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ABSTRACT: Zn(II)-catalyzed divergent synthesis of functionalized poly-
cyclic indolines through formal [3 + 2] and [4 + 2] cycloadditions of indoles
with 1,2-diaza-1,3-dienes (DDs) is reported. The nature and type of
substituents of substrates are found to act as a chemical switch to trigger two
distinct reaction pathways and to obtain two different types of products
upon the influence of the same catalyst. The mechanism of both [4 + 2] and
[3 + 2] cycloadditions was investigated and fully rationalized by density
functional theory (DFT) calculations.

■ INTRODUCTION

Functionalized polycyclic fused indoline frameworks are
central molecular architectures in nature and pharmaceuticals.1

As one of the indolines, C2,C3-fused indolines2 have attracted
extensive research effort over the past decades because
scaffolds of this type lead to relatively rigid structures that
might be expected to show substantial selectivity in their
interactions with enzymes or receptors.3 Representative
naturally occurring polycyclic indolines such as vincorine,
minfiensine, gliocladin C, kopsnone, pleiomaltinine, and
communesin F are shown in Figure 1.
Among the annelated indolines, the pyrroloindoline,

pyridazino indoline skeletons and their related structures, can

be found in numerous natural bioactive products, marketed
drugs, and other functional molecules.4,5 The desire to build
such appealing polycyclic frameworks, particularly those with
bridgehead amino acetal C2 carbons, has inspired the
development of elegant methodologies over the past several
years. Among the reported methods, dearomatization of
indoles via cycloaddition reactions6 has been demonstrated
as a reliable approach in converting simple planar aromatic
molecules into structurally complex and stereoselective ring
systems.
Following the initial discovery of the inverse electron-

demand [4 + 2] cycloaddition reaction of electron-rich alkenes
(furans, pyrroles, and indoles) with 1,2-diaza-1,3-dienes (DDs)
by Gilchrist et al.,7 other elegant studies by the groups of
Wang8 and Tan9 have been recently reported exploiting
indoles as nucleophiles.
By taking advantage of the unique reactivity of DDs10 and

intrigued by these and our recent findings in the manipulation
of indolyl cores,11 we reasoned that the proper combination of
indole and 1,2-diaza-1,3-diene elements might allow us to
design a substrate-controlled divergent approach. In this
design, DDs would be used as C2N1 or C2N2 units (1,3 or
1,4 dipole synthons) to realize [3 + 2] and [4 + 2] annulation
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Figure 1. Examples of naturally occurring compounds containing 2,3-
fused indolines.
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reactions of indoles, respectively (Scheme 1). Thus, by tuning
the substituents of both substrates upon the influence of the

same catalyst, two series of fused indoline-based scaffolds such
a s t e t r ahyd ro -1H - py r i d a z ino[3 , 4 -b ] i ndo l e s and
tetrahydropyrrolo[2,3-b]indoles would be generated with
chemodivergence.
Distinct from previous findings, we herein report our

successful development of a substituent-controlled divergent
synthesis of fused indoline-based scaffolds. These [4 + 2] and
[3 + 2] cycloadditions were realized in a straightforward, pretty
challenging, and highly atom-economical/diastereselective
manner from rationally designed indole and 1,2-diaza-1,3-
diene substrates with C3 and/or C4 position(s) substituted,
respectively.

■ RESULTS AND DISCUSSION
We began our work by studying the reaction between indole
1a and cyclic 1,2-diaza-1,3-diene 2a (Table S1, Supporting
Information (SI)). No reaction took place, and both
compounds remained inactive in the absence of a Lewis acid
catalyst. A series of Lewis acid catalysts [such as Sc(OTf)3,
Zn(OAc)2, ZnSO4, Zn(OTf)2, SmCl3·6H2O, LiClO4, LiCl,
CuCl2, Cu(OTf)2, CuBr2, InBr3, ZnBr2, and ZnCl2] and
solvents [such as dichloromethane (DCM), acetone, tetrahy-
drofuran, acetonitrile, and cyclohexane] were examined, and
the combination of ZnCl2 and CH2Cl2 (heterogeneous
catalytic system) was found to be superior for this trans-
formation. Noteworthy, compound 3a was obtained as a single
regio- and diastereoisomer (50% yield).
The substrate scope with respect to various 2,3-unsub-

stituted indoles 1a−n and cyclic DDs 2a−h (see the SI for
details) was then examined under the optimized reaction
conditions, and a variety of tetrahydro-1H-pyridazino[3,4-
b]indoles (tetracyclic fused ring (6-5-6-6/7/8) systems) 3a−x
was synthesized (Table 1). As shown in Table 1, indoles 1a−n
with different electronic characters were suitable for the
reaction, with six-membered cyclic DDs giving the relative
fused indoline heterocycles 3a−d in moderate to good yields.
The Zn-catalyzed [4 + 2] cycloaddition reactions were further
extended to seven- and eight-membered cyclic DDs. We were
glad to find that the use of seven-membered DDs gave rise to
the best results in terms of isolated yields. Also, the wide
functional group tolerance was well demonstrated by the fact
that both electron-donating (5-OMe, 5-, 7-Me) and electron-
withdrawing (6-Cl, 5-CO2Me, 5-CN, 5-CHO, 5-NO2) groups
were well tolerated, providing efficient access to the fused
indoline heterocycles 3e−s. Interestingly, the use of the 7-
azaindole substrate also worked well to give the product 3t in

85% isolated yield. The formal [4 + 2] annulation was then
extended to DDs bearing cyclooctane, and the reactions
furnished the relative products 3u−x with lower yields than
those of seven-membered cyclic DDs. Additionally, the
generality of the N-terminal protective group on DDs as well
as for the N atom of indoles was explored. Remarkably, free
N−H indoles were also compatible with this protocol, albeit
slightly lower yields were observed, probably owing to the
reduced nucleophilicity at C3 and the reduced electrophilicity
at C2 of the starting indole (Scheme 1, 3s vs 3p, and 3x vs 3u).
No annulation occurred when five-membered cyclic DD was

employed under the optimized reaction conditions (3y, 0%).12

The relative configurations of cycloadducts 3 were determined
by X-ray diffraction analysis of 3e13 (see the SI for detailed X-
ray crystallography data), and those of other compounds were
assigned by analogy.
During the investigation on the ring size effect of the 1,2-

diaza-1,3-diene substrate, it was also noted the formation of
ring-opened [4 + 2] byproduct 4, highlighting the ease of
rearomatization of 3 to give a more stable indole derivative.
The sensitivity of 3 to the rearomatization process was
confirmed by complete transformation of 3b into 4e in the
presence of Amberlyst 15(H) (vide inf ra, Scheme 4b). This
undesirable event appears to be the cause for lowering the [4 +
2] cycloaddition product yields found in some cases. Notably,
this pathway remains dominant when the reaction was
conducted using N-methyl indole (1a) or 1,2-dimethyl indole
(1o) with linear DDs 2j and 2n (Scheme 2) in line with what
was previously observed in the reactions of 2,3- (and 3-
)unsubstituted indoles with cyclic and noncyclic DDs.7a,10e

