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Abstract 
The Europe 2020 Strategy has formulated key policy objectives or so-called “headline 
targets” which the EU as a whole and Member States are individually committed to 
achieving by 2020. One of the five headline targets is directly related to key quality 
aspects of life, namely social inclusion; within these targets, the EU-SILC headline 
indicators at-risk-of-poverty or social exclusion and its components will be included in 
the budgeting of structural funds, one of the main instruments through which policy 
targets are attained. For this purpose, DG Regional Policy of the European Commission 
is aiming to use sub-national/regional level data (NUTS 2). Starting from this, the focus 
of the present paper is on the “regional dimension” of well-being. In fact, we compare 
two small area techniques, namely the cumulation and the spatial EBLUP (SEBLUP), on 
the basis of EU-SILC data from Austria and Spain. 
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1. Introduction 
In the last two decades there has been increased interest in comparative analysis of 
poverty and social exclusion in the European Union. The Statistical Office of the 
European Union (Eurostat) launched the European Community Household Panel study 
(ECHP, 1994-2001) and later the EU Statistics on Income and Living Conditions (EU-SILC, 
2004-to date), in order to create a European standardised data base to generate 
comparative measures of poverty and social exclusion among the Member States. A 
comprehensive set of common indicators, termed the Laeken Indicators, has been 
adopted for countries of the European Union (Atkinson et al., 2002). These indicators 
are produced on a regular basis at national level, and are mainly based on the EU-SILC. 
EU-SILC surveys involve a rotational panel design conducted annually in each country. 
Microdata from the surveys are available to the research community in the form of a 
Users’ Data Base (UDB). The national sample designs and sizes have been determined 
primarily for the purpose of estimation and reporting of indicators at national level, with 
limited breakdown by major socio-demographic subgroups of the population. 
The Europe 2020 Strategy (European Commission, 2010) has formulated key policy 
objectives or so-called “headline targets” which the EU as a whole and Member States 
individually are committed to achieving by 2020. One of the five headline targets is 
directly related to key quality aspects of life, namely social inclusion; within these 
targets, the EU-SILC headline indicators at-risk-of-poverty or social exclusion (AROPE, 
which is also known as Head Count Ratio (HCR) and FGT(0) in the family of Foster, Greer 
and Thorbecke, 1984) and its components will be included in the budgeting of structural 
funds, one of the main instruments through which policy targets are attained.  
For this purpose, DG Regional Policy of the European Commission is aiming to use sub-
national/ regional level data (NUTS 21, and exceptionally NUTS 1 for a couple of big 
countries) for the social headline indicators, in order to complement GDP per capita, in 
defining regions that can apply for funding directed to the Convergence Objective. As a 
first step in this direction, for the funding period 2014-2020 these indicators will be used 
for benchmarking and assessing the efficiency of regional policies and programmes. 
Therefore, there is an urgent policy need for regional values of social policy indicators. 
The focus should be on accurately and correctly identifying regions with the highest 
proportion of people being poor or socially excluded, in order to target policy measures 
accordingly. 

                                                           
1 NUTS is an abbreviation for Nomenclature of Statistical Territorial Units. This is Eurostat’s hierarchical 
classification of regions, from Member States (NUTS 0) down to smaller areas. 
 



 3  

For these reasons, the focus of the present paper is on the “regional dimension” of well-
being. While the above-mentioned EU-wide comparative data sets, namely the ECHP 
and the EU-SILC, can serve as unique sources for generating comparative indicators of 
well-being, or rather of lack of welfare manifest such as poverty and deprivation, these 
sources are designed primarily to serve at national level, and appropriate methodologies 
are required to extend their use to the level of sub-national regions: such methodologies 
are known as small area estimation (SAE) techniques. 
There is a wide variety of techniques available (SAE) in the literature, and the field is 
rapidly expanding. The suitability and efficiency of a particular technique depends on 
the specific situation and on the nature of the statistical data available for the purpose. 
Standard reference on small area estimation methodology are Handerson (1950), Gosh 
and Rao (1994) and, above all, Rao (2003); Betti et al. (2012) focus on small area 
estimation methods for poverty and inequality measures. 
One class of techniques aims at making the best use of available data from national 
sample surveys, such as by cumulating and consolidating the information to obtain more 
robust measures which permit greater spatial disaggregation; this class is described in 
Section 2, where the particular method of cumulating three-years of the EU-SILC survey 
is described and applied. 
Another class of techniques is based on small area models; in the literature these are 
classified as: (i) area level random effect models (Fay and Herriot, 1979), which are used 
when auxiliary information is available only at area level (such as the prevailing 
unemployment rate); (ii) nested error unit level regression model, used if unit specific 
covariates (such as the individual’s or the household’s employment situation) are 
available at unit level (Battese et al., 1988).  
In Section 3 one technique of class (i) is taken into account, namely the Empirical Best 
Linear Unbiased Predictor (EBLUP), and its developments in a spatial environment. One 
well known methodology of class (ii) is often undertaken by the World Bank, namely the 
Poverty Mapping (Elbers, Lanjouw and Lanjouw, 2003, ELL); however, it requires direct 
access to census data, which is not usually available for university researchers. 
Finally, in Section 4 we compare the results obtained by the cumulation method and the 
spatial EBLUP (SEBLUP) method, based on Austria and Spain; some concluding remarks 
are also reported at the end of the paper. 
Both methodologies applied in Sections 2 and 3 are based on the SILC, which is the major 
source of comparative statistics on income and living conditions in Europe. EU-SILC 
covers data and data sources of various types: cross-sectional and longitudinal; 
household-level and person-level; on income and social conditions; and from registers 
and interview surveys depending on the country. A standard integrated design has been 
adopted by nearly all EU countries. It involves a rotational panel in which a new sample 
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of households and persons is introduced each year to replace one quarter of the existing 
sample. Persons enumerated in each new sample are followed-up in the survey for four 
years. The design yields each year a cross-sectional sample, as well as longitudinal 
samples of various durations. 
 
