lying between 0 and 5\, and being A consistent, we have p, ()\/hZ <B>> = —1+4o0,(1).

From (28) we obtain

Vi (B=60) = —EVah (8) + 0, (1) (31)

and

vn

S = Vavinh (Bo) + 0, (1) (32)

Consider again a mean value expansion on h (B)
h <B> = ﬁ(ﬁo)+é<ﬁ> (B—50> .
Then, from (31) and rescaling we obtain

Vi (B) = ~0.(8) 5 + o, (1) (33)
— Q(8) Vo (5o) + 0, (1) (39

Notice that V) is a projection matrix; therefore, V) = Vi, (5,) Vi. By substituting (31),
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(32), and (34) into (30) and by appropriate rescaling, we get

L (R(5.2) = p) = = (—Vavah(5) +0, (1)) (Wavih (50) + o0, (1)

5 (v ) + 0, ) (2(8) +0, ()
X (-vM/ﬁiz (Bo) + 0y (1)) .

Rearranging and exploiting the properties of projection matrices

2L (R (B,A) = p(0)) = vth (50) VAQ (B0) Va/h (80) + 0, (1) (35)

By CLT for strong mixing sequences (see e.g. Ibragimov and Linnik, 1971) iz(ﬁo) is
Normally distributed with zero mean and variance € ((,). Furthermore, the quadratic
form in (35) converges to a chi square (See Rao (1965) pp. 153-157; see also Greene (2003)
Theorems B.8, B.10, B.11). The corresponding degrees of freedom are given by the trace
of VA2 (B,). Thus,

tr (Va2 (8y)) = tr ((Q (50)_1 —Q (50)_1 G (8y) VG (ﬁo)/ Q (50)_1) Q (50))
= 1ir ([Lg) —tr (G (B) €2 (50)_1 G (Bo) Vﬂ)

= L,— Ls.

Hence, the distance statistic 247 (ﬁ’ (3, 5\) —p (0)) is distributed as a X%Q—Lﬁ- By (34),

and solving for h (8,) we can redefine (35) as

2L (R (5.A) = p () = nh (3) 2807 (B) +0, (1) (36)
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Analogously, by (33), we find
nofa (s s no g <
25 (R(B.A) =0 () = 75828 A +0,(1). (37)

Hence. (35), (36). and (37) are asymptotically equivalent and chi square distributed with

L, — Lg degrees of freedom. m

Proof of Corollary 1. By substituting (?7) into 247 Z?Zl 7; log (1771)) and after some

tedious algebra

The result follows also by exploiting the fact that Zi’:l il (B) = 0. Let us mean value
expand the right hand side of the above expression about A = 0. By consistency of A we

get

ofy (e e (V0. (3)) = 37 (30 0) -3¢ (500 () () ) 3)

Notice that since the order of magnitude of N (B) is O, (M/n) the last term of the

expansion is negligible. Hence, by (33)

so from Theorem 2 the result follows. m
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Proof of Theorem 3. Let us define the first order conditions (FOCs) for the BGEL

function. Consider the restriction

a(B,) =0,

such that a (-) € R, and expand a <B> about 3, by mean value theorem:

a <B> = a(By) + a“@(j) (B - 50)

Then

Since 3 lies in the line that joins By and @ , and since B is a consistent estimator for 3, 6

converges in probability to [, i.e. B —p B¢- From Theorem 1
n'2 (B = By) —a N (0.5)

where V3 = (G (8,)' Q (By) G(ﬂo))_l. G (By) and Q(f,) are described in assumptions
A3(iv) and A2(v) respectively. Thus, by CLT and CMT,

/2 (B) N (07 36%(50) Vﬁaaa(g(])) (38)

or, similarly,

-1/2
(8aa(ﬁﬁlo) v, da a(g())) /2, (3) —4 N (0,1)

For the same arguments used in Theorem 2 for the convergence of quadratic forms (i.e.
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Greene (2003) Theorems B.8, B.10, and B.11, and Rao (1965) pp. 153-157),

v (B) (220, 200 T (5) @)