More precisely, the reaction of N-methyl indole (1a) with
linear DD 2n afforded the more polar ring-opened [4 + 2]
product 4a (48% yield). However, thin-layer chromatography
(TLC) analysis revealed the presence of a mixture of the
diastereoisomers of pyridazine 3z. Consistent with Gilchrist’s
observation,7b monitoring the progress of the reaction by 1H
NMR, we detected an initial (preferential) formation of
(cis,cis)-3z, which then partially isomerized to its isomer
(cis,trans)-3z either during the course of the reaction or during
chromatographic separation. Despite the isomerization side
reaction, both diastereoisomers were isolated ((cis,cis)/
(cis,trans) ∼ 2:1, 32% combined yield) and characterized
(see the SI for details). On the other hand, the reaction of N-
methyl indole (1a) with DD 2j or 1,2-dimethyl indole (1o)
with DD 2j or 2a led to the formation of the sole ring-opened
[4 + 2] products 4b−d (Scheme 2). Therefore, given the
results with the use of both 2,3- and 3-unsubstituted indoles
(associated with the [4 + 2] pyridazine-ring-opening reaction)
and to further showcase the flexibility of this catalytic
annulation strategy, we next moved our attention to exploring
the reactivity of C3-blocked indoles (e.g., 3-substituted and 2,3-
disubstituted indoles) with DDs. To our surprise, the reaction
of 3-methyl indole (1p) with linear DD 2n led to a mixture of
two cycloadducts, the expected tetrahydro-1H-pyridazino[3,4-
b]indole compound 3ab and the tetrahydropyrrolo[2,3-b]-
indole compound 5a14 in a ratio of approximately 1:1, which
could possibly be the result of the above-mentioned two
competitive reaction pathways15 (Scheme 2). Interestingly,
when 1,3-dimethyl indole (1q) was used in combination with
DD 2j, the exclusive formation of product 5b (46% yield) was
detected. As expected, when the reaction was repeated using
cyclic DD 2c, the exclusive formation of the corresponding [4
+ 2] product 3ad (40% yield) (Scheme 2) was observed.

Scheme 1. Working Hypothesis: Chemodivergent Synthesis
of Polycyclic Fused Indoline Scaffolds
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Intrigued by the starkly different reaction profile, we next
focused our attention on the 2,3-disubstituted indole motif.
Unfortunately, the reactions of 2,3-disubstituted indoles such
as 2,3-dimethyl indole 1r and 2,3,4,9-tetrahydro-1H-carbazole
1t with cyclic DD such as 2c did not work well, and only a
trace amount of the respective formal [4 + 2] cycloaddition
product was detected in the complex crude reaction mixture
(Scheme 2). Explanations for these findings are not
immediately intuited, but the steric effect seems to be playing
a major role.
To our pleasure, the reaction of 2,3-dimethyl indole (1r)

with DD 2j proved efficient, leading to the relative [3 + 2]
cycloadduct 5c (58% yield) as the sole product. Thus, to
further extend the substrate scope, a series of differently 2,3-
disubstituted indole entities 1r−z containing electron-donating

groups (5-OMe and 5-Me) or electron-withdrawing groups
(EWGs) (5-Cl) and 4-ester, 4-amide, or 4-phosphonate N-
protected linear DDs 2j−s were tested. Pleasantly, all of the
reactions proceeded smoothly and furnished the highly
crowded tetrahydropyrrolo[2,3-b]indole products 5c−s in
good to excellent yields (Table 2).
The structures of compounds 5a−s were confirmed by

subjecting 5s to N−N bond cleavage using the Magnus
method.16 Treatment of compound 5s with ethyl bromoace-
tate/Cs2CO3/MeCN at 50 °C followed by heating to 80 °C
resulted in N−N′ bond cleavage to the corresponding NH-free
tetrahydropyrrolo[2,3-b]indole 6a in 64% isolated yield
(Scheme 4a).
As a synthetic strategy, this [3 + 2] annulation affords, in a

single operation, the structurally rigid 6-5-5 tricyclic subunit

Table 1. Scope of the Zn(II)-Catalyzed [4 + 2] Cycloaddition Reaction of 2,3-Unsubstituted Indoles (1) and Cyclic
Azoalkenes (2)a,b

aReaction conditions: 1 (2.0 mmol), 2 (1.0 mmol), ZnCl2 (0.1 mmol, 10 mol %), DCM (2.0 mL), 25 °C. bIsolated yields. cRing-opened product 4
was also isolated.
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with a substituent at the 3-position of the indole nucleus,
which is the basic structure of pharmaceutically valuable
natural products.4 Besides, this nonclassical approach provides
access to functionalized pyrroloindoline systems with sub-
stitution patterns that are otherwise inaccessible using
tryptamines17 as precursors.
The mechanism of the two divergent cycloadditions was

studied by density functional theory (DFT) computational
chemistry (model chemistry: B3LYP/6-31-G(d)/SCRF =
PCM, solvent = DCM,18,19 Gaussian16 software;20 all details
are available in the SI). We focused our attention on the
reaction of 1,2-diaza-1,3-diene 2n (DD) with 3-methyl indole
1p (In), since such a combination affords both cycloaddition

products, i.e., (cis,cis)-3ab (with a de of 99% by 1H NMR) and
5a, in the ratio of about 1:1, after column chromatography
separation (Scheme 2). To begin with, we assumed a
concerted mechanism for the [4 + 2] cycloaddition (Figure
2a) and a two-step mechanism for the nonpericyclic [3 + 2]
cycloaddition (Figure 2b).
The computed [4 + 2] energy reaction paths starting from

the cisoid-1,2-diaza-1,3-diene·ZnCl2·catalytic complex (cisoid-
DD·ZnCl2) leading to the complex endo-cycle·ZnCl2 and to
exo-cycle·ZnCl2 are reported in Figure 3a; since the reaction is
highly exoergonic, both reaction trajectories go through a
typical reactant-like transition state [TS]‡ having pericyclic

Scheme 2. Other Substrates Scope Studies
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topology. Both exo and endo transition states ([TS]exo
‡ and

[TS]endo
‡) are shown in Figure 3b.

