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Abstract: Mining areas often experience a climate of social tension due to the potential trade-off
between expected employment impact and concerns for environmental damage. We address this
topic from a theoretical perspective that, unlike most empirical research, includes medium-term
dynamics. We developed a two-sector dynamic model that provides a new way to identify differences
among mining regions in terms of conflict risk, local development, and welfare. There are critical
points in the natural-resource base of local nonmining activities and in the pollution rate of mining
operations, which determine the type of dynamics and its welfare outcomes due to the opening up of
the economy to mining investment. Pollution control is a sine qua non for welfare gains despite new
job opportunities in the mining sector.
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1. Introduction

The global integration of economies and the rising demand for raw materials and commodities,
mainly driven by urbanization, population, and economic growth, have increased the exposure of rural
economies to investments in mining operations. Since the beginning of the 2000s, global production
of many mineral products has substantially increased (see data in [1]), while huge investments have
taken place in Latin America, Africa, and parts of Asia, leading to a partial shift in mining locations
from the developed to developing and transition countries (International Council on Mining and
Metals, ICMM [2]).

The environmental footprint of mining has therefore increased, especially in rural areas of
developing countries where local poor communities interact with large investors, even transnational
corporations, and where the environmental consequences of mining are a main reason for concern.
Mining operations often require the intensive use of water resources, are land-demanding, and can
create heavy environmental externalities, including soil erosion and contamination, air and water
pollution from acid mine drainage, to leakage of chemicals and sedimentation. Indeed, this growth
in global exploration and mining activity has been accompanied by a significant increase in conflicts
associated with mining operations [3]. The Environmental Justice Atlas [4] reports, for instance, that out
of 2922 cases of globally recorded environmental conflicts, 592 cases were related to mineral ores and
building extraction (the Environmental Justice Atlas documents and catalogs social conflict around
environmental issues. For details, see [5]). On the other hand, mining companies are increasingly
aware of the need to improve their relationship with communities in which they operate [6] and of the
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crucial role of sustainability problems in this challenge. Environmental stewardship is a priority for
the ICMM. For mining companies, gaining trust, acceptability, and public consent for their operations,
namely, obtaining a “Social Licence to Operate” (SLO) is a complex, dialogic, and reflexive process [7],
but it is essential to avoid potentially costly conflicts and risks. Consulting company EY classified
the SLO as the greatest business risk facing mining and metal companies in 2019–2020 [8], while
a comparative case study by Prno [9] on SLO determinants in the mining industry concluded that
sustainability is a dominant concern for communities.

Science research on mining has responded with an increasing number of works on the need for a
deeper knowledge of socioenvironmental sustainability dynamics linked to this unprecedented rise
in mining activity in the rural areas of developing countries. We set ourselves the difficult goal of
making a small contribution to this remarkable body of literature along two main directions. First,
we applied the tools of optimization economic modeling to understand how environmental factors
influence the development paths of mining and other environmentally dependent activities, and their
resulting local-welfare outcomes. The bulk of science research on mining consists of empirical- or
conceptual-framework [10,11] analysis. This is sensible, as most mining communities experience a
complex set of interactions between a number of private and public stakeholders (see, for instance, [12])
that do not adapt very well to model simplification. However, the “simplicity” of an optimization
model allows us to logically isolate and sort out different dynamics, which are simultaneously at stake,
and to identify their essence while at the same time discussing its development over time. The lack
of consistent data covering long periods of time usually undermines this exercise, and this may be a
strong limitation in the case of mining, typically perceived as a “dirty” industry, since environmental
dynamics are often characterized by cumulative processes and lagged effects. We chose our simplifying
assumptions in order to focus on two of the dimensions, which the literature on local effects of mining
has identified as relevant: employment and environmental impact. Indeed, a recent literature review
on the social impact of the mining sector [13] found that employment is the main benefit detected by
empirical research, while land use and environmental damage are the most concerning social aspects.

As a second aspect of novelty in this paper, we jointly considered two main streams of research
in this area: the role of mining in the economic and environmental sphere. Karakaya and Nuur [14],
for instance, after reviewing 483 papers, concluded that the literature has shifted from the role of
the mining sector for economic development (within the debate on industrialization, technological
progress, or institutional quality) to new streams of research on socioenvironmental sustainability.
In our model, the mining sector plays an economic role not only through its direct effect on labor
employment, but also through its environmental impact, which, in turn, affects labor productivity in
the nonmining sector. The result is a model in which the revenues of local populations are determined
by the combination of these two forces. In most cases, science research on mining investigated health
and environmental impact or socioeconomic effects, either directly produced within the mining sector,
or through forward and backward linkages with manufacturing/service sectors or through the fiscal
channel. In contrast, few studies have estimated the economic impact due to the environmental
externalities of mining activities on other sectors, which is the central topic of the present work.

Against this background, more efforts are needed in both analytical and empirical research
to understand how the development processes and dynamics of local economies are driven and
shaped by environmental pressures exerted by large extractive companies on resource-dependent
nonmining activities. This is appropriate since, in several developing countries, a large share of the
labor force is engaged in agricultural or resource-based activities (in 2018, in low-income countries,
agriculture accounted for 63% of employment [15]) and natural resources are an important source of
income for many households [16]. Furthermore, both earlier [17–20] and recent [21–27] development
thinking has mostly recognized the central role of agriculture productivity in poverty reduction and
economic development.

We devised a two-sector dynamic model showing that environmental externalities can represent
a discriminating factor in the determination of the development path followed by a mineral-rich local
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economy. We analyzed in detail the most likely trajectory, followed by a local community specialized
in the use of renewable resources when, starting from a stationary state of low-level consumption and
low-level environmental pressure, it experiences a sudden inflow of investments in mining activities,
which harm the environment. We found three possible development patterns and identified critical
points in carrying capacity of renewable resources and in the pollution rate of mining that determine
which one is selected. Differences in these two factors can give rise to substantially different welfare
and environmental outcomes, from a downward spiral of impoverishment and environmental collapse
to a transition towards a stationary state with a richer and differentiated economy and positive levels
of resources. In particular, we found that, in the case of intermediate levels of renewable natural
capital, the low-pollution intensity of mining is a prerequisite for the opening of mines to produce
local welfare improvements, regardless of the labor intensity of mining. If this condition is not met,
the economic system is likely to follow a path of specialization in the mining sector associated with a
reduction in the welfare of the local population.