Let us define the Lagrangian for the constrained optimization under the constraints defined

above

oo i (310) = 3o (1 () 2052 0)e

0= i (3.00) = 3 (V0 (3)) 1 () ®
0= i (5.3.2) = (3) 9

Consistency of the constrained estimator f is ensured by the fact that the corresponding
parameter space B,, defined as BN{S : a () = 0}, is compact. Let us now expand around
(Bo,0) the FOCs of the unconstrained optimization by mean value theorem evaluated at

both the constrained estimator and the unconstrained estimator

0 = 2 (5.3)
— M 'n}?Rs (By,0) + Ra (B, A) M1pl? (X . 0)

M Ry (5, A) /2 (B . 50>
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0 = nl/QRA (B, 5\>
— 2Ry (By,0) + MRy (5, A) M1t (X - 0)

‘|‘Pb)\,6’ (57 }\) n'/? (3 - 50)

and

M_lnl/QRg <ﬁ, )\)
= M'2R4 (8,,0) + Ry ([5, A) M1ni/? (X - o)

Ay (5,0) 02 (5 )

0 = n'Ry (3,1)
= 2Ry (8,0) + Mo (5,4) M2 (X - 0)
+R,\,3 (5» /'\> n'/? (B - 50)
Note that 0 = R, <B,/~\,5> = R, <B, 5\> and Rﬁ/\ (B,A) = ]A%)\g (3,\). Again, the asymp-

totic behaviour of the components of the first order conditions is analyzed following the

results in Lemma 1 Lemma 2, and consistency of A:

MRy (5,4) = ﬁ ipl (Wn: (3)) %/\ )0 (44)
a e N o e 1< . ahz'(B)
o (3.3) = s (31) = § o (V0 () 52 -6
R (5.) = F S (0 () () () -2

By taking the difference of the first order conditions with respect to the constrained and
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the unconstrained estimator and reformulating the equations in matrix form, we get

0 | MRy (B,A) Rs (B,A) M~1n/? (X—X)

M~'n'?Rg (B, X) R (5, >\> M™'Rgs <5, /'\> n'/? (B - B)
The 2 x 2 block matrix converges in probability to the quantities in (44)-(46). Hence, by

solving for (5\ — ;\) and (B - B)

M2 (3= 3) ™= ! to,(1).  (47)
nl/? (B — B) = =V M‘lnl/Qlfig (B,X)

Note now that from the constraints we obtain

(i) =25 5) 9

Then, by substituting the equation for n'/2 <B - B) in (47) in (48), we find

w7 (B) = aaa(;> VaM 2Ry (B,X) + 0, (1)

M1l 8@8(;) Vs 8a8§> ¢+ o0, (1) (49)

Note that RB (B, A, &) = ]%3 (B, 5\> — 62/(3/?)& = 0. Therefore, by (38),

-1

o = (20,20

op B

— 4N (0, (a%(ﬁﬁ,“)vg aa(;go))1>
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and

1/2
(a%g())Vﬁaaa(gO)) M~'n"2C =4 N (0,1).

Finally, by the properties of the quadratic forms invoked in Theorem 2

M*Zné:/ (a%gﬁ) Vﬁ aaa(gO)) g— —y X%a (50)

Let us now expand again by mean value theorem the BGEL function, evaluated at the

constrained (B , 5\> estimator, around the unconstrained estimator <B, 5\>

(53
- A(58) s (1) (1)
(13 (1-3) () s () (5
A (08) o (35) (1-8) 4 (-5) 7 (35) ()
(3 o (33) ()
5 = na i =<

Rearranging, we get
i (7 (3,3) — 1 (5.4))
o ( M (3-3) ) ( M (By,0) R (8,0) ) s ( M (3-4) ) o)
b5 Rsx (5o, 0) 0 65

Moreover, from (47) and rearranging

v

for 0 < 7 < 1, we have that (ﬁ, )\) —p (80, 0).

on M (ﬁz ([3, X) —R (B, A)) = M2\ GVG'A + 0, (1) .
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Which implies,
2nM 1 <R (B, 5\> - R (B, 5\)) —a X3, (51)

Consider now the Minimum Chi Square criterion, the result in (48), and (49), then,

() v (1-5) = D20

for V/B’1 = Vﬁfl + 0, (1). Thus, because of (50) the above quadratic form is chi square

distributed with L, degrees of freedom. m
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