The computations show clearly that the observed high
diastereoselectivity toward the formation of the slightly less
stable (cis,cis)-3ab pyridazino indoline ((cis,cis) → (cis,trans),
ΔG° = −2.66 kcal mol−1) is obtained under kinetic control.
Indeed, since its endo cyclic precursor is substantially more
stable than the exo adduct (ΔΔG‡ = −1.70 kcal mol−1, mainly
for the lack of the steric clashes of the two methyl groups; see
Figure 2a), the two associated activation energy barriers are
very different (ΔG‡ = 9.02 vs 10.46 kcal mol−1); thus, the endo
path is kinetically more favorable. Interestingly, in both [TS]‡,
the ratio between the two forming C−C and C−N single
bonds is about 1.3 (Figure 3b), which is symptomatic of an
asynchronous concerted transition state.21

The comparison of the [3 + 2] cycloaddition energy diagram
of the two stepwise mechanisms with that of the concerted
cycloaddition suggested by Gilchrist et al. with very similar
substrates7b,8 shows clearly that the latter mechanism is not
active in our case (Figure 4).
The stepwise catalytic cycle is based on the formation of the

very stable transoid-DD·ZnCl2 (transoid/cisoid, 99.4:0.6; see
the SI), followed by the [1,6]-addition of indole to give the
zwitterionic intermediate (Zw·ZnCl2) through [TS1]‡; then,
the latter ring closes to form the nonchelated [3 + 2]-cycle·
ZnCl2 complex through [TS2]‡. According to our computa-

tions, the energy barriers associated with these two steps are
very similar (ΔG1

‡ = 13.41 kcal mol−1 vs ΔG2
‡ = 12.04 kcal

mol−1). However, the catalytic cycle ends through the
following non-rate-limiting steps: [1,3]-H shift (tautomeriza-
tion), product delivery, and transoid-DD·ZnCl2 catalytic
complex restoration by substitution with a new molecule of
DD.
Finally, as a corollary of the above-reported computations,

we used them to evaluate the order of magnitude of the
product ratio [(cis,cis)-pyridazinio indoline (3ab)]/[pyrazolo
indoline (5b)] in comparison with the value experimentally
obtained (∼1:1, after column chromatography separation). To
this end, we have conveniently summarized the scheme of the
two divergent cyclization reactions as follows

endo cisoid

transoid

cycle ZnCl DD ZnCl

DD ZnCl cycle ZnCl3 2
2 2

2 2

− · ← − ·

⇆ − · → [ + ] − ·

Since the two-reactant catalytic complexes (the cisoid-DD·
ZnCl2 and the transoid-DD·ZnCl2) are in equilibrium, and
their interconversion is much faster than the cycloaddition
reaction rates, it is possible to apply the Curtin−Hammet
equation,22 which, in our case with a ΔΔG‡ = [TS]endo

‡ −
[TS1]‡ = 0.50 kcal mol−1, gave a ratio of 7:3, (cis,cis)-3ab and
pyrazole indoline 5b, respectively. We reckon that this result is

Table 2. Scope of the Zn(II)-Catalyzed [3 + 2] Cycloaddition Reaction of 2,3-Substituted Indoles (1) and Linear Azoalkenes
(2)a,b

aReaction conditions: 1 (0.6 mmol), 2 (0.4 mmol), ZnCl2 (0.04 mmol, 10 mol %), DCM (2.0 mL), 25 °C. bIsolated yields.
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fair enough, considering the chemical accuracy attainable via
the used model chemistry.
Combining the above experimental results, DFT studies, and

available literature,7,10e a reasonable mechanism for these
annulation processes is summarized in Scheme 3. Two
competing (and independent) reaction pathways for both the
tetrahydro-1H-pyridazino[3,4-b]indole and tetrahydropyrrolo-
[2,3-b]indole derivatives appeared to take place upon initial
ZnCl2 activation of the 1,2-diaza-1,3-diene substrate. The [4 +
2] cycloaddition (path a) can be simply rationalized as a
concerted inverse hetero-Diels−Alder reaction. The preference
for an endo cycloaddition transition state, which requires the
cisoid conformation for DD 2 (II), supports the high observed
diastereoselectivity for product 3.23 Alternatively, [3 + 2]
annulation (path b) can be viewed as proceeding via a stepwise

process. Regioselective 1,6-addition of the indole nucleophile 1
on activated DD 2 (I) that is in a transoid conformation
affords the zwitterionic intermediate IV, which undergoes
intramolecular 5-exo-trig cyclization collapsing to the five-
membered azomethine imide V. The subsequent 1,3-H shift
furnishes via intermediate VI the tetrahydropyrrolo[2,3-
b]indole product 5 and restores the ZnCl2−diene catalytic
complex.24 The fact that the indole 1q gave both [4 + 2] and
[3 + 2] cycloadducts using cyclic (R4 ≠ H) and linear (R4 =
H) DDs (3ad vs 5b) supported this mechanism scenario.
Likewise, the borderline example of Scheme 2 in which both

cycloadducts 3ab and 5a concurrently formed15 from 1p and
2n illustrates the delicate balance and subtle nuances between
the two annulation processes. It is evident that, in the presence
of additional substituents on the indole ring (R3 ≠ H), the [3 +

Figure 2. Catalytic cycles for the model reactants 2n (DD) and 1p (In) catalyzed by ZnCl2. (a) [4 + 2] cycloaddition: (i) cisoid-DD·ZnCl2
catalytic complex formation; (ii) exo or endo adduct formation, exo-In·DD·ZnCl2 or endo-In·DD·ZnCl2; (iii) cycloaddition through the transition
state [TS]‡ affording the pyridazino indoline product complex, endo-cycle·ZnCl2 or exo-cycle·ZnCl2; (iv) substitution with DD affording (cis,cis)-
3ab and cisoid-DD·ZnCl2 restoration. (b) [3 + 2] Cycloaddition: (v) transoid-DD·ZnCl2 catalytic complex formation; (vi) nonpericyclic In·DD·
ZnCl2 adduct formation; (vii) [1,6]-addition to form the zwitterionic intermediate Zw·ZnCl2 through the transition state [TS1]‡; (viii) ring-
closure through [TS2]‡ affording the nonchelated [3 + 2]-cycle·ZnCl2 complex, (ix) [1,3]-H shift (tautomerization) giving the pyrazolo indoline
product complex, PI·ZnCl2; (x) substitution with DD affording 5b and restoring the transoid-DD·ZnCl2. For clarity, the H atoms of the DFT-
optimized structures are omitted.
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2] mode of addition becomes competitive since the concerted
[4 + 2] pathway is more susceptible to steric inhibition.
Moreover, it was quite interesting to note that when six-
membered cyclic 1,2-diaza-1,3-diene 2i was reacted with 1s,
the exclusive formation of the [4 + 2] cycloaddition product
3ae was observed (Scheme 4c). Similarly, the use of linear 1,2-
diaza-1,3-diene 2t yielded the product 3af (Scheme 4d). Our
control experiments illustrate that the absence of EWG groups
like esters, amides, or phosphonates in the C4 position of the
starting DD (R4 = H; R5 ≠ CO2R, CONR2, and PO(OR)2),
which likely disfavors the proton transfer process (V → VI),
also privileged the [4 + 2] mode of addition.
With this work, we have demonstrated that the nature and

type of substituents of both 1,2-diaza-1,3-diene and indole
substrates are critical factors dictating chemoselectivity in the
annulation process. Notably, the presence of a H atom in the
C3 position of the indole ring is responsible for the observed
ring-opened [4 + 2] product 4. As already evidenced, this
event becomes prevailing when N-methyl indole (1a) or 1,2-
dimethyl indole (1o) is used as the nucleophile. To our
surprise, when R3 = H, neither the formation of the [3 + 2]
annulation product nor the ring-opened [3 + 2] product of
type 7 described by Tan and co-workers was observed.25 This
result shows that when R3 = H, the indole rearomatization
process from 3 (and/or eventually from intermediate IV) to 4
is the preferred one.