2. Cumulative measures of poverty 
This section focuses on pooling of different sources pertaining to the same population 
or largely overlapping and similar populations. In particular, the interest is in pooling 
over survey waves in a national survey in order to increase the precision of regional 
estimates. Estimates from samples from the same population are most efficiently 
pooled with weights in proportion to their variances (meaning, with similar designs, in 
direct proportion to their sample sizes). Alternatively, the samples may be pooled at the 
micro level, with unit weights inversely proportional to their probabilities of appearing 
in any of the samples. This latter procedure may be more efficient (e.g., O’Muircheataigh 
and Pedlow, 2002), but may be impossible to apply as it requires information, for every 
unit in the pooled sample, on its probability of selection into each of the samples 
irrespective of whether or not the unit actually appears in the particular sample (Wells, 
1998). Another serious difficulty in pooling samples is that, in the presence of complex 
sampling designs, the structure of the resulting pooled sample can become too complex 
or even unknown to permit proper variance estimation. In any case, different waves of 
a survey like EU-SILC do not correspond to exactly the same population. The problem is 
akin to that of combining samples selected from multiple frames, for which it has been 
noted that micro level pooling is generally not the most efficient method (Lohr and Rao, 
1996). For the above reasons, pooling of wave-specific estimates rather than of micro 
data sets is generally the more appropriate approach to aggregation over time from 
surveys such as EU-SILC. 
 
2.1 Gain in precision from cumulation over survey waves 
Consider that for each wave of a survey like EU-SILC, a person’s poverty status (poor or 
non-poor) is determined from his/her income within the income distribution of that 
wave, independently for each EU-SILC year, and then the proportion of poor at each 
wave is computed. These proportions are then averaged over a number of consecutive 
waves.  
The issue is to quantify the gain in sampling precision from such pooling, compared to 
results based on a single wave. 
The quantification of efficiency gains from averaging across multiple years is not 
straightforward in surveys, such as EU-SILC, that are based on rotational panel, given 
that data from different waves of a rotational panel are highly correlated.  
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A large proportion of the individuals are common in the different cross-sections. 
However, a certain proportion of individuals are different from one wave to the other. 
The cross-sectional samples are thus not independent, resulting in correlation between 
measures from different waves.  
Apart from correlations at the individual level, we have to deal also with additional 
correlation that arises because of the common structure (stratification and clustering) 
of the waves of a panel. Such correlation would exist in, for instance, samples coming 
from the same clusters even if there is no overlap in terms of individual households. 
In order to quantify the gain in precision from averaging over waves of a rotational 
panel, we provide the following simplified procedure that could be of help in better 
clarifying the point. It illustrates the statistical mechanism of how the gain is achieved. 
Indicating by pj and p'j the (1, 0) indicators of poverty of individual j over the two 
adjacent waves, we have the following result for the population variances:  

 
2

var( ) (1 )j jp p p p p V      ; 

similarly,  
var( ') ' (1 ') 'jp p p V    , 

' ' ' '
1cov( , ) ( ) ( )j j j jp p p p p p a p p c        , say, 

where ‘a’ is the persistent poverty rate over the two adjacent years.  
Under the two waves model and in the extreme case of a completely full sample overlap 
and p p  , the variance VA of the average over two waves of the concerned poverty 

measure can be estimated as: 

(1 )
2

A

V
V            (1) 

where ρ represents the correlation between the two waves that in our simplified case 
can be quantified by: 

2
1

2

c a p

V p p


  
         

. 

Alternatively, if the overlap between the two waves is only partial like in the EU-SILC 
survey, and cross-sectional variances are not necessarily equal, it is necessary to allow 
for variations in cross-sectional sample sizes and partial overlaps: 

1 21
. . 1 .

2 2
A

H

V V n
V

n


   
          

        (2) 

where V1 and V2 are the variances in each of the two waves, n is the sample overlap, nH 
is the harmonic mean of different wave sizes, ρ as above (Verma et al., 2013). 
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A replication method for variance estimation  
The Jackknife Repeated Replication (JRR) is one of the classes of practical methods for 
variance estimation in complex samples based on measures of observed variability 
among replications of the full sample.  
All replicated variance estimation procedures are based on comparisons among 
replications generated through repeated re-sampling of the same parent sample. Once 
the set of replications has been appropriately defined for any complex design, the same 
variance estimation algorithm can be applied to a statistic of any complexity.  
The basic requirement is that the full sample is composed of a number of subsamples or 
replications, each with the same design and reflecting complexity of the full sample, 
enumerated using the same procedures. A replication differs from the full sample only 
in size. But its own size should be large enough for it to reflect the structure of the full 
sample, and for any estimate based on a single replication to be close to the 
corresponding estimate based on the full sample.  
At the same time, the number of replications available should be large enough for the 
comparison among replications to give a stable estimate of the sampling variability in 
practice.  
JRR provides a versatile and straightforward technique for variance estimation in 
situations like the ones we are concerned with.  
Briefly, the standard JRR involves the following. 
Let z be a full-sample estimate of any complexity. We use the subscript i to indicate a 
sample primary sampling unit (PSU) and h to indicate its stratum; ah≥2 is the number of 
PSUs in stratum h. Let z(hi) be the estimate produced using the same procedure after 
eliminating primary unit i in stratum h and increasing the weight of the remaining (ah-1) 
units in the stratum by an appropriate factor gh (see below). Let z(h) be the simple 
average of the z(hi) over the ah sample units in h. The variance of z is then estimated as:

        
2

var 1 . .h h h i hi h
z f g z z

 
     

 
     (3) 

(1-fh) is the finite population correction and it is usually ~1 for samples in typical social 
surveys. 
While one may take factor gh as  1h h hg a a  , it is more appropriate to use 

 h h h hig w w w  , where h i hiw w  , with hi j hijw w  as the sum of sample weights of 

ultimate units j in primary selection units i. This means that in each replication (hi), the 
weights for individual units are redefined and rescaled as follows: i) for unit j not in 
stratum h: 'hij hijw w ; ii) for unit j in stratum h but not in PSU i: 'hij h hijw g w  ; iii) unit j in 

stratum h and in PSU i: ' 0hijw  . The second form for gh retains the total weight of the 
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included sample cases unchanged across the replications created, so as to have the same 
total as the one for the full sample. With the sample weights scaled in such a way that 
their sum is equal (or proportional) to some external more reliable population total, 
population aggregates from the sample can be estimated more efficiently, often with 
the same precision as proportions or means (Verma and Betti, 2011). 