The rest of the paper is structured as follows. Section 2 provides a brief overview of the related
literature. Sections 3–5 present the model and its analysis. Section 6 explains the economic content and
implications of the analytical results by discussing the different development and welfare paths that
can be generated. Section 7 concludes with policy considerations and suggestion for future research.
Analysis of the model is in Appendix A.

2. Related Literature

Before presenting our model, this section sets out the broad context in which it is located. The role
of large-scale mining in local rural communities of developing countries is a topic of inquiry which
is receiving increasing attention in the literature. Chuhan-Pole at al. [11], in a recent literature
review, identified three main channels through which the abundance of mineral resources affects
local areas. First, the market mechanism refers to the impact on demand for jobs or other local
inputs and their multiplier effect on nonmining sectors through backward and forward linkages or
other spillovers. Second, the fiscal channel is mainly represented by an increase in fiscal revenues,
whose positive or negative effects (for instance, respectively, increased public spending or corruption)
are usually influenced by institutional quality. Finally, the environmental channel outlines the impact
that pollution and natural resources use during mining activities may have on human or animal health,
environmental quality, and endowments of natural resources or access to them.

Theoretical studies modeling these effects are very limited and focus on the market mechanism.
Some works (see, e.g., [28–30]) investigate the design of optimal local content policies in the context of
extractive industries. Mainly via the Nash bargaining theory, these works analyse games in which two
players—the host government and the mining company—negotiate the terms of concession contracts.
A Nash bargaining solution is reached when a contract is designed so that no one has incentive to
break. They aim to analyze the links between optimal local content policies and several elements
characterizing the host economy, for example, the productivity of local suppliers. Ghebrihiwet
and Motchenkova [31] modeled technology transfers from foreign multinationals to local firms
under different market structures and foreign direct-investment policies, highlighting the policies
that could improve the host country’s welfare. Di Corato [32] proposed a Nash bargaining model,
allowing one to characterize optimal investment choices of a foreign multinational facing the threat
of nationalization of the extractive industry. Our paper may be collocated in this area of research,
that is, among the theoretical works dealing with local spillover effects of extractive industries on
host economies. However, to the best of our knowledge, our model is the only one that analyzes
causal links among activities of extractive industries, environmental degradation generated by them,
and performance of local economic activities depending on a (renewable) natural resource.

Empirical research has made greater progress in the study of the three channels, but there is still
less of an advance in our understanding of how the environmental and channels interact with each
other. Indeed, many studies have investigated a large spectrum of the local socioeconomic impact of the
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mining sector: local economic growth, agglomeration economies, demand shock, and multiplier effects
on other sectors [11,33–36], local output and employment composition ([11,37]), local corruption and
violence ([38–41]), living standards, poverty, and inequality, [11,35,42–44], and local public spending
and services [45]. At the same time, a literature stream on the impact of mining on the local environment
is emerging. Important effects of mining on land use and contamination, for instance, have been
found in some mining regions in India [46], Chile [47], and China [48,49], while other studies have
documented a significant negative impact on human health outcomes and risks. Ouoba [50] showed
that approximately 40% of the gold-mining industry’s added value in Burkina Faso represents natural
capital depreciation, which is due to both the depreciation of the gold stock and the health cost of
pollution. Der Goltz and Barnwal [51], analyzing microdata from about 800 mines in 44 developing
countries, found evidence that mining communities exhibit an increased incidence of health problems,
which are known consequences of exposure to heavy metals, anemia among women, and stunting in
young children.

A less investigated area is the potential role of the environmental damage of mines in producing
economic externalities on other sectors that, in turn, affect the structure of local economies and
the economic welfare of local populations (see also [52] on this point). Only few empirical studies,
for instance, have estimated the impact of mining on the productivity of agricultural and other
resource-based economic activities. Ticci and Escobal [42] found that mining companies in Peru have
nonstatistically significant impact on agricultural production and prices. Similarly, Andersson et al. [53]
concluded that in Ghana, Mali, Tanzania, and Burkina Faso, a greenness index, which is correlated
with agricultural production, does not decrease within the proximity of large-scale gold mines.
In contrast, Aragón and Rud [54] estimated that gold mining in Ghana reduces the productivity
of nearby farming activities due to environmental damage. A negative impact of coal mining on
agricultural productivity has also been found by Mishra and Pujari [55] in the Indian state of Orissa.
Using subjective data, analysis by Li et al. [56] of host communities in Shanxi, China revealed that
coal mining has a negative impact on a wide range of wellbeing factors pertaining to the natural
environment and the economy. Metero [57] showed that mining-related land dispossessions in Mapela,
Limpopo, South Africa, disrupted the local livelihood system, limiting the ability of rural households
to accumulate, especially from agriculture. In conclusion, evidence of the role of mining pollution
on surrounding resource-dependent activities, primarily the productivity of local agriculture, is
still scant and inconclusive, even though it has given significant warnings. We complement this
stream of the literature by using theoretical tools that are less constrained by data shortage and
measurement difficulties in order to explore the economic scope of the environmental channel and
to jointly consider environmental and market dynamics. Among market factors, we focus on direct
employment generated by mining activities, while all remaining market and fiscal linkages, extensively
investigated by the earlier empirical literature, are excluded for reasons of analytical tractability.

3. Model Setup

We propose a model of an economy with two sectors, the mining sector and the local sector.
Prices of goods produced by the two sectors are normalized to 1 and considered as exogenously given
by agents. The mining sector extracts mineral resources using physical capital and wage labor, while the
local sector is represented by traditional activities that rely on self-employed labor, land, and renewable
natural resources. To fix ideas, we define the local sector as the farming sector, which typically depends
not only on land, but also on renewable natural resources and environmental regulating services (water,
genetic diversity, plants’ regeneration capacity, water regulation, watershed resilience, biodiversity,
soil protection and nutrient circulation, pest control, and pollination). There is no population growth,
while agents belong to two different communities: external investors (I-agents) (it is worth emphasizing
that, in this model, we use the term “external” to refer not just to foreign investors, but also to national
entrepreneurs whose capital is derived from a source outside the local economy) and local agents
(L-agents). Both communities consist of identical individuals. For simplicity, we assume that I-agents
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cannot invest in the local sector. Under the standard neoclassical assumption of competitive capital
markets [58], investors can rent capital in spot markets and take the rental price of capital as given.
I-agents also hire the labor force provided by L-agents. L-agents are endowed only with their own
working capacity, which they use partly to work as employees for external investors and partly as
producers in the local sector.