■ CONCLUSIONS
In conclusion, we have developed substrate-dependent
divergent annulation reactions26 of indoles with 1,2-diaza-
1,3-dienes. By virtue of the versatility of these latter in
switching reactivities, efficient synthesis of two types of
polycyclic fused indoline scaffolds tetrahydro-1H-pyridazino-
[3,4-b]indoles and tetrahydropyrrolo[2,3-b]indoles was
achieved. The DFT study revealed that [4 + 2] cycloadditions
are concerted but quite asynchronous, while [3 + 2] reactions
go undoubtedly through a stepwise mechanism. Our approach
expands the scope of polycyclic fused indoline synthesis and
increases the flexibility of synthetic strategies toward hetero-
cycle-based scaffolds. Remarkably, the reactions feature a high
step- and atom-economy, high chemo- and diastereoselectivity,
broad substrate scope, good functional group tolerance, and
readily accessible starting materials. The successful construc-
tion of unique rigid polycyclic skeletons, particularly those with
challenging bridgehead N,N-aminal quaternary centers,
enriches the chemistry of both indoles and 1,2-diaza-1,3-
dienes.

■ EXPERIMENTAL SECTION
General Experimental Details. Indoles 1a, 1l, 1m, 1o, 1p, 1r,

and 1s are commercially available reagents and used without further
purification. N-Alkylindole derivatives 1b−k, 1n, and 1q were
prepared from corresponding commercially available NH-indoles
following literature procedures.27 3,4-Disubstituted indoles 1t−z were
synthesized from corresponding phenylhydrazine hydrochlorides as
starting materials via Fisher indole synthesis according to the
literature.28 1,2-Diaza-1,3-dienes (DDs) 2a−t were synthesized from

Figure 3. (a) DFT-computed Gibbs free energy profile of the rate-
limiting step of the [4 + 2] cycloaddition in CH2Cl2 at 298 K for
reagents 1,2-diaza-1,3-diene 2n and indole 1p. The energies (kcal
mol−1) are reported with respect to the cisoid-DD·ZnCl2 and In
species. (b) Structures of endo and exo transition states; for clarity,
some H atoms have been omitted.

Figure 4. Computed Gibbs free energy profile of the [3 + 2]
cyclization: stepwise mechanism (blue path) vs the concerted
mechanism (red path) in CH2Cl2 at 298 K. The energies (kcal
mol−1) are reported with respect to the transoid-DD·ZnCl2 and In
species. For clarity, the H atoms of transition-state structures have
been omitted.
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the corresponding hydrazones following literature procedures.29

Chromatographic purification of compounds was carried out on silica
gel (60−200 μm). TLC analysis was performed on preloaded (0.25
mm) glass-supported silica gel plates (Kieselgel 60); compounds were
visualized by exposure to UV light and by dipping the plates in 1%
Ce(SO4)·4H2O and 2.5% (NH4)6Mo7O24·4H2O in 10% sulfuric acid,
followed by heating on a hot plate. All 1H NMR and 13C NMR
spectra were recorded at 400 and 100 MHz, respectively, using
dimethyl sulfoxide (DMSO)-d6 or CDCl3 on K2CO3 as the solvent.
Chemical shifts (δ scale) are reported in parts per million (ppm)
relative to the central peak of the solvent and are sorted in a
descending order within each group. The following abbreviations are
used to describe peak patterns where appropriate: s, singlet; d,
doublet; t, triplet; q, quartet; sex, sextet; m, multiplet; and br, broad
signal. All coupling constants (J value) are given in hertz (Hz).

Structural assignments were made with additional information from
gradient correlation spectroscopy (gCOSY), gradient heteronuclear
multiple quantum correlation (gHMQC), gradient heteronuclear
multiple bond correlation (gHMBC), and nuclear Overhauser
enhancement spectroscopy (NOESY) experiments. Fourier transform
infrared (FT-IR) spectra were obtained as Nujol mulls or neat. High-
and low-resolution mass spectroscopies were performed on a
Micromass Q-ToF Micro mass spectrometer (Micromass, Man-
chester, U.K.) using an electrospray ionization (ESI) source. Melting
points were determined in open capillary tubes and are uncorrected.
Elemental analyses were within ±0.4 of the theoretical values (C, H,
N).

General Procedure for the Formal [4 + 2] Cycloaddition
Reactions of Indoles 1 with Cyclic Azoalkenes 2. A mixture of
indole 1 (2.0 mmol), azoalkene 2 (1.0 mmol), and zinc dichloride

Scheme 3. Plausible Reaction Mechanism for Zn(II)-Catalyzed Annulation Reactions

Scheme 4. Control Experiments
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(0.1 mmol, 13.6 mg) was stirred in dry dichloromethane (2 mL).
After the disappearance of azoalkene 2 (TLC check), the crude
mixture was purified by column chromatography on silica gel to afford
product 3. In some cases (see Table 1), a more polar ring-opened [4
+ 2] byproduct 4 was also recovered.
( 6aS* , 11bR* , 11cR* ) - E thy l 6 -Carbamoy l -7 -methy l -

2,3,4,6,6a,7,11b,11c-octahydro-1H-indolo[2,3-c]cinnoline-11c-car-
boxylate (3a). The product 3a was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 30:70) in 50% yield (178.2 mg);
white solid; mp: 183−185 °C; 1H NMR (400 MHz, DMSO-d6) δ
7.19 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1 H), 7.07 (d, J = 7.6 Hz, 1 H), 6.80
(br, 2 H), 6.79 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.62 (d, J = 7.6 Hz,
1H), 5.50 (d, J = 7.2 Hz, 1H), 4.20−4.35 (m, 2H), 3.44 (d, J = 7.2
Hz, 1H), 2.58 (s, 3H), 2.44−2.51 (m, 1H), 2.26 (dt, J1 = 12.0 Hz, J2 =
4.4 Hz, 1H), 1.78−1.84 (m, 1H), 1.50−1.63 (m, 2H), 1.24−1.35 (m,
2H), 1.26 (t, J = 7.2 Hz, 3H), 0.95 (dt, J1 = 12.0 Hz, J2 = 4.4 Hz, 1H);
13C{1H} NMR (100 MHz, CDCl3) δ 173.3, 157.3, 155.3, 151.7,
129.3, 126.5, 125.7, 118.9, 108.7, 69.4, 61.8, 45.6, 42.4, 35.5, 33.8,
33.1, 27.4, 23.7, 14.3; IR (nujol): υmax = 3485, 3471, 1724, 1692
cm−1; MS (ESI) m/z = 357 [M + H]+; anal. calcd for C19H24N4O3
(356.42): C 64.03, H 6.79, N 15.72; found: C 63.91, H 6.84, N 15.82.
(6aS*,11b*R,11cR*)-Ethyl 7-Methyl-6-(phenylcarbamoyl)-