 
2.2 Quantifying the gain in sampling precision using EU-SILC survey 
The formulae presented in Section 2.1 have been applied to the EU-SILC cross-sectional 
datasets in order to obtain averaged measures over waves.  
When complete information on sample structure is available and, more specifically, 
when identifiers are provided to link strata and PSUs throughout different EU-SILC cross-
sectional datasets, it is possible to cumulate waves and quantify the gain in sampling 
precision achieved with this methodology.  
When the above requirement is met, that is when full information on sample structure 
is available, the gain in sampling precision can be easily quantified by applying the 
standard JRR methodology presented above on the basis of the following 
considerations. 
The total sample of interest is formed by the union of all the cross-sectional samples 
being compared or aggregated. Using the common structure of this total sample as a 
basis, a set of JRR replications is defined in the usual way.  
Each replication is formed in such a way that when a unit is to be excluded in its 
construction, it is excluded simultaneously from every wave where the unit appears.  
For each replication, the required measure is constructed for each of the cross-sectional 
samples involved, and these measures are used to obtain the required averaged 
measure for the replication. Variance of the statistic of interest is then estimated from 
the replication estimates in the usual way. 
Let us clarify this procedure, presenting an empirical example. Consider that we have 
the cross-sectional dataset of the EU-SILC survey for three consecutive years and want 
to estimate the average of a given poverty measure over the three years. We proceed 
as follows. We first construct a common structure of strata and PSUs from the union of 
the three cross-sectional datasets; that is, we keep the list of all the strata and PSUs of 
each of the three datasets and construct a new list that is the result of the union of the 
three samples. Then we will create the replications from this common structure.  
In the standard JRR methodology, replications are created by eliminating one PSU at a 
time, a replication being identified by the particular PSU (say k) eliminated in 
constructing it. In the combined dataset, the concerned PSU, if present, is eliminated 
from all the three cross-sectional datasets to obtain a ‘combined’ replication. 
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Next, we assign new weights to this common structure which are equal to the average 
of the weights of the three years: 

(t)Common Average (1) (2) (3)w =(w) =(w +w +w )/3   (4) 

For each year (t) and for each replication (k), we can estimate (t)
ky  where t=1, 2, 3 and 

from this, the required statistic 
Average (t)

tk k

t

y = a y ;  (5) 

that in our example on three waves is: 
Average (1) (2) (3)
k k k ky =(y +y +y )/3 .  (6) 

 
The variance estimate of this measure can be easily estimated applying the usual JRR for 
variance estimation procedure using the ‘combined’ replications as defined above, as if 
the statistic were a common cross sectional measure. 
It is necessary to underline again that such procedures can be applied only if full 
information on the sample structure is available.  
We have developed an alternative procedure for dealing with a situation in which full 
information on the sample structure is lacking (Verma et al., 2010). 
 
2.3 Empirical results 
We have applied the methodologies described above to calculate the average measures 
for three years (2009, 2010 and 2011) to EU-SILC data for Austria (AT) and Spain (ES).  
The empirical analysis has been performed only on these two countries for the following 
reasons. In the public version of the EU-SILC data, the so called UDB, the variables 
necessary for constructing the structure of the sample (namely, the PSUs ‘DB060’ and 
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the strata ‘DB050’) are not present and no link is possible across cross-sectional dataset 
either at micro (unit) level or at macro (structure) level. This problem is reflected also in 
Section 3. 
Thanks to a project with the OECD for Spain we had access to all the necessary 
information on the sample structure and the linkage of the cross-sectional datasets. 
For Austria, all necessary information (linkage of the structure for the 3 cross sectional 
data sets) was not available to us, but, given that the Austria sample structure could be 
assimilated to a simple random sampling, we used for the computation the indirect 
procedure, mentioned above.  
Results at the national level for Austria and Spain are shown in Table 1, and results at 
regional NUTS 2 level in Austria and Spain in Table 2 and 3. 
 

Table 1 Average over three years, Austria and Spain. 

  (a) (b) (c) (d) 

AUSTRIA         

HCR 60% national p.l. 13.8 0.608 0.426 0.700 

S80/S20 4.0 0.084 0.066 0.786 

SPAIN         

HCR 60% national p.l. 22.0 0.478 0.311 0.650 

S80/S20 6.5 0.154 0.110 0.718 

(a) Estimate 2011 
(b) s.e. 2011 
(c) s.e. 3-years average 
(d) ratio s.e. 3-years average over s.e. single year 

 
The results at national level show a sensible reduction of the standard error (s.e.) using 
the three years average with the two measures concerned. The reduction of the 
standard errors that we get using the three years averages compared to the estimate 
for a single year (column (d)), ranges from 12% for S80/S20 index for Austria, up to 35% 
for HCR for Spain. In general the two methodologies (direct and indirect) for the 
estimation of standard errors of averaged measures over three years perform well and 
give similar results both at national and regional level, as we have already shown in our 
past work. The comparison of standard errors between one-year and three-year 
estimates is more complex at regional NUTS 2 level, given the instability of the one-year 
estimates because of small samples. This problem is particularly evident for regions with 
a small number of PSUs. The cumulated estimates in fact have been chosen to overcome 
to the high instability of the single year estimates. 
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Generally, also in this case we can appreciate a reduction of the standard error, both in 
mean and median, for the two measures. The reduction can be better appreciated 
considering the median, which is not affected by extreme values that are present in the 
results given the instability of the estimates for single years.  

 

Table 2. Average over three years, Austria regional NUTS 2 level. 