The production functions of the two sectors are increasing at decreasing rates in their inputs.
By normalizing the fixed amount of land endowment to 1, the production function of the representative
L-agent is given by:

YL = EβL1−β,

where,
E is the stock of the free-access renewable environmental resource;
L is the amount of time the representative L-agent spends on local-sector production; and
0 < β < 1 holds.
The L-agent’s total endowment of time is normalized to 1, and leisure is excluded; thus, 1− L

represents the L-agent’s labor employed by the representative I-agent as wage labor. The production
function of the representative I-agent is represented by constant returns to the scale function as follows:

YI = δKγ
I (1− L)1−γ, (1)

where KI denotes the stock of physical capital invested by the representative I-agent in the economy,
δ > 0 is a productivity parameter, and 1 > γ > 0. δ is also a parameter representing local-
mineral-resource wealth. The role of mineral resources is embodied in the coefficient δ.
Mineral-resource abundance implies a higher δ that, in turn, means higher productivity in the mining
sector. We focus on the medium term, during which mining extracts only a negligible part of the
mineral-resource stock. In other words, in the considered time horizon, the mining sector does not
experience increasing costs or constraints due to mineral-resource exhaustion, so δ is fixed.

We assume that the environmental impact of the local sector is nil since our focus is on
those scenarios where the environmental damage of the local agents’ production is unimportant
when compared to that of capital-intensive mining activities. This is not to deny that all economic
activities, including subsistence farming, have environmental impact. However, the view of poverty
as a major cause of environmental degradation is outdated [16,59]. In addition, in many cases,
poor farmers in developing countries rely on a low-to-null use of synthetic chemical pesticides or
fertilizers, while adopting techniques that, although noncertified, are de facto organic or near-organic
agriculture [60]. The evolution of renewable environmental resources is governed by a standard
logistic function (see [61]), modified by taking account of the impact of the mining sector:

·
E = E(E− E)− ηY I if E > 0 (2)
·
E = 0 if E = 0

where parameter E represents the long-run level that environmental resource E would approach in the
absence of the negative effect generated by the mining sector. That is, E measures the carrying capacity
of the renewable resource.

Each economic agent considers the effect of their choices on the dynamics of E to be negligible
and do not take it into account. In other words, each agent sees the evolution of E as exogenously
determined when solving their maximization problem. In addition, working under the assumption
that each population of agents consists of identical individuals, value of average output Y I coincides
(ex post) with per capita value YI .

This is a stylized scenario, but it represents the main differences between the sets of options
that local populations and external investors can use to generate their income flows. Large mining
companies managed by external investors are usually capital-intensive activities (often transnational



Sustainability 2019, 11, 6244 6 of 21

companies) that are able to gain access to capital markets. In contrast, the use of labor-intensive
techniques, employment of family labor, and constraints in access to credit markets are typically
key features of the production activities of local communities. Local populations have few defensive
strategies and are vulnerable to environmental degradation. Barbier [62], for example, summarizes
his review of the empirical literature on the relationship between poverty and natural resources in
developing countries by observing that the rural poor are almost “assetless”, they depend “critically on
the use of common-property and open-access resources for their income, they rely on small plots of
lands, and on selling their labor, which is their only other asset”. We modeled and simplified these
settings by assuming (see [63]) that local agents cannot accumulate physical capital rather, they can
only rely on two productive inputs, namely, their labor and natural capital (renewable environmental
resource E and land, which was normalized to 1). Local agents can react to a reduction in labor
productivity in the local sector due to a depletion of E by substituting self-employed labor in the
local sector with wage labor. However, this strategy is of limited effectiveness because it cannot be
indefinitely adopted (the total amount of labor that can be employed by each local agent is fixed).
In addition, it can have negative side effects due to the degradation of the environment.

4. Choices of Agents and Dynamics

The representative L-agent, in each instant of time t, has to choose the value of L in order to
maximize the value of the objective function:

ΠL = EβL1−β + (1− L)w, (3)

where w is the wage rate.
The representative I-agent chooses their labor demand 1− L and stock of physical capital KI that

they invests in the economy in order to maximize the profit function:

ΠI = δKγ
I (1− L)1−γ − w(1− L)− rKI ,

where parameter r > 0 represents the cost of KI .
Both w and r are considered as given by the agents. However, wage w is endogenously set in

the economy by the labor-market equilibrium condition (we excluded the import of labor from other
economies), while r > 0 is an exogenous parameter.

The above-described choice problems are analyzed in Appendix A.1. According to this analysis,
market clearing choice L∗ of L is:

L∗ = min {1, ΓE} ,

where:

Γ :=

 1− β

δ(1− γ)
(

γδ
r

) γ
1−γ


1
β

(4)

Note that L∗ > 0 if E > 0; this excludes the specialization of the economy in mining if E > 0.
In the E > 0 context, two cases can be distinguished: the case without specialization in the local sector
(that occurs when stock E is low enough, that is, ΓE < 1, and, consequently, 1 > L∗ > 0 holds) and the
case with specialization in the local sector (that occurs when ΓE ≥ 1, and, consequently, L∗ = 1 holds).