2,3,4,6,6a,7,11b,11c-octahydro-1H-indolo[2,3-c]cinnoline-11c-car-
boxylate (3b). The product 3b was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 10:90) in 56% yield (242.3 mg);
white solid; mp: 183−185 °C; 1H NMR (400 MHz, DMSO-d6) δ
9.31 (s, 1H), 7.68 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 2H), 7.31 (t, J = 8.0
Hz, 2H), 7.18 (dt, J1 = 7. 6 Hz, J2 = 0.8 Hz, 1H), 7.02−7.08 (m, 2H),
6.78 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 5.58
(d, J = 7.2 Hz, 1H), 4.19−4.34 (m, 2H), 3.52 (d, J = 7.2 Hz, 1H),
2.68 (d, J = 13.2 Hz, 1H), 2.60 (s, 3H), 2.30 (dt, J1 = 12.8 Hz, J2 = 4.4
Hz, 1H), 1.82−1.84 (m, 1H), 1.62 (d, J = 13.2 Hz, 1H), 1.50−1.52
(m, 1H), 1.30−1.41 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.02 (dt, J1 =
12.8 Hz, J2 = 4.4 Hz, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
172.8, 154.8, 153.4, 151.6, 139.2, 129.5, 128.9, 126.8, 125.8, 123.2,
120.3, 119.2, 109.2, 69.5, 61.9, 45.3, 41.8, 34.9, 34.3, 33.1, 27.3, 23.4,
14.4; IR (nujol): υmax = 3388, 1728, 1690 cm−1; MS (ESI) m/z = 433
[M + H]+; anal. calcd for C25H28N4O3 (432.51): C 69.42, H 6.53, N
12.95; found: C 69.30, H 6.59, N 13.06.
(6aS*,11bR*,11cR*)-Ethyl 6-Carbamoyl-9-chloro-7-methyl-

2,3,4,6,6a,7,11b,11c-octahydro-1H-indolo[2,3-c]cinnoline-11c-car-
boxylate (3c). The product 3c was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 30:70) in 22% yield (86.1 mg);
white solid; mp: 188−190 °C; 1H NMR (400 MHz, DMSO-d6) δ
7.01 (d, J = 8.0 Hz, 1H), 6.77 (br, 2H), 6.76 (dd, J1 = 8.0 Hz, J2 = 2.0
Hz, 1H), 6.63 (d, J = 2.0 Hz, 1H), 5.55 (d, J = 7.2 Hz, 1H), 4.18−
4.29 (m, 2H), 3.46 (d, J = 7.2 Hz, 1H), 2.56 (s, 3H), 2.45 (d, J = 13.2
Hz, 1H), 2.23 (dt, J1 = 12.8 Hz, J2 = 4.4 Hz, 1H), 1.78−1.80 (m, 1H),
1.58 (d, J = 13.2 Hz, 1H), 1.51−1.53 (m, 1H), 1.27−1.32 (m, 2H),
1.25 (t, J = 7.2 Hz, 3H), 0.96 (dt, J1 = 12.8 Hz, J2 = 4.4 Hz, 1H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 172.8, 156.8, 153.5, 153.1,
134.0, 126.9, 125.9, 118.4, 109.0, 69.2, 61.8, 44.8, 41.4, 34.8, 33.6,
32.9, 27.1, 23.3, 14.3; IR (nujol): υmax = 3280, 3206, 1732, 1692
cm−1; MS (ESI) m/z = 413 [M + Na]+, 391 [M + H]+; anal. calcd for
C19H23ClN4O3 (390.86): C 58.38, H 5.93, N 14.33; found: C 58.51,
H 5.98, N 14.23.
( 6aS* , 11bR* , 11 cR* ) - E thy l 7 -Benzy l -6 - ca rbamoy l -

2,3,4,6,6a,7,11b,11c-octahydro-1H-indolo[2,3-c]cinnoline-11c-car-
boxylate (3d). The product 3d was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 35:65) in 30% yield (129.7 mg);
white solid; mp: 162−164 °C; 1H NMR (400 MHz, DMSO-d6) δ
7.19−7.32 (m, 5H), 7.01−7.07 (m, 2H), 6.74 (br, 2H), 6.71 (t, J =
7.6 Hz, 1H), 6.27 (d, J = 7.6 Hz, 1H), 5.88 (d, J = 6.8 Hz, 1H), 4.49
(d, J = 16.0 Hz, 1H), 4.20−4.32. (m, 2H), 3.96 (d, J = 16.0 Hz, 1H),
3.49 (d, J = 6.8 Hz, 1H), 2.50−2.55 (m, 1H), 2.26 (dt, J1 = 12.8 Hz, J2
= 4.8 Hz, 1H), 1.85−1.89 (m, 1H), 1.50−1.59 (m, 2H), 1.30−1.37
(m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.03−1.11 (m, 1H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ 173.1, 157.1, 154.1, 150.9, 140.1, 129.3,
128.7, 127.2, 127.1, 126.7, 125.8, 118.7, 108.5, 68.6, 61.8, 50.4, 45.1,
42.2, 35.2, 33.1, 27.6, 23.6, 14.4; IR (nujol): υmax = 3271, 3194, 1738,

1688 cm−1; MS (ESI) m/z = 433 [M + H]+; anal. calcd for
C25H28N4O3 (432.51): C 69.42, H 6.53, N 12.95; found: C 69.31, H
6.49, N 13.06.

(7aS* ,12bR* ,12cR* ) -Methyl 7-Carbamoyl-8-methyl -
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3e). The product 3e was isolated by
column chromatography (ethyl acetate/cyclohexane 70:30) in 82%
yield (292.3 mg); white solid; mp: 171−173 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.16 (d, J = 8.0 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.51
(t, J = 7.6 Hz, 1H), 6.35 (br, 2H), 6.28 (d, J = 8.0 Hz, 1H), 6.03 (d, J
= 9.6 Hz, 1H), 4.57 (d, J = 9.6 Hz, 1H), 3.60 (s, 3H), 2.69 (s, 3H),
2.52−2.58 (m, 1H), 2.20−2.27 (m, 1H), 2.01−2.05 (m, 1H), 1.72−
1.86 (m, 4H), 1.46−1.56 (m, 1H), 1.20−1.34 (m, 2H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 173.1, 170.6, 157.1, 152.5, 128.6,
126.1, 124.3, 116.2, 104.8, 73.4, 54.2, 53.1, 52.1, 32.6, 31.6, 30.2, 24.9,
24.6, 24.8; IR (nujol): υmax = 3262, 3194, 1718, 1696 cm−1; MS (ESI)
m/z = 357 [M + H]+; anal. calcd for C19H24N4O3 (356.42): C 64.03,
H 6.79, N 15.72; found: C 64.19, H 6.71, N 15.60.