HCR 60%, national p.l. (a) (b) (c)  

Burgenland 3.721 2.438 0.655 

Niederösterrich 1.065 0.783 0.735 

Wien 1.859 1.352 0.727 

Kärnten 3.347 2.240 0.669 

Steiermark 1.297 1.100 0.848 

Oberösterrich 1.119 0.718 0.642 

Salzburg 1.877 1.323 0.705 

Tirol 1.914 1.146 0.599 

Voralberg 1.989 1.595 0.802 

Mean   0.709 

Median   0.705 

S80/S20    

Burgenland 0.477 0.323 0.677 

Niederösterrich 0.177 0.138 0.780 

Wien 0.225 0.169 0.751 

Kärnten 0.315 0.238 0.754 

Steiermark 0.218 0.163 0.749 

Oberösterrich 0.181 0.140 0.773 

Salzburg 0.361 0.257 0.712 

Tirol 0.303 0.217 0.715 

Voralberg 0.425 0.405 0.951 

Mean   0.763 

Median   0.751 
(a) s.e. 2011 
(b) s.e. 3-years average 
(c) ratio s.e. 3-years average over s.e. single year 
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Table 3a. Average over three years, Spain regional NUTS 2 level, HCR. 

HCR 60%, national p.l. (a) (b) (c)  

Galicia 1.167 0.828 0.710 

Principado de Asturias 1.035 0.708 0.684 

Cantabria 0.948 2.084 2.199 

País Vasco 0.840 0.475 0.565 

Comunidad Foral de Navarra 0.831 0.602 0.725 

La Rioja 1.502 0.980 0.653 

Aragón 1.521 2.720 1.788 

Comunidad de Madrid 1.908 0.931 0.488 

Castilla y León 1.388 1.327 0.956 

Castilla-La Mancha 1.735 1.183 0.682 

Extremadura 2.045 2.326 1.137 

Cataluña 1.033 0.549 0.531 

Comunidad Valenciana 1.007 1.040 1.033 

Illes Balears 1.127 1.845 1.637 

Andalucía 1.175 0.944 0.804 

Regíon de Murcia 1.563 1.313 0.840 

Ciudad Autónoma de Ceuta 1.340 2.460 1.837 

Ciudad Autónoma de Melilla 2.154 1.514 0.703 

Canarias 1.187 1.071 0.902 

Mean   0.993 

Median     0.804 

    

 
The results are very stable across regions in Austria. Furthermore, the results for mean 
and median measures are nearly the same, showing a reduction in variance of about 25-
30% with pooling over 3 years.  
For Spain the largest reductions in this case are in S80/S20, where, in median, we have 
a decrease of 38%; for HCR the decrease in median is 20%. 
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Table 3b. Average over three years, Spain regional NUTS 2 level, S80/S20. 

S80/S20    

Galicia 0.359 0.180 0.503 

Principado de Asturias 0.423 0.221 0.521 

Cantabria 0.286 0.222 0.777 

País Vasco 0.284 0.167 0.587 

Comunidad Foral de Navarra 0.479 0.193 0.402 

La Rioja 0.539 0.276 0.511 

Aragón 0.358 0.247 0.690 

Comunidad de Madrid 0.249 0.206 0.827 

Castilla y León 1.644 0.597 0.363 

Castilla-La Mancha 0.968 0.466 0.482 

Extremadura 0.586 0.363 0.619 

Cataluña 0.286 0.165 0.579 

Comunidad Valenciana 0.414 0.271 0.655 

Illes Balears 0.476 0.427 0.897 

Andalucía 0.515 0.313 0.607 

Regíon de Murcia 0.354 0.384 1.084 

Ciudad Autónoma de Ceuta 0.392 0.846 2.156 

Ciudad Autónoma de Melilla 0.933 0.639 0.684 

Canarias 0.523 0.840 1.606 

Mean   0.766 

Median     0.619 
 

(a) s.e. 2011 
(b) s.e. 3-years average 
(c) ratio s.e. 3-years average over s.e. single year 

 

3. Model based small area estimation  

In this section we present the main features of some model-based techniques for small 
area estimation, namely, the EBLUP estimator based on the model by Fay and Herriot 
(1979) and the EBLUP estimator based on spatially correlated random effects (Pratesi 
and Salvati, 2007). The first is an essential tool in dealing with small area estimation 
when only aggregated auxiliary data at the area level are available, the latter allows for 
spatial dependence of area level random effects by assuming a Simultaneously 
Autoregressive Process (SAR). We have applied these estimators to a pair of poverty and 
inequality measures, namely Head Count Ratio and the S80/S20 index.  
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3.1 Empirical Best Linear Unbiased Predictor 
We are interested in obtaining an estimate of a domain specific parameter 𝜃𝑖  (𝑖 =

1,2, … , 𝑚). In this work it can be either HCR or S80/S20. As true values 𝜃𝑖 are unknown it 
is assumed that a design-based unbiased estimator of the parameter is available such 
that 𝜃̂𝑖 = 𝜃𝑖 + 𝑒𝑖, where 𝑒𝑖 (𝑖 = 1, 2, … , 𝑚) , are the sampling errors for each area, 
independent of each other and distributed with mean 0 and variance 𝜓𝑖. This is known 
as sampling model. It is assumed that the sampling variances 𝜓𝑖 are known, but in 
practice it is rarely the case, so they are replaced with estimates 𝜓̂𝑖 obtained by following 
a JRR procedure (Verma, 2004). 
It is further assumed that true values 𝜃𝑖 are linearly related to a vector of 𝑝-area specific 

auxiliary variables 𝒙𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖)
𝑇
: 

𝜃𝑖 = 𝒙𝑖
′𝜷 + 𝑧𝑖𝑣𝑖   

where 𝑣𝑖~(0, 𝜎𝑣
2) are independent area-level random effects. Normality of random 

effects can be assumed to obtain Maximum Likelihood (ML) or Restricted Maximum 
Likelihood (REML) estimates 𝜎̂𝑣

2 . This model is known as linking model. 
By combining the results above the Fay and Herriot (1979) model is obtained: 

𝜃𝑖 = 𝒙𝑖
′𝜷 + 𝑧𝑖𝑣𝑖 + 𝑒𝑖   (7) 

where 𝑣𝑖 are independent of 𝑒𝑖. Under the model we have 𝐸[𝜃̂𝑖] = 𝒙𝑖
′𝜷 and  

𝑉[𝜃̂𝑖] = 𝜓𝑖 + 𝑧𝑖
2𝜎𝑣

2. The Best Linear Unbiased Predictor of 𝜃𝑖 can be easily obtained by 
applying the general results of linear mixed effects models and it is equal to: 