Investment and output levels chosen by the representative I-agent are, respectively, given by:

K∗I =

(
γδ

r

) 1
1−γ

(1− L∗)
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Y∗I = δK∗γI (1− L∗)1−γ = δ

(
γδ

r

) γ
1−γ

(1− ΓE)

By substituting Y∗I for average product Y I in Equation (2), we found that, in the context of ΓE < 1,
Equation (2) can be written as follows:

·
E = E(E− E)− ηδ

(
γδ

r

) γ
1−γ

(1− ΓE) (5)

while, in the context of E ≥ 1/Γ (as the representative L-agent spends all their time endowment
working in the local sector, L∗ = 1), Equation (2) becomes:

·
E = E(E− E) (6)

5. Dynamic Regimes

According to Equation (5),
·
E = 0 holds if f (E) = g(E), where:

f (E) := E(E− E)

g(E) := ηa (1− ΓE)

a := δ

(
γδ

r

) γ
1−γ

(7)

Graphs of f (E) and g(E) can have, at most, two intersection points, and therefore at most two
stationary states in which E > 0 exists. Figures 1 and 2 illustrate all the possible dynamic regimes that
can be observed under Dynamic (5) and (6) (see Appendix A.2). Threshold values of parameters E
and η to which Figures 1 and 2 refer are:

1
Γ

=

 δ(1− γ)
(

γδ
r

) γ
1−γ

1− β


1
β

(8)

ET := 2
√

aη − aηΓ (9)

η0 :=
1

aΓ2 (10)

0

E

f
(
x
)
,g
(
x
)

f

1
Γ

g

E

(a) E <
1
Γ

0

E

f
(
x
)
,g
(
x
)

f

g

EEA EB

1
Γ

(b) ET < E <
1
Γ

0

E

f
(
x
)
,g
(
x
)

EA

1
Γ

E

f

g

(c) E >
1
Γ

Figure 1. Dynamic regimes in the context η < η0, obtained by varying the parameter E.
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Figure 2. Dynamic regimes in the context η ≥ η0, obtained by varying the parameter E.

Figures 1 and 2 illustrate the regimes that can be observed if the environmental impact of the
mining sector (measured by parameter η) is, respectively, lower and higher than the threshold value
η0 (see Equation (10)). The taxonomy of dynamic regimes is based on the value of parameter E,
representing the carrying capacity of the environmental resource.

In the figures, full dots (•) and empty dots (◦) represent, respectively, attractive and repulsive
stationary states. Throughout the paper, we focus our analysis on the dynamics of an economy starting
from initial position E(0) = E, where E is the carrying capacity. This allows us to interpret part of
the results as the effects of opening up the economy to inward flows of capital for mining investment.
Observe that the following dynamic regimes can occur:

(a) Dynamic regime illustrated in Figures 1 and 2, where stationary state E = 0 is globally attractive.
In this regime, the trajectory starting from E(0) = E approaches E = 0. Thus, opening the
economy to mining operations leads to the complete exhaustion of renewable natural resources
and the crowding out of the local sector. This dynamic regime is observed when the carrying
capacity (measured by parameter E) of the natural resource is very low (E < ET < 1/Γ if η < η0,
E < 1/Γ if η ≥ η0);

(b) Dynamic regimes illustrated in Figures 1b,c and 2b, characterized by the coexistence of two
locally attractive stationary states (bistable regimes): stationary state E = 0 and either stationary
state E = E or stationary state EB < E. The basins of attraction of the two attractive stationary
states are separated by repulsive stationary state EA. In stationary state EB, both sectors coexist,
while in stationary state E = E, the economy specializes in the local sector. Bistable regimes
take place only if carrying capacity E of the natural resource is high enough. In this context,
the initial condition E(0) plays a key role in determining the time evolution of E. The economy,
starting from E(0) = E, either remains in E or approaches EB. The former scenario occurs in
economies with a very high carrying capacity (E > 1/Γ, Figure 1c), or high pollution impact
of the mining sector (η > η0, Figure 2b) which, after the opening up the economy to external
capital, remains specialized in the local sector. The latter scenario, namely, the transition
towards a diversified economy in which both sectors coexist, is observed in economies with an
intermediate level of carrying capacity (ET < E < 1/Γ) and exposed to low-pollution-intensity
capital inflows in the mining sector (η < η0).

In a bistable regime context, the economy approaches stationary state E = 0 only if the initial
value E(0) belongs to interval [0, EA). This may be the case when an exogenous environmental shock
lets the economy, although initially not open to external investments, start from an initial value E(0)
lower than EA (and, consequently, lower than carrying capacity E). If this occurs, the low value of E(0)
gives rise to a self-reinforcing growth process of labor input in the mining sector and investment KI ,
which drives the economy towards the complete depletion of the environmental resource.
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As far as state variable KI is concerned, note that equilibrium value K∗I of KI is determined by

equation K∗I =
(

γδ
r

) 1
1−γ

(1− L∗). Thus, K∗I is negatively related to L∗ = min {1, ΓE} and, consequently,
to E. The stationary state with E = 0 is, therefore, associated with the highest value of K∗I . Figure 3
shows the dynamics in the plane (E, KI) corresponding to the bistable regime illustrated in Figure 1b.

E

K
I

O

A

B

Figure 3. Dynamics in plane (E, KI) corresponding to bistable regime illustrated in Figure 1b.

6. Welfare Implications: Root of the Dilemma

Revenues of L-agents are composed of two addends: labor remuneration in the mining sector
and local-sector output. Capital inflows expand labor demand in the mining sector, exerting pull
forces on labor and up-pressure on wage rates. At the same time, growth in mining operations causes
environmental degradation, in turn affecting the productivity of the local sector. This effect boosts the
labor supply to the mining sector and depresses wage rates. The net impact on revenues of L-agents is,
therefore, not univocal and it might not be directly connected with environmental dynamics despite
the reliance of the local producers on natural resources. This section clarifies which and under which
conditions different local welfare dynamics are generated by the model. We focus on the welfare
consequences of openness to mining investments (in our analysis, we concentrated on the revenues
of L-agents, since the remuneration of each unity of external investment is exogenously determined:
γYI/KI = r) and start by comparing the level of L-agent’s revenues in reachable stationary states.