(7aS*,12bR*,12cR*)-Methyl 8-Methyl-7-(phenylcarbamoyl)-
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3f). The product 3f was isolated by
column chromatography (ethyl acetate/cyclohexane 30:70) in 65%
yield (281.2 mg); white solid; mp: 140−142 °C; 1H NMR (400 MHz,
DMSO-d6) δ 8.67 (s, 1H), 7.61 (dd, J1 = 8.4 Hz, J2 = 0.8 Hz, 2H),
7.29 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.01−7.06 (m, 2H),
6.55 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.32 (d, J = 7.6 Hz, 1H), 6.16
(d, J = 9.6 Hz, 1H), 4.65 (d, J = 9.6 Hz, 1H), 3.60 (s, 3H), 2.73 (s,
3H), 2.70 (d, J = 6.8 Hz, 1H), 2.28−2.35 (m, 1H), 2.05−2.10 (m,
1H), 1.80−1.93 (m, 4H), 1.54−1.64 (m, 1H), 1.22−1.38 (m, 2H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 173.4, 172.3, 154.0, 152.8,
139.3, 129.1, 128.9, 126.6, 124.7, 123.2, 120.4, 116.9, 105.5, 74.5,
55.7, 53.4, 52.7, 37.1, 33.1, 32.3, 30.6, 25.4, 25.1; IR (nujol): υmax =
3345, 1725, 1691 cm−1; MS (ESI) m/z = 433 [M + H]+; anal. calcd
for C25H28N4O3 (432.51): C 69.42, H 6.53, N 12.95; found: C 69.29,
H 6.58, N 13.06.

(7aS* ,12bR*,12cR*)-7-tert-Butyl 12c-Methyl 8-methyl-
1,2,3,4,5,7a,8,12c-octahydrocyclohepta[5,6]pyridazino[3,4-b]-
indole-7,12c(12bH)-dicarboxylate (3g). The product 3g was isolated
by column chromatography (ethyl acetate/cyclohexane 15:85) in 62%
yield (256.4 mg); white solid; mp: 124−126 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.18 (d, J = 7.6 Hz, 1H), 7.01 (dt, J1 = 7.6 Hz, J2 = 0.8
Hz, 1H), 6.51 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.31 (d, J = 7.6 Hz,
1H), 5.92 (d, J = 9.2 Hz, 1H), 4.60 (d, J = 9.2 Hz, 1H), 3.59 (s, 3H),
2.71 (s, 3H), 2.47 (d, J = 7.6 Hz, 2H), 2.30 (t, J = 14.0 Hz, 1H), 2.03
(dd, J1 = 14.0 Hz, J2 = 7.2 Hz, 1H), 1.69−1.82 (m, 4H), 1.46 (s, 9H),
1.18−1.34 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 174.0,
173.6, 152.6, 129.2, 129.1, 126.6, 124.4, 116.7, 105.2, 80.8, 76.1, 54.9,
54.1, 52.5, 36.9, 33.0, 31.4, 30.8, 28.3, 25.3, 24.9; IR (nujol): υmax =
1732, 1730 cm−1; MS (ESI) m/z = 414 [M + H]+; anal. calcd for
C23H31N3O4 (413.51): C 66.81, H 7.56, N 10.16; found: C 66.96, H
7.60, N 10.05.

(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-10-chloro-8-methyl-
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3h). The product 3h was isolated by
column chromatography (ethyl acetate/cyclohexane 45:55) in 90%
yield (351.8 mg); white solid; mp: 161−163 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.14 (dd, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 6.50 (dd, J1 =
8.0 Hz, J2 = 2.0 Hz, 1H), 6.32 (d, J = 2.0 Hz, 1H), 6.10 (d, J = 9.6 Hz,
1H), 4.57 (d, J = 9.6 Hz, 1H), 3.60 (s, 3H), 2.69 (s, 3H), 2.52−2.60
(m, 1H), 2.15−2.21 (m, 1H), 2.01−2.04 (m, 1H), 1.74−1.89 (m,
4H), 1.51−1.56 (m, 1H), 1.16−1.35 (m, 3H), 0.81−0.87 (m, 1H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 173.4, 171.6, 157.3, 154.2,
134.1, 127.7, 123.8, 115.7, 104.7, 74.0, 54.7, 53.2, 52.6, 37.1, 32.9,
31.6, 30.6, 25.3, 25.0; IR (nujol): υmax = 3287, 3215, 1730, 1701
cm−1; MS (ESI) m/z = 391 [M + H]+; anal. calcd for C19H23ClN4O3
(390.86): C 58.38, H 5.93, N 14.33; found: C 58.51, H 5.97, N 14.25.