𝜃̃𝑖
𝐻(𝜎𝑣

2) = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖)𝒙𝑖
′𝜷̃ (8) 

where factor 𝛾𝑖 =  𝑧𝑖
2𝜎𝑣

2/(𝜓𝑖 + 𝑧𝑖
2𝜎𝑣

2) is known as shrinkage factor and 𝜷̃ is the BLUE 
estimator of 𝜷. The expression above shows that the BLUP estimator is an average of 
the direct estimator 𝜃̂𝑖 and the synthetic estimator 𝒙𝑖

′𝜷̃. It can be noted that the lower 
the sampling variance is the more the weight is attached to the direct estimator 𝜃̂𝑖 , in 
fact when 𝜓𝑖 → 0 then 𝛾𝑖 → 1 meaning that 𝜃̃𝑖

𝐻 → 𝜃̂𝑖. We can say that the BLUP estimator 
is design consistent. In matrix notation the model can be expressed as: 

𝜽̂ = 𝑿𝜷 + 𝒁𝒗 + 𝒆 (9) 
The BLUP estimator is unknown as it depends on random effects variance 𝜎𝑣

2. By 
substituting it with a consistent estimator 𝜎̂𝑣

2 we obtain a two stage estimator which can 
be referred to as Empirical BLUP (EBLUP) and it is indicated as 𝜃̂𝑖

𝐻 = 𝜃̃𝑖
𝐻(𝜎̂𝑣

2) = 𝛾𝑖𝜃̂𝑖 +

(1 − 𝛾𝑖)𝒙𝑖
′𝜷̂. Under the model (7) the MSE of the BLUP estimator is: 

MSE[𝜃̃𝑖
𝐻] = E[𝜃̃𝑖

𝐻 − 𝜃𝑖] = 𝑔1𝑖(𝜎𝑣
2) + 𝑔2𝑖(𝜎𝑣

2) 
Where: 

𝑔1𝑖(𝜎𝑣
2) = 𝜓𝑖[1 − 𝛾𝑖] 

𝑔2𝑖 = 𝛾𝑖
2 + 𝒙𝑖

′ {∑(𝜎𝑣
2 + 𝜓𝑖)−1

𝑚

𝑖=1

𝒙𝒊𝒙𝑖
′}

−1

𝒙𝑖 
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where 𝑔1𝑖(𝜎𝑣
2) is due to the prediction of the random effect 𝑣𝑖 and is 𝑂(1) for large 𝑚, 𝑔2𝑖 

is due to the estimation of 𝜷 and is 𝑂(𝑚−1). This means that a large reduction in MSE 
over MSE(𝜃̂𝑖) = 𝜓𝑖 can be obtained when 1 − 𝛾𝑖 is large. 
Under normality of random effects and errors, the MSE of the EBLUP is: 

𝑀𝑆𝐸(𝜃̂𝑖
𝐻) = 𝑀𝑆𝐸[𝜃̃𝑖

𝐻] + 𝐸[𝜃̂𝑖
𝐻 − 𝜃̃𝑖

𝐻] = 𝑔1𝑖(𝜎𝑉
2) + 𝑔2𝑖(𝜎𝑣

2) + 𝑔3𝑖(𝜎𝑣
2) + 𝑜(𝑚−1) 

where 𝑔3𝑖(𝜎𝑣
2) = 𝛾𝑖

2(𝜎𝑣
2 + 𝜓𝑖)

−1 𝑉̅(𝜎̂𝑣
2), and 𝑉̅ is the asymptotic variance of the estimator 𝜎̂𝑣

2. 
The classic Fay and Herriot model (7) can be extended by considering that the vector 𝒗 
follows a Simultaneously Autoregressive Process (SAR) with spatial autoregressive 
coefficient 𝜌 and proximity matrix 𝑾 (Cressie, 1993). 
𝒗 = 𝜌𝑾𝒗 + 𝒖 → 𝒗 = (𝑰 − 𝜌𝑾)−1𝒖 (10) 
where 𝒖~𝑵(𝟎, 𝜎𝑢

2𝑰) which implies that 𝒗 has mean vector 0 and variance-covariance 
matrix 
𝑮 = 𝜎𝑢

2[(𝑰 − 𝜌𝑾)(𝑰 − 𝜌𝑾𝑇)]−1. 
Combining equations (9)-(10) the model with spatially correlated random effects is: 

𝜽̂ = 𝑿𝜷 + 𝒁(𝑰 − 𝝆𝑾)−𝟏𝒖 + 𝒆 (11) 
Under the model above the covariance matrix of the estimator 𝜽̂ is 𝑽 = 𝑹 + 𝒁𝑮𝒁𝑇 , 
where 𝑹 = 𝑑𝑖𝑎𝑔(𝜓𝑖) is the covariance matrix of the error term 𝒆. 
Matrix 𝑾 describe the spatial contiguity among areas while 𝜌 ∈ [−1,1] describes the 
strength of spatial relationship among the random effects associated with neighbouring 
areas.  
Under the model (11) the Spatial Best Linear Unbiased Predictor is: 

𝜽̃𝒊
𝑺(𝝈𝒖

𝟐 , 𝝆) = 𝒙𝒊𝜷̃ + 𝒃𝒊
𝑻{𝝈𝒖

𝟐[(𝑰 − 𝝆𝑾)(𝑰 − 𝝆𝑾𝑻)]−𝟏}𝒁𝑻{𝒅𝒊𝒂𝒈(𝝍𝒊) + 𝒁𝝈𝒖
𝟐[(𝑰 −

𝝆𝑾)(𝑰 − 𝝆𝑾𝑻)]−𝟏𝒁𝑻}−𝟏(𝜽̂ − 𝑿𝜷̃)  (12) 
which is equal to the classic BLUP if 𝜌 = 0. 
The estimator is unknown because it depends on the unknown parameters 𝜎𝑢