6.1. Local Welfare, Environmental Outcomes, and Physical Capital Stock in Attractive Stationary States

According to results illustrated in Appendix A.1, we find that, in the context in which the economy
does not specialize in the local sector (i.e., when ΓE < 1 or, equivalently, E < 1/Γ), the equilibrium

wage rate is constant and given by w = a(1− γ), where a := δ
(

γδ
r

) γ
1−γ . Furthermore, revenues

ΠL(E) of L-agents are ΠL(E) = Eβ when E ≥ 1/Γ and ΠL(E) =
[
Γ−β − a(1− γ)

]
ΓE + a(1− γ)

when E < 1/Γ, where
[
Γ−β − a(1− γ)

]
> 0. That is, revenues ΠL(E) of the representative L-agent are

strictly increasing in E for every E ≥ 0. Thus, in attractive stationary state E = 0, revenues are lower
than in other attractive stationary states (either EB or E = E) in bistable regimes as illustrated in Figure
1b,c and 2b (see Proposition A2 in Appendix A.3).

The equilibrium value of KI is determined by equation K∗I =
(

γδ
r

) 1
1−γ

(1 − L∗), thus K∗I is
negatively related to L∗ = min {1, ΓE} and, consequently, to E. Furthermore, according to the results
stated above, an increase in KI is always associated with a reduction in E and ΠL. This means that
environmental degradation caused by the mining sector had a negative impact on L-agents’ revenues.
This negative impact is always larger than the positive impact of the rise in labor productivity caused by
an increase in KI . As a result, in bistable regime contexts (illustrated in Figures 1b,c and 2b), in locally
attractive stationary state E = 0, workers’ revenues reach the lowest possible level, while external
investment KI reaches the highest possible value (see Figure 3). Along the trajectory approaching
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E = 0, the effort of L-agents to defend themselves from environmental degradation drives the economy
towards complete specialization in the mining sector.

6.2. Openness to Mining Investments: Different Environmental Contexts, Different Welfare Outcomes

The inverse relation between KI and ΠL, as detected in the previous section, does not mean
that full specialization in the local sector always produces the highest level of welfare for L-agents.
The effects on L-agent revenues, generated by external mining investments, can be better understood
by comparing the generated dynamics by the model, and the dynamics according to which L = 1 and
KI = 0 hold for every E ≥ 0, that is, the dynamics that would be observed in the absence of extractive
operations, financed by external investors. Under these dynamics, revenues of L-agents are given
by Eβ, while E = E is always a globally attractive stationary state (if the environment is not affected
by the polluting activity of mining, the time evolution of E is described by the logistic Equation (6)).
In the absence of mining, therefore, the local economy always converges to a stationary state in which
revenues of L-agents are equal to Eβ. Figure 4 aims to clarify how L-agents may be better off with
mining investments rather than by being fully specialized in the local sector, even if L-agents’ revenues
are increasing in E. In this figure, revenues of L-agents in the absence of mining investments (Eβ) and
those with them (ΠL(E)) are represented as functions of variable E. If the economy converges toward
stationary state E′B, then it holds that ΠL(E′B) > Eβ; in other words, L-agents reach a higher level of
welfare in the case of openness to mining investments than in a closed economy without inflows of
external capital. On the contrary, if it converges towards E′′B, with E′′B < E′B, it holds ΠL(E′′B) < Eβ.
However, under which conditions does openness to extractive activities improve the livelihoods of
local agents?

E

re
ve
nu

es
o
f
L
-a
g
en
ts

E

ΠL(E)

1
ΓE
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′
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•
• •
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Figure 4. Revenues of L-agents in the absence of external investments (ΠND
L (E) = Eβ) and those with

external investments (ΠL(E)), represented as functions of variable E.

Analysis illustrated in Appendix A.3 answers this question, as it shows that opening up to external
capital has differentiated welfare and environmental effects according to the level of carrying capacity
(measured by parameter E) and the pollution intensity of the mining sector (measured by parameter η).

The following taxonomy of scenarios clarifies this statement. In this case, we focus, as in the
previous section, on the trajectory followed after opening the economy to inward flows of capital for
mining investment, that is, in an economy starting from initial position E(0) = E.
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Case 1: Very high level of environmental carrying capacity

If E > 1/Γ holds (Figures 1c and 2b), then the economy starting from E(0) = E remains in E,
where KI = 0. L-agents are not willing to provide their labor force as workers at acceptable wages
for the I-agents. They would renounce their traditional activities only in exchange for very high
compensation. Consequently, mining investments had no effect on the environment and the welfare
of local agents. Reality is not so simple: mining companies may invest anyway by importing labor
from other regions (a possibility that in our model is excluded by construction). This case could
manifest itself as strong (successful or otherwise) opposition to mining operations. Rather than the
absence of mining investments, this analytical case may in effect mirror the fact that indigenous or
local communities living in rainforests or in areas very suitable for cultivation are often among the
most strenuous opponents to mining activities.

For instance, in the Peruvian Amazon between 2009 and 2012, the share of indigenous territorial
reserves covered by hydrocarbon concessions was largely reduced, suggesting that companies might
be giving up those concessions in which indigenous groups have territorial claims. In contrast,
overlaps between concessions and watersheds have increased over time in water-constrained regions
of Peru [64]. Meanwhile, a report on 24 case studies of mining conflicts from 18 different countries [65]
found that, in water-rich areas where benefits of ecosystem services are of great importance to local
populations, the level of conflict tends to be high, even when the mining project is not fully operational
and its impact is likely but not yet realized. This suggests that: (1) the main objective of the protests
is to prevent environmental impact and (2) before entering into a trade-off between employment
opportunities in mining-related activities and livelihoods dependent on the biophysical environment,
local populations prefer, ex ante, this latter possibility.