(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-8,9-dimethyl-
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3i). The product 3i was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 54%
yield (200.1 mg); yellow oil; 1H NMR (400 MHz, DMSO-d6) δ 7.07
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(d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.58 (t, J = 7.6 Hz, 1H),
6.40 (br, 2H), 5.81 (d, J = 10.0 Hz, 1H), 4.66 (d, J = 10.0 Hz, 1H),
3.59 (s, 3H), 2.91 (s, 3H), 2.53 (dd, J1 = 14.0 Hz, J2 = 7.2 Hz, 1H),
2.21−2.32 (m, 1H), 2.17 (s, 3H), 2.03 (dd, J1 = 14.0 Hz, J2 = 7.2 Hz,
1H), 1.71−1.83 (m, 4H), 1.45−1.56 (m, 1H), 1.18−1.33 (m, 2H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 173.2, 169.0, 157.4, 152.1,
131.4, 126.6, 123.8, 118.8, 118.6, 76.8, 54.3, 52.9, 52.1, 36.7, 33.1,
30.3, 24.9, 24.7, 18.9, 14.1; IR (nujol): υmax = 3227, 3217, 1735, 1693
cm−1; MS (ESI) m/z = 371 [M + H]+; anal. calcd for C20H26N4O3
(370.44): C 64.84, H 7.07, N 15.12; found: C 64.69, H 6.99, N 15.24.
(7aS* ,12bR* ,12cR*)-Dimethyl 7-Carbamoyl-8-methyl-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-11,12c-dicarboxylate (3j). The product 3j was isolated by
column chromatography (ethyl acetate/cyclohexane 50:50) in 89%
yield (368.9 mg); white solid; mp: 218−220 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.70 (s, 1H), 7.67 (s, 1H), 6.50 (br, 2H), 6.31 (d, J =
8.0 Hz, 1H), 6.20 (d, J = 9.6 Hz, 1H), 4.65 (d, J = 9.6 Hz, 1H), 3.76
(s, 3H), 3.62 (s, 3H), 2.76 (s, 3H), 2.57 (dd, J1 = 14.0 Hz, J2 = 6.8 Hz,
1H), 2.07−2.19 (m, 2H), 1.77−1.83 (m, 4H), 1.53 (q, J = 12.4 Hz,
1H), 1.16−1.33 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
173.3, 172.3, 166.6, 157.3, 156.4, 132.2, 127.6, 124.6, 116.8, 103.7,
73.7, 54.8, 53.1, 52.7, 51.8, 37.0, 32.8, 30.9, 30.7, 25.3, 24.9; IR
(nujol): υmax = 3267, 3211, 1729, 1727, 1684 cm−1; MS (ESI) m/z =
415 [M + H]+; anal. calcd for C21H26N4O5 (414.45): C 60.86, H 6.32,
N 13.52; found: C 70.01, H 6.26, N 13.41.
(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-11-cyano-8-methyl-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3k). The product 3k was isolated by
column chromatography (ethyl acetate/cyclohexane 45:55) in 84%
yield (320.4 mg); white solid; mp: 273−275 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.49 (s, 1H), 7.44 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H),
6.55 (br, 2H), 6.37 (d, J = 8.4 Hz, 1H), 6.21 (d, J = 9.6 Hz, 1H), 4.65
(d, J = 9.6 Hz, 1H), 3.61 (s, 3H), 2.75 (s, 3H), 2.57 (dd, J1 = 14.0 Hz,
J2 = 6.8 Hz, 1H), 2.15−2.22 (m, 1H), 2.05 (dd, J1 = 14.0 Hz, J2 = 6.8
Hz, 1H), 1.78−1.91 (m, 4H), 1.48−1.59 (m, 1H), 1.32−1.41 (m,
1H), 1.16−1.25 (m, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
173.2, 172.5, 157.2, 155.7, 134.9, 129.9, 125.6, 121.0, 104.6, 96.7,
73.5, 54.6, 53.1, 52.7, 37.0, 32.7, 30.8, 30.5, 25.3, 24.9; IR (nujol):
υmax = 3293, 3219, 1724, 1686 cm−1; MS (ESI) m/z = 382 [M + H]+;
anal. calcd for C20H23N5O3 (381.43): C 62.98, H 6.08, N 18.36;
found: C 62.83, H 6.15, N 18.47.
(7aS* ,12bR* ,12cR*)-Dimethyl 7-Carbamoyl-8-methyl-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-11,12c-dicarboxylate (3l). The product 3l was isolated by
column chromatography (ethyl acetate/cyclohexane 60:40) in 89%
yield (342.2 mg); white solid; mp: 212−214 °C; 1H NMR (400 MHz,
DMSO-d6) δ 9.60 (s, 1H), 7.61 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 6.62
(br, 2H), 6.40 (d, J = 8.0 Hz, 1H), 6.24 (d, J = 10.0 Hz, 1H), 4.68 (d,
J = 10.0 Hz, 1H), 3.61 (s, 3H), 2.79 (s, 3H), 2.57 (dd, J1 = 14.4 Hz, J2
= 7.2 Hz, 1H), 2.08−2.24 (m, 2H), 1.73−1.87 (m, 4H), 1.48−1.57
(m, 1H), 1.15−1.35 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ 190.1, 173.3, 172.7, 157.5, 157.2, 134.8, 127.3, 126.1, 125.4, 103.9,
73.8, 54.8, 52.8, 52.7, 37.1, 32.8, 30.8, 30.7, 25.3, 24.9; IR (nujol):
υmax = 3261, 3213, 1736, 1725, 1690 cm−1; MS (ESI) m/z = 385 [M
+ H]+; anal. calcd for C20H24N4O4 (384.43): C 62.49, H 6.29, N
14.57; found: C 62.35, H 6.33, N 14.44.
(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-8-methyl-11-nitro-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3m). The product 3m was isolated by
column chromatography (ethyl acetate/cyclohexane 20:80) in 92%
yield (369.3 mg); yellow solid; mp: 180−182 °C; 1H NMR (400
MHz, DMSO-d6) δ 8.01 (dd, J1 = 9.2 Hz, J2 = 2.0 Hz, 1H), 7.94 (d, J
= 2.0 Hz, 1H), 6.61 (br, 2H), 6.39 (d, J = 9.2 Hz, 1H), 6.31 (d, J = 9.6
Hz, 1H), 4.72 (d, J = 9.6 Hz, 1H), 3.62 (s, 3H), 2.81 (s, 3H), 2.54−
2.61 (m, 1H), 2.14−2.17 (m, 2H), 1.73−1.94 (m, 4H), 1.48−1.59
(m, 1H), 1.19−1.39 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ 172.6, 172.5, 157.2, 156.6, 136.4, 127.5, 124.8, 122.6, 102.8, 73.5,
54.2, 52.3, 52.2, 36.5, 32.1, 30.4, 30.1, 24.9, 24.4; IR (nujol): υmax =
3362, 3347, 1736, 1692 cm−1; MS (ESI) m/z = 402 [M + H]+; anal.
calcd for C19H23N5O5 (401.41): C 56.85, H 5.78, N 17.45; found: C
57.02, H 5.69, N 17.33.

(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-11-methoxy-8-meth-
yl-1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino-
[3,4-b]indole-12c-carboxylate (3n). The product 3n was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 71%
yield (274.4 mg); white solid; mp: 164−166 °C; 1H NMR (400 MHz,
DMSO-d6) δ 6.79 (d, J = 2.4 Hz, 1H), 6.64 (dd, J1 = 8.4 Hz, J2 = 2.4
Hz, 1H), 6.50 (br, 2H), 6.24 (d, J = 8.4 Hz, 1H), 5.95 (d, J = 9.6 Hz,
1H), 4.51 (d, J = 9.6 Hz, 1H), 3.65 (s, 3H), 3.61 (s, 3H), 2.64 (s,
3H), 2.56 (dd, J1 = 14 Hz, J2 = 6.8 Hz, 1H), 2.14−2.22 (m, 1H),
1.89−2.03 (m, 2H), 1.70−1.81 (m, 3H), 1.47−1.55 (m, 1H), 1.15−
1.35 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 173.6, 169.6,
157.7, 151.8, 147.5, 126.5, 114.5, 113.3, 106.0, 74.7, 56.0, 54.3, 53.3,
52.7, 37.1, 33.6, 32.9, 30.5, 25.4, 25.1; IR (nujol): υmax = 3274, 3215,
1726, 1676 cm−1; MS (ESI) m/z = 387 [M + H]+; anal. calcd for
C20H26N4O4 (386.44): C 62.16, H 6.78, N 14.50; found: C 62.31, H
6.84, N 14.39.

( 7aS* , 12bR* , 12cR* ) -Methy l 7 -Carbamoy l -8 -e thy l -
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3o). The product 3o was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 56%
yield (207.5 mg); white solid; mp: 115−117 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.14 (d, J = 7.6 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.47
(t, J = 7.6 Hz, 1H), 6.35 (br, 2H), 6.25 (d, J = 7.6 Hz, 1H), 6.15 (d, J
= 10.0 Hz, 1H), 4.59 (d, J = 10.0 Hz, 1H), 3.59 (s, 3H), 3.30 (q, J =
6.8 Hz, 2H), 3.07 (sex, J = 7.2 Hz, 1H), 2.57 (dd, J1 = 14.0 Hz, J2 =
7.2 Hz, 1H), 2.19−2.28 (m, 1H), 1.97−2.06 (m, 1H), 1.73−1.88 (m,
3H), 1.47−1.57 (m, 1H), 1.15−1.34 (m, 2H), 0.96 (t, J = 6.8 Hz,
3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 173.2, 171.1, 157.1,
151.2, 128.6, 126.4, 124.2, 115.7, 104.4, 71.6, 54.2, 53.4, 52.1, 38.5,
36.7, 32.7, 30.3, 24.9, 24.5, 11.3; IR (nujol): υmax = 3372, 3346, 1729,
1691 cm−1; MS (ESI) m/z = 371 [M + H]+; anal. calcd for
C20H26N4O3 (370.44): C 64.84, H 7.07, N 15.12; found: C 64.71, H
7.11, N 15.23.