2 and 𝜌. By 
substituting them with a consistent estimator (ML or REML) 𝜎̂𝑢

2 and 𝜌̂ a two stage 
estimator 𝜃̂𝑖

𝑆 = 𝜃̃𝑖
𝑆(𝜎̂𝑢

2, 𝜌̂) is obtained which can be referred to as a Spatial EBLUP (Pratesi 
and Salvati, 2007). 
The spatial weight matrix reflects the neighbouring structure of the small areas. In the 
next applications the structure has been specified by following an approach based on 
contiguity and on distance threshold (see Cliff and Ord, 1981, for further details). 
The former specifies the spatial dependence between two areas by assigning spatial 
weigh 𝑤𝑖𝑗 = 1 if area 𝑖 and 𝑗 are adjacent and zero otherwise. The latter assigns spatial 
weight 𝑤𝑖𝑗 = 1 if the distance between the centroid of area 𝑖 and 𝑗 is less than a distance 

threshold 𝜏. Generally, the matrix 𝑾 is row-standardized, so it is row-stochastic and 𝜌 
is called a spatial autocorrelation parameter (Banerjee et.al, 2004). 
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Under the model (12) the Mean Square Error of the Spatial BLUP estimator depending 
on two variance components (𝜌, 𝜎𝑣

2) is given by: 

MSE[𝜃̃𝑖
𝑆(𝜌, 𝜎𝑢

2)] = 𝑔1𝑖(𝜌, 𝜎𝑢
2) + 𝑔2𝑖(𝜌, 𝜎𝑢

2) 

where the first term is due to the estimation of random effects and it is of order 𝑂(1), 
while the second is due to the estimation of 𝜷 and it is of order 𝑂(𝑚−1). 
For the Spatial EBLUP, given the normality of random effects, we have: 

MSE[𝜃̃𝑖
𝑆(𝜌̂, 𝜎𝑢

2)] = MSE[𝜃̃𝑖
𝑆(𝜌, 𝜎𝑢

2)] + E[𝜃̃𝑖
𝑆(𝜌̂, 𝜎̂𝑢

2) − 𝜃̃𝑖
𝑆(𝜌̂, 𝜎̂𝑢

2)] 

The last term is intractable and therefore it needs to be approximated. For full details 
on the MSE of the spatial EBLUP and its estimation procedure, see Pratesi and Salvati 
(2007). 

3.2 Applications  

In this section we apply the above estimators to EU-SILC data available for Austria and 
Spain at NUTS 2 level. We have 16 NUTS 2 for Spain and 9 NUTS 2 for Austria at our 
disposal. Following Bivand, Rubio, and Pebesma (2008) there are basically three 
different types of spatial data: 1) Spatial Point Processes 2) Geostatistical data 3) Areal 
Data. In this paper we focus on areal data which means that when it is collected data 
regard a particular region, country, small area of any kind. The aim is to investigate how 
and to what extent data observed in one region is influenced by what has been observed 
in other regions. Tables 4 and 5 show direct, EBLUP and SEBLUP estimates. The gain in 
efficiency is quantified on the following lines: for each area we calculate the ratio 
between the estimate of the standard error obtained by the model-based estimator and 
the estimate of the standard error of the direct estimate. Then, these values are 
averaged to get the gain in efficiency. 
Table 4 shows that the Spatial EBLUP based on a distance approach (𝜃̂𝑖

𝑆𝑑) leads to the 
highest gain in efficiency. The gain is quite small, this is due to the fact that the direct 
estimates of HCR already have an appropriate level of accuracy. Proof of this can be had 
by observing the estimates of the shrinkage factors which are all close to 1. This means 
that, in traditional EBLUP case, the weight is attached mostly to the direct estimates 
rather than to regression estimate meaning that sampling variances 𝜓̂𝑖 are small with 
respect to the total model-variance. 
Regarding the S80/S20 Index, the results in Table 5 show that the highest gain in 
efficiency is obtained with the traditional EBLUP. This is not surprising because the 
estimated spatial autocorrelation coefficient is lower than the one estimated in the HCR 
case. It is interesting to note that when the coefficient is almost zero, the estimates 
obtained with EBLUP and SEBLUP are nearly the same. In fact, when 𝜌 = 0 the EBLUP 
and SEBLUP estimators are equal (Bivand, Rubio and Pebesma, 2008). 
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Table 4. HCR Estimates. Spain 2011 

NUTS 
Direct 

Estimates 
SE EBLUP gamma se 

SEBLUP 
(contiguity) 

se 
SEBLUP 

(distance) 
se 

    Galicia 0.184 0.012 0.188 0.945 0.011 0.184 0.011 0.183 0.011 

    Asturias 0.103 0.010 0.109 0.956 0.010 0.109 0.010 0.109 0.010 

    Cantabria 0.199 0.009 0.199 0.963 0.009 0.197 0.009 0.197 0.009 

    País Vasco 0.110 0.008 0.109 0.971 0.008 0.108 0.008 0.108 0.008 

    Navarra 0.095 0.008 0.096 0.971 0.008 0.098 0.008 0.098 0.008 

    Rioja 0.250 0.015 0.248 0.912 0.015 0.245 0.015 0.247 0.014 

    Aragón 0.179 0.015 0.182 0.910 0.015 0.182 0.015 0.182 0.015 

    Madrid 0.164 0.019 0.159 0.866 0.018 0.162 0.018 0.166 0.018 

    Castilla y 
León 

0.230 0.014 0.232 0.924 0.014 0.232 0.013 0.231 0.013 

    Castilla - La 
Mancha 

0.318 0.017 0.310 0.886 0.017 0.310 0.016 0.306 0.016 

    
Extremadura 

0.352 0.020 0.343 0.849 0.019 0.347 0.019 0.347 0.019 

    Cataluña 0.171 0.010 0.171 0.957 0.010 0.170 0.010 0.171 0.010 

    Comunitat 
Valenciana 

0.201 0.010 0.202 0.959 0.010 0.202 0.010 0.203 0.010 

    Balears 0.186 0.011 0.186 0.949 0.011 0.187 0.011 0.187 0.011 

    Andalucía 0.320 0.012 0.316 0.945 0.012 0.317 0.011 0.317 0.011 

    Murcia 0.247 0.016 0.248 0.906 0.015 0.252 0.015 0.249 0.015 

    Ceuta 0.235 0.013 0.234 0.929 0.013 0.233 0.013 0.234 0.013 

    Melilla 0.318 0.022 0.319 0.835 0.021 0.319 0.020 0.322 0.020 

    Canarias 0.320 0.012 0.319 0.943 0.012 0.319 0.012 0.319 0.012 

mean 0.220 0.013 0.219 0.925 0.013 0.220 0.013 0.220 0.013 

gain     2.43%  2.80%  3.01% 

      ρ = 0.64  ρ=0.57  
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Table 5. S80/S20 Index. Spain 2011 