Case 2: Very low level of environmental carrying capacity

This case refers to dynamic regimes illustrated in Figures 1a and 2a. Under these regimes, the
trajectory starting from E(0) = E approaches a stationary state with E = 0, where the stock of
mining investments KI reaches its maximum value and local activities were completely crowded out.
Furthermore, in stationary state E = 0, local welfare is higher than in E = E if the carrying capacity

of the environmental resource is low enough, that is, if E < [a(1− γ)]
1
β ( condition E < [a(1− γ)]

1
β

implies E < 1/Γ, since [a(1− γ)]
1
β < 1/Γ). Otherwise, the opposite holds (see Proposition A3 in

Appendix A.3) .
This scenario refers to economies characterized by extremely adverse environmental conditions,

where opening up to mining investments that allows for inflows of artificial assets is beneficial
regardless of their rate of pollution intensity. Although freely accessible and not negatively affected by
local producers, environmental resources are so scarce that their complete substitution with artificial
inputs is associated with an improvement in local welfare. It is worth observing, however, that this
transition also implies a shift from full dependence on natural capital E to full reliance on exogenous
factors (following openness to mining investments) such as r (opportunity cost of physical capital
investment) and δ (total factor productivity of mining sector that also captures local mineral resource
wealth). In this case, revenues of L-agents in fact consist only of the wage rate, which depends on the
exogenous parameters r, γ, and δ (see Appendix A.1). This case may be portrayed by the example
of the region of Antofagasta, Northern Chile, in the Atacama Desert, which is rich in minerals and
poor in renewable natural resources. The mining sector, largely financed by foreign companies, has
weak productive backward and forward linkages to local firms [66] and low knowledge spillovers [67],
as well as putting pressure on water resources [68], while problems with contamination from heavy
metals [69] have led to environmental externalities on economic activities of local and indigenous
communities [70] and negatively impacted population health [68,71,72]. Despite these problems, at the
end of a mining boom period in the 1990s and 2000s, the region was characterized by the highest per
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capita income, the lowest Gini coefficient, and the second lowest poverty level in Chile [73]. This result
is consistent with a nationwide study [74] that estimated that the mining boom produced a significant
positive effect on wages, employment, and poverty reduction in municipalities more exposed to
growth in mining. These findings suggest that, in contexts of scarcity of renewable natural resources,
notwithstanding environmental externalities, the mining sector is likely to bring about net economic
gains.

Case 3: Intermediate level of environmental carrying capacity

The remaining setting is characterized by an intermediate level of carrying capacity (see Figure 1b):
ET < E < 1/Γ). In this context, an economy starting from E(0) = E converges towards stationary
state EB, where the two sectors coexist. Convergence towards EB ensures growth in local agents’
revenues only if the environmental impact of mining η is sufficiently below the threshold value η0

(see Proposition A3 in Appendix A.3). Under these conditions, the economy undertakes a transition
to a diversified economic structure that reduced the vulnerability of local agents towards exogenous
environmental shocks while at the same time improves their revenues. For higher values of η,
convergence to stationary state EB gives rise to a reduction in local agents’ revenues. Figure 5 provides
a graphical illustration of the critical role of the rate of environmental pressure from the mining sector
in determining the divide between local gains and local losses. More precisely, Figure 5 shows the
revenues of L-agents in the absence of mining investments, evaluated at state E (Eβ) (in the absence
of mining activity, E = E is always a globally attractive stationary state), and the value of ΠL(E)
evaluated at stationary state EB (which is reached by the trajectory starting from E(0) = E). We can
easily see that ΠL(EB) > Eβ holds for low enough values of η while the opposite holds for higher
values of η.
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Figure 5. Revenues of L-agents in the absence of external investments evaluated at stationary state
E = E (ΠND

L (E) = Eβ) and those with external investments evaluated at stationary state E = EB

(ΠL(EB)), obtained by varying parameter η. Other parameters fixed at values: β = 0.58, γ = 0.49,
δ = 1, r = 0.15, E = 3.5.

An empirical example of opening to mining investment in cases with intermediate level of E and
insufficiently low η can be represented by the development of gold mining in Ghana. Ghana indeed
reflects the main assumptions of the model and of this scenario: Growing large-scale extractive
activities that operate in rural areas where typically traditional farming is the main source of livelihood
with little backward and forward linkages with local economies, important environmental pressures
from the releases of pollutants in rivers, soil, and air, to pressure on water resources, deforestation,
loss of farmland, and even land dispossession [52,75–79]. Ghana has a long history as a gold producer,
but the sector has experienced substantial growth, attracting foreign investors, since the early 1990s
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until the recent gold rush following the 2008 financial crisis. Using data from household surveys and
interviews to key informants, Hausermann et al. [52] found that, in mining communities located along
the Offin River, cocoa and subsistence crops, forest, and other land uses were cleared prior to extraction
with devastating effects on farming, reduced local food availability, and increased malnutrition.
These results are consistent with estimates based on national household surveys by Aragón and
Rud [54]. The authors found that the vicinity to mining activity of medium–large enterprises is
associated with an increase in rural poverty and a large decrease in agricultural productivity (about
40% between 1997 and 2005). Interestingly, among alternative explanations of the drop in agricultural
total factor productivity, they identified mining-related environmental impact as the most plausible.
In conclusion, as predicted by our model, social–economic and environmental dynamics in Ghanaian
mining areas experienced a process of mining growth that is associated with a welfare-reducing
crowding out of traditional rural activities.

7. Conclusions

In developing countries, several rural communities could still rely on uncontaminated and
preserved environments. The sudden arrival of external investments could provide a large push to
escape from poverty, but the positive effect may be temporary if new activities cause environmental
shock. This process could be particularly relevant in the case of mining investment. To explore
under which conditions that net economic gains or losses are generated, we modeled a simplified
local economy with two channels of interaction between resource-based local activities and externally
financed mining operations, that is, connections made through environmental dynamics and through
the labor market.

The empirical literature has very recently started to investigate the economic role of mining’s
environmental pressures on rural economic activities in developing countries, with mixed findings.
With this model, we found robust theoretical reasons for directing more attention to this aspect and we
provided the first taxonomy and conceptual framework to explain this role in different background
contexts. We found that environmental factors, either environmental externalities or the abundance
of nonmineral renewable resources, could be crucial in shaping the effects of mining investment.
In addition, this even holds for an economy in which local populations are able to fully exploit job
opportunities created by inflows of mining investments. Local communities in areas with extreme
scarcity of renewable resources are most likely to benefit from mining investments (Case 2). Their
main risks are to follow a development path that is fully dependent on exogenous factors. In all other
cases, analytical results can be interpreted as a warning sign that environmental damage caused by
mining should be acknowledged as a key determinant, not only on human health and the ecology of
local communities, but also in terms of their economic welfare. If the results from Case 2, with very
high environmental carrying capacity, can be read as implicit signs of strong opposition to mining
operations, Case 3 provides more clear-cut messages. Under conditions of intermediate levels of
environmental carrying capacity, the opening of mines in an area specialized in primary subsistence
activities triggers a welfare-improving transition towards a diversified local economy only if the
pollution intensity of new mining operations is sufficiently low. For higher rates of environmental
impact, the local economy risks to initiate structural change toward specialization in the mining
sector, which is associated with a reduction in the welfare of the local population and environmental
degradation, even when the local primary sector is not completely crowded out.

Our model supports a clear policy message: limiting the intensity of mining pollution is a
prerequisite for welfare improving and non-conflicting coexistence of extractive activities and local
resource-based activities, even under ideal conditions, that is, in an economy without barriers to labor
mobility towards the mining sector or in the case of renewable-resource abundance. These results,
however, need some qualifications that also indicate directions for future research. First, the model
does not include the role of fiscal channels, namely, a possible change in public expenditure on local
services financed by mining-tax revenues. Thus, it would be interesting to derive the optimal mining
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tax in this model under different levels of institutional quality. A classification of the possible scenarios
would be modified and results would provide direct policy implications on the mix of mining tax
and pollution control. Second, the model considers local populations as a homogeneous block but,
in reality, community stakeholders are often more fragmented, with differences between the interests
and perspectives of farmers, mining workers, contractors, and local leaders. Finally, with some
adaptation, the model may be extended to analyze an emerging issue, namely, livelihood linkages
between artisanal mining and farming, especially in rural African areas where, despite the economic
centrality of agriculture, engagement in artisanal and small-scale mining is an off-farm diversification
strategy [80]. In this case, both local economic welfare would be represented by the sum of miners’
and farmers’ revenues.
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Appendix A

Appendix A.1. Choice Problem of Agents and Labor-Market Equilibrium

The representative L-agent in each instant of time t has to choose the value of L in order to
maximize the value of the objective function:

ΠL = EβL1−β + (1− L)w

Representative I-agent chooses their labor demand 1− L and stock of physical capital KI in order
to maximize the profit function:

ΠI = δKγ
I (1− L)1−γ − w(1− L)− rKI

An internal solution of the maximization problem of the representative L-agent must satisfy
first-order condition:

∂ΠL
∂L

= (1− β) EβL−β − w = 0, (A1)

which determines the labor offered by the representative L-agent as a function of E and w.
The optimization problem of the representative I-agent gives rise to the following first-

order conditions:
∂ΠI

∂(1− L)
= δ(1− γ)Kγ

I (1− L)−γ − w = 0 (A2)

∂ΠI
∂KI

= δγKγ−1
I (1− L)1−γ − r = 0 (A3)

The labor-market equilibrium condition is therefore given by:

δ(1− γ)Kγ
I (1− L)−γ = (1− β) EβL−β (A4)

By Equation (A3), it holds:

KI =

(
γδ

r

) 1
1−γ

(1− L) (A5)

and substituting KI in Equation (A4) we obtain:

L = ΓE (A6)
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where:

Γ :=

 1− β

δ(1− γ)
(

γδ
r

) γ
1−γ


1
β

(A7)

Function (A6) identifies labor-market equilibrium value L∗ of L if the right side of Function (A6) is
lower than 1; otherwise L∗ = 1, that is:

L∗ = min {1, ΓE}

In the context ΓE < 1, the equilibrium wage rate is constant and given by w = δ(1− γ)
(

γδ
r

) γ
1−γ .

Indeed, by substituting Function (A6) in Equation (A1) we obtain:

w = (1− β) EβL−β

= (1− β) Eβ [ΓE]−β

= (1− β) Γ−β

= δ(1− γ)

(
γδ

r

) γ
1−γ

Appendix A.2. Classification of Dynamic Regimes

This subsection provides the complete classification of possible dynamic regimes that can be
observed according to Dynamic (5) and (6). Let us first highlight the following basic properties of
Dynamic (5) and (6):

(1) According to non-negativity constraint E ≥ 0, state E = 0 is always a locally attractive stationary

state in that, if stock E > 0 is low enough, then
·
E < 0 holds according to Equation (5);

(2) State E = E is a stationary state if and only if E ≥ 1/Γ. That is, if carrying capacity E is
higher than threshold value 1/Γ of E that separates the regimes with and without specialization.

Furthermore, no stationary state with E > E can exist because
·
E < 0 always holds for E > E;

(3) Interior stationary states (that is, those belonging to interval (0, E)) coincide with the values of
E that annul the right-hand side of Equation (5), in such stationary states, the economy is not
specialized (that is, 1 > L∗ > 0);

(4) According to Equation (5),
·
E = 0 holds if f (E) = g(E), where:

f (E) := E(E− E)

g(E) := ηa (1− ΓE)

Graphs of f (E) and g(E) can have at most two intersection points; therefore, at most, two interior
stationary states exist. The complete taxonomy of possible dynamic regimes is illustrated in the
following proposition. The proof is straightforward and therefore omitted.

Proposition A1. (1) If condition η < η0 := 1/
(
aΓ2) holds, then the following dynamic regimes can

be observed:

(1a) If E ≥ 1
Γ

, then a unique interior stationary state EA ∈ (0, 1/Γ) exists. This is repulsive and separates

the basins of attraction of locally attractive stationary states E = 0 and E = E (see Figure 1b);
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(1b) If
1
Γ

> E > ET := 2
√

aη − aηΓ, then two interior stationary states EA and EB exist, with 0 <

EA < EB < 1/Γ. Repulsive stationary state EA separates the basins of attraction of locally attractive

stationary states E = 0 and EB (see Figure 1b) (in the context of η < η0,
1
Γ
> ET > 0 always holds);

(1c) If E = ET , then two stationary state exist, E = 0 and E = ET :=
(
E + ηaΓ

)
/2 < 1/Γ, and their

basins of attraction are, respectively, intervals [0, ET) and [ET ,+∞);
(1d) If E < ET , then stationary state E = 0 is globally attractive (see Figure 1a).