NUTS 
Direct 

Estimates 
se gamma EBLUP se 

SEBLUP 
(contiguity) 

se 
SEBLUP 

(distance) 
se 

Galicia 5.581 0.359 0.883 5.704 0.344 5.666 0.348 5.711 0.349 

Asturias 4.740 0.423 0.844 5.003 0.399 4.980 0.410 5.010 0.413 

Cantabria 6.081 0.286 0.922 6.079 0.279 6.066 0.281 6.080 0.280 

País Vasco 5.142 0.284 0.923 5.090 0.281 5.094 0.283 5.091 0.282 

Navarra 4.757 0.479 0.809 4.869 0.448 4.933 0.455 4.865 0.455 

Rioja 7.644 0.539 0.770 7.354 0.490 7.355 0.503 7.350 0.499 

Aragón 6.227 0.358 0.883 6.221 0.343 6.211 0.349 6.223 0.354 

Madrid 5.989 0.249 0.940 5.940 0.246 5.944 0.246 5.939 0.247 

Castilla y 
León 

6.332 1.644 0.264 6.562 0.897 6.585 0.970 6.553 0.949 

Castilla - La 
Mancha 

7.358 0.968 0.509 7.040 0.733 7.080 0.776 7.057 0.778 

Extremadura 7.266 0.586 0.739 7.268 0.531 7.371 0.539 7.246 0.548 

Cataluña 5.363 0.286 0.922 5.397 0.279 5.384 0.281 5.397 0.281 

Comunitat 
Valenciana 

5.426 0.414 0.850 5.583 0.392 5.552 0.400 5.586 0.398 

Balears 6.748 0.476 0.811 6.603 0.442 6.610 0.445 6.603 0.444 

Andalucía 8.565 0.515 0.785 8.166 0.473 8.120 0.483 8.171 0.489 

Murcia 5.401 0.354 0.886 5.557 0.341 5.588 0.345 5.558 0.344 

Ceuta 5.319 0.392 0.863 5.475 0.373 5.487 0.375 5.458 0.382 

Melilla 10.275 0.933 0.527 9.076 0.752 9.093 0.759 9.093 0.802 

Canarias 7.603 0.523 0.780 7.542 0.484 7.556 0.487 7.540 0.486 

mean 6.411 0.530 0.785 6.344 0.449 6.351 0.460 6.344 0.462 

gain     9.38%  7.80%  7.38% 

      ρ=0.31  ρ=-0.03  

 
Figure 1 and 2 show the geographical distribution of the Spatial EBLUP estimates based 
on a distance approach for both HCR and S80/S20 indices. It can be observed that the 
southern regions of Spain show the highest percentage of poor individuals. In the left 
corner of the image the islands Ceuta, Melilla and Canarias are reported widely.  
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Figure 1. HCR spatial EBLUP estimates. Spain 2011

 
 

Figure 2. S80/S20 spatial EBLUP estimates. Spain 2011 

 
Comparing Figure 1 with Figure 2, we can observe that, generally, those regions showing 
high values of HCR also present high values of S80/S20 index; this confirms that relative 
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poverty and inequality are generally correlated. On one hand, Madrid is an exception, 
since a low HCR is accompanied by a high level of inequality. On the other hand Melilla 
is a region with a high value of poverty and very little inequality.  
By looking at the estimates spatial autoregressive coefficients it can be observed that, 
in both cases, this is lower when considering a distance threshold approach. In fact, the 
distance threshold is taken to guarantee at least one linkage for each area apart from 
the Canarias Islands. By doing this, most linkages between areas are found in northern 
Spain where we find rich (unequal) and poor (equal) regions. This can be understood by 
looking at Figure 3.  
Each area is linked to its neighbours by means of black lines visible in the figure. 
Obviously the neighbouring structure is influenced by the approach followed by the 
researcher. In the figure we follow a distance based approach, that is two areas are 
called neighbours if the distance from each other is less than a threshold (taking as 
reference the centroid of each area as already explained in Section 3.1).  
 
 

Figure 3. Distance threshold neighbours 

 
Tables 6 and 7 show instead direct, EBLUP and Spatial EBLUP estimates. It is interesting 
to compare here the performance of the model based estimators proposed with respect 
to the available sample size for each small area. It is expected that the gain in efficiency 
by adopting the EBLUP (or SEBLUP) estimator will be higher for those areas where the 
sample size is lower or where the estimated relative standard error is high. Table 6 
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shows the results for the HCR Index. In the states of Burgenland and Carinthia the 
shrinkage factors are much lower than the others, meaning that most weight is attached 
to the regression synthetic estimator. It is not surprising that these areas show few 
sample sizes as well as a high estimated relative standard error, respectively 26% and 
18%. Here model-based estimates are much lower than direct ones. The estimates of 
the spatial autoregression coefficients are moderate and the highest gain in efficiency is 
obtained with EBLUP. This suggests that if the spatial dependence is weak then it is 
better to use the traditional EBLUP. The results for S80/S20 Index show that for the areas 
of Burgenland and Vorarlberg the most weight is attached to the regression estimator 
while for Lower Austria the most weight is given to direct estimate. This is consistent 
with the expected results as the first two areas show low sample size and an estimate 
of the relative standard error of 14% and 11% respectively. On the contrary, high sample 
size is found in Lower Austria apart from a very low estimate of the relative standard 
error (4%). The Spatial EBLUP estimator leads to a very reduced gain in efficiency. This 
may be due to the fact that the estimated coefficient of spatial autoregression is 
moderate and negative, in the HCR case as well. 
 