(2) If condition η ≥ η0 holds, the following dynamic regimes can be observed:

(2a) If E >
1
Γ

, then the dynamic regime coincides with that described in Point (1a) of this proposition (see
Figure 2b);

(2b) If E =
1
Γ

, then two stationary states exist, E = 0 and E = E, and their basins of attraction are,

respectively, intervals [0, E) and [E,+∞);

(2c) If E <
1
Γ

, then stationary state E = 0 is globally attractive (see Figure 2a).

Coordinates of interior stationary states EA and EB (when existing) are given by:

EA =
E + ηaΓ

2
− 1

2

√
(E + ηaΓ)2 − 4ηa

EB =
E + ηaΓ

2
+

1
2

√
(E + ηaΓ)2 − 4ηa (A8)

Note that in Subcase (1a) of the above proposition, if E =
1
Γ

, then EB = E holds. Furthermore,

in Subcase (1c), EA = EB = ET holds; in such a case, straight line f (E) is tangential to the graph of
g(E) at point (ET , g(ET)).

Appendix A.3. Welfare of L-agents

Bearing in mind that the equilibrium wage rate is w = δ(1−γ)
(

γδ
r

) γ
1−γ

= a(1−γ) (see Appendix
A.1), we can prove the following proposition.

Proposition A2. ΠL(E) = Eβ holds for E ≥ 1
Γ

while ΠL(E) =
[
Γ−β − a(1− γ)

]
ΓE + a(1− γ) holds for

E <
1
Γ

, where
[
Γ−β − a(1− γ)

]
> 0 (see Equations (3) and (4)). That is, revenues ΠL(E) of the representative

L-agent are strictly increasing in E for every E ≥ 0. Thus, in attractive stationary state E = 0, revenues are
lower than in other attractive stationary states (either EB or E = E) in the bistable regimes illustrated in Figures
1b,c and 2b.

Proof. Revenues ΠL of the representative L-agent can be written as:

ΠL = EβL∗1−β + (1− L∗)w = EβL∗1−β + a(1− γ)(1− L∗)

where L∗ = min {1, ΓE}. Thus ΠL = Eβ holds for E ≥ 1
Γ

while:

ΠL = Eβ (ΓE)1−β + a(1− γ)(1− ΓE)

= Γ1−βE− ΓEa(1− γ) + a(1− γ)

=
[
Γ−β − a(1− γ)

]
ΓE + a(1− γ)
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holds for E <
1
Γ

. Furthermore, the condition:

Γ−β − a(1− γ) =
a(1− γ)

1− β
− a(1− γ) > 0

is always satisfied. This implies that ΠL strictly increases in E for every E ≥ 0.

In the following proposition, we focused on the trajectory starting from initial position E(0) = E.
The effects on revenues of L-agents generated by external mining investments can be better understood
by comparing the dynamics generated by the model that is called Dynamics with the Mining Sector
(DwMS), and the dynamics according to which L = 1 and KI = 0 hold for every E ≥ 0, which is
called Natural Dynamics (ND). The latter is dynamics that would be observed in the absence of
extractive operations financed by external investors. In the ND context, the environment is not affected
by the polluting activity of mining, the time evolution of E is described by logistic Equation (6),
and the revenues of L-agents are given by function ΠND

L (E) := Eβ. Under this, E = E is always a
globally attractive stationary state therefore, if the initial value E(0) of E coincides with E, then E = E
always holds.

In the DwMS context, we can see that if carrying capacity E is sufficiently low, and therefore
dynamic regimes shown in Figures 1a and 2a occur (see Subcases (1d) and (2c) of Proposition A1
in Appendix A.2), then the trajectory starting from initial position E(0) = E converges to stationary
state E = 0. In the remaining dynamic regimes, the trajectory starting from E(0) = E converges
either to E = E (Figures 1c and 2b, and Subcases (1a), (2a), and (2b) of Proposition A1 in Appendix
A.2) or to EB (Figure 1b, and Subcases (1b) and (1c) of Proposition A1). If the trajectory starting
from E(0) = E approaches either EB or E = 0, then stock E and revenues ΠL(E) decrease along
it, while mining external investments KI increase. However, this does not exclude the possibility
that external mining investments may generate improvement in the welfare of the local population.
The following proposition highlights conditions under which ΠND

L (E) = Eβ is lower than the value of
ΠL(E), evaluated at stationary states E = 0 and EB of DwES.

Proposition A3. In stationary state E = 0 of DwMS, workers’ revenues are higher than in stationary state
E = E of ND (that is, Eβ

< ΠL(0) holds) if and only if:

E < [a(1− γ)]
1
β =

[
δ(1− γ)

(
γδ

r

) γ
1−γ

] 1
β

(A9)

where

[
δ(1− γ)

(
γδ

r

) γ
1−γ

] 1
β

< 1/Γ, that is, if the carrying capacity of the environmental resource (measured

by E) is low enough. In stationary state EB of DwMS, workers’ revenues are higher than in stationary state
E = E of ND (that is, Eβ

< ΠL(EB) holds) if and only if:

EB >
Eβ − a(1− γ)[

Γ−β − a(1− γ)
]

Γ
(A10)

where Γ−β − a(1− γ) > 0. Condition (A10) is satisfied if the environmental impact (measured by η) of the
mining sector is low enough.

Proof. The proof of this proposition is straightforward. We limited ourselves to proving the
last statement. If the value of parameter η decreases, then the value of EB increases therefore,
Condition (A10) is more easily satisfied. It is thus possible to prove that, if the value of η is low
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enough, then Condition (A10) holds. This result can be checked by taking into account that Subcase
(1b) of Proposition 4 is characterized by conditions:

1/Γ > E > ET := 2
√

aη − aηΓ and η < η0 := 1/
(

aΓ2
)

where values of a and Γ do not depend on η while ET → 0 for η → 0. Thus, given E < 1/Γ, such
conditions are always satisfied if η is low enough. Furthermore, if E < 1/Γ, then L < 1 holds in E = E;
consequently, Eβ

< ΠL(E) (because, in the DwES context, revenues are maximized with respect to
L given the value of E). Thus, Eβ

< ΠL(EB) holds if EB is near enough to E due to the continuity of
function ΠL(E). This is, indeed, precisely the case when η is low enough, in that EB → E for η → 0
(see Condition (A8)).
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