Table 6. HCR Estimates. Austria 2011 

NUTS 
Direct 

Estimates 
se EBLUP gamma se 

SEBLUP 
(contiguity) 

se 
SEBLUP 

(distance) 
se 

Burgenland 0.143 0.037 0.082 0.110 0.019 0.081 0.021 0.086 0.022 

Carinthia 0.184 0.033 0.119 0.132 0.016 0.117 0.015 0.124 0.019 

Lower 
Austria 

0.099 0.011 0.099 0.600 0.011 0.100 0.014 0.099 0.012 

Upper 
Austria 

0.089 0.011 0.094 0.576 0.012 0.094 0.013 0.093 0.013 

Salzburg 0.099 0.019 0.120 0.326 0.015 0.120 0.016 0.118 0.017 

Styria 0.109 0.013 0.110 0.503 0.013 0.110 0.014 0.110 0.014 

Tyrol 0.126 0.019 0.122 0.317 0.015 0.122 0.015 0.126 0.018 

Vorarlberg 0.085 0.020 0.104 0.301 0.015 0.105 0.011 0.102 0.016 

Vienna 0.192 0.019 0.178 0.411 0.019 0.178 0.021 0.178 0.020 

mean 0.125 0.020 0.114 0.364 0.015 0.114 0.016 0.115 0.017 

gain     17.87%  12.70%  8.82% 

     ρ=0.07  ρ=-0.39   
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Table 7. S80/S20 Index. Austria 2011 

NUTS 
Direct 

Estimates 
se EBLUP gamma se 

SEBLUP 
(contiguity) 

se 
SEBLUP 

(distance) 
se 

Burgenland 3.967 0.477 3.375 0.246 0.332 3.383 0.380 3.327 0.362 

Carinthia 3.712 0.315 3.712 0.428 0.258 3.702 0.280 3.747 0.284 

Lower 
Austria 

3.556 0.177 3.536 0.703 0.181 3.531 0.218 3.532 0.200 

Upper 
Austria 

3.330 0.181 3.467 0.693 0.181 3.469 0.197 3.473 0.201 

Salzburg 4.310 0.361 4.252 0.363 0.279 4.267 0.317 4.260 0.322 

Styria 3.669 0.218 3.743 0.611 0.208 3.744 0.230 3.737 0.233 

Tyrol 4.163 0.303 3.924 0.447 0.253 3.950 0.280 3.960 0.266 

Vorarlberg 3.197 0.425 3.652 0.291 0.282 3.615 0.295 3.584 0.305 

Vienna 5.001 0.225 4.900 0.595 0.241 4.897 0.270 4.893 0.256 

Mean 3.878 0.298 3.840 0.486 0.246 3.840 0.274 3.835 0.270 

Gain     13.07%  2.71%  4.58% 

     ρ=-0.19  ρ=-0.29   

 
Figures 4 and 5 show Spatial EBLUP estimates based on a contiguity approach for HCR 
and S80/S20 in Austria. It can be observed that here areas with high values of HCR show 
also high values of S80/S20 and viceversa. 
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Figure 4. Spatial EBLUP estimates. S80/S20 Index. Austria 

 
 

Figure 5. Spatial EBLUP estimates- S80/S20 Index. Austria 
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4. Discussion and concluding remarks 
In this paper we have addressed the problem of estimating measures of well-being on 
their “regional dimension”; if fact, we have presented and compared two small area 
techniques, namely the cumulation and the spatial EBLUP (SEBLUP), on the basis of EU-
SILC data from Austria and Spain. Both methodologies have been analysed observing 
both advantages and drawbacks. 
In general, estimates computed with the cumulation method show standard errors 
which are smaller than those computed with EBLUP or SEBLUP. The gain of pooling SILC 
data over three years is therefore relevant, and may allow researchers to prefer this 
method. However, we would like to emphasise a point of great practical concern. 
Assessment of sampling precision of the estimates, taking into account the actual 
structure of the SILC sample, on which the data are based, has an essential requirement: 
provision of codes describing the sample in the survey micro data itself, along with 
accompanying documentation describing the design and the code. Inadequate (or 
sometimes even absence of) information on sample structure in survey data files is a 
long-standing and persistent problem in estimation from sample surveys. Unfortunately, 
even outstanding and highly standardised multi-country surveys such as EU-SILC have 
this sort of shortcomings, as underlined in this paper. A second drawback of the 
cumulation approach consists in the loss of the reference period to which the estimated 
measures coming from the data pooling are anchored. For example, in our exercise 
which is the reference year? 2010, which is the middle year, or 2011, which is the last 
available year (and comparable with SEBLUP estimates)? The debate on this issue is still 
open, and the present paper would intend to be a new starting point in this debate. 
On the other hand, when considering techniques such EBLUP and SEBLUP, some 
features of the areas for which new estimates are needed should be properly taken into 
account; first of all, the presence of islands or other types of geographical barriers; may 
be that some computational procedures would fail in the presence of such a situation. 
In such cases, the problem needs to be addressed adequately. The analysis may be 
restricted to those areas having at least one linkage with another and at the same time 
leaving the remaining as separate cases (this is usually done in the US with Alaska and 
Hawaii). If the spatial dependence is not an essential feature of data, meaning an 
estimated spatial autocorrelation coefficient nearly equal to zero, then a possible 
solution could be that of adopting the traditional EBLUP estimator. This estimator, by 
assuming the independence of the area-level random effects, does not suffer from 
spatial boundaries and, consequently, it is not sensitive to whether a region is an island 
or not. Obviously, this kind of problem can be easily overcome by following a design-
based approach to small area estimation as in the case with the cumulation of estimates. 
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On the other hand, the fact that in the presented results the cumulation method 
performs better than EBLUP and SEBLUP should be judged taking into account an 
additional issue: when choosing the set of regressors in the EBLUP or SEBLUP, in general 
researchers do not have full access to information (regressors) present at area level. 
From this point of view, National Statistical Offices could in general perform better, 
having the possibility to access a large set of regressors. 
Finally, we want to highlight that in the paper the estimation of the MSE of the SEBLUP 
estimator has been carried out by following a procedure which considers the analytical 
approximation of the MSE itself. Other estimators based on bootstrap procedures have 
been developed (see for instance Molina, Pratesi and Salvati, 2009). We have tried to 
apply these procedures; however, results have been unsatisfactory and some 
computational issues have been raised. Again, this is another aspect which future 
research should be focused on. 
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