(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-11-methyl-8-propyl-
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3p). The product 3p was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 71%
yield (283.0 mg); white solid; mp: 119−121 °C; 1H NMR (400 MHz,
DMSO-d6) δ 6.96 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.42 (br, 2H),
6.15 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 10.0 Hz, 1H), 4.56 (d, J = 10.0
Hz, 1H), 3.60 (s, 3H), 3.11−3.20 (m, 1H), 2.90−2.98 (m, 1H), 2.57
(dd, J1 = 13.2 Hz, J2 = 7.2 Hz, 1H), 2.23 (q, J = 13.2 Hz, 3H), 2.16 (s,
3H), 2.02 (dd, J1 = 13.2 Hz, J2 = 7.2 Hz, 1H), 1.71−1.93 (m, 3H),
1.16−1.59 (m, 4H), 0.78 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, DMSO-d6) δ 173.8, 171.3, 157.5, 150.2, 129.2, 127.6, 124.7,
124.5, 104.8, 72.9, 54.6, 53.9, 52.6, 46.9, 37.2, 33.2, 30.7, 25.5, 25.0,
20.9, 20.1, 11.8; IR (nujol): υmax = 3291, 3219, 1732, 1688 cm−1; MS
(ESI) m/z = 399 [M + H]+; anal. calcd for C22H30N4O3 (398.50): C
66.31, H 7.59, N 14.06; found: C 66.46, H 7.63, N 13.96.

(7aS* , 12bR* , 12cR* ) -Methy l 8-Benzy l -7-carbamoyl -
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3q). The product 3q was isolated by
column chromatography (ethyl acetate/cyclohexane 35:65) in 79%
yield (341.7 mg); white solid; mp: 158−160 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.16−7.30 (m, 6H), 6.91 (t, J = 7.6 Hz, 1H), 6.51 (t, J =
7.6 Hz, 1H), 6.30 (d, J = 10.0 Hz, 1H), 6.20 (br, 2H), 6.09 (d, J = 8.0
Hz, 1H), 4.71 (d, J = 10.0 Hz, 1H), 4.61 (d, J = 16.8 Hz, 1H), 4.22
(d, J = 16.8 Hz, 1H), 3.60 (s, 3H), 2.65 (dd, J1 = 14.0 Hz, J2 = 6.8 Hz,
1H), 2.30 (t, J = 12.4 Hz, 1H), 2.07 (dd, J1 = 14.0 Hz, J2 = 6.8 Hz,
1H), 1.92 (t, J = 12.4 Hz, 1H), 1.72−1.86 (m, 3H), 1.57 (q, J = 12.4
Hz, 1H), 1.19−1.37 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ 173.3, 171.5, 157.2, 151.8, 138.7, 128.5, 128.3, 126.8, 126.6, 126.5,
124.3, 116.4, 105.2, 72.9, 54.3, 53.7, 52.2, 49.1, 36.8, 32.8, 30.3, 25.0,
24.6; IR (nujol): υmax = 3279, 3208, 1733, 1678 cm−1; MS (ESI) m/z
= 433 [M + H]+; anal. calcd for C25H28N4O3 (432.51): C 69.42, H
6.53, N 12.95; found: C 69.57, H 6.59, N 12.84.

( 7 a S * , 1 2 b R * , 1 2 c R * ) - M e t h y l 7 - C a r b a m o y l -
1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3r). The product 3r was isolated by
column chromatography (ethyl acetate/cyclohexane 50:50) in 89%
yield (304.7 mg); white solid; mp: 165−167 °C; 1H NMR (400 MHz,
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DMSO-d6) δ 7.14 (d, J = 7.6 Hz, 1H), 6.92 (dt, J1 = 7.6 Hz, J2 = 1.2
Hz, 1H), 6.49 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.44 (d, J = 7.6 Hz,
1H), 6.47 (br, 2H), 6.40 (d, J = 2.0 Hz, 1H), 5.75 (dd, J1 = 9.6 Hz, J2
= 2.0 Hz, 1H), 4.29 (d, J = 9.6 Hz, 1H), 3.65 (s, 3H), 2.55 (dd, J1 =
14.4 Hz, J2 = 5.6 Hz, 1H), 2.32 (t, J = 12.8 Hz, 1H), 1.98 (t, J = 12.8
Hz, 2H), 1.71−1.82 (m, 3H), 1.41−1.55 (m, 1H), 1.20−1.35 (m,
2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 172.8, 161.9, 157.6,
151.6, 128.2, 125.6, 124.5, 116.8, 108.0, 69.0, 53.1, 52.3, 51.1, 36.7,
32.2, 29.6, 25.2, 24.8; IR (nujol): υmax = 3426, 3251, 3228, 1737, 1692
cm−1; MS (ESI) m/z = 343 [M + H]+; anal. calcd for C18H22N4O3
(342.39): C 63.14, H 6.48, N 16.36; found: C 62.97, H 6.56, N 16.49.
(7aS* ,12bR* ,12cR* )-Methyl 7-Carbamoyl-11-methyl-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3s). The product 3s was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 66%
yield (235.2 mg); white solid; mp: 198−200 °C; 1H NMR (400 MHz,
DMSO-d6) δ 6.95 (s, 1H), 6.75 (d, J = 7.6 Hz, 1H), 6.41 (br, 2H),
6.38 (d, J = 7.6 Hz, 1H), 6.09 (s, 1H), 5.74 (dd, J1 = 9.2 Hz, J2 = 2.0
Hz, 1H), 4.20 (d, J = 9.2 Hz, 1H), 3.67 (s, 3H), 2.56 (dd, J1 = 14.4
Hz, J2 = 5.6 Hz, 1H), 2.31 (t, J = 12.8 Hz, 1H), 2.05 (t, J = 12.8 Hz,
1H), 1.95 (dd, J1 = 14.4 Hz, J2 = 5.6 Hz, 1H), 2.16 (s, 3H), 1.71−1.86
(m, 3H), 1.23−1.51 (m, 3H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ 172.7, 160.7, 157.4, 149.1, 128.5, 126.1, 125.4, 124.9, 108.1, 69.1,
52.8, 52.1, 50.7, 36.6, 31.9, 29.3, 25.2, 24.7, 20.5; IR (nujol): υmax =
3327, 3271, 1734, 1693 cm−1; MS (ESI) m/z = 357 [M + H]+; anal.
calcd for C19H24N4O3 (356.41): C 64.03, H 6.79, N 15.72; found: C
63.90, H 6.83, N 15.84.
(7aS* ,12bR* ,12cR* ) -Methyl 7-Carbamoyl-8-methyl -

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[c]pyrido[3′,2′:4,5]-
pyrrolo[3,2-e]pyridazine-12c-carboxylate (3t). The product 3t was
isolated by column chromatography (ethyl acetate/cyclohexane
80:20) in 85% yield (303.8 mg); white solid; mp: 222−224 °C; 1H
NMR (400 MHz, DMSO-d6) δ 7.74 (d, J = 4.8 Hz, 1H), 7.42 (d, J =
7.2 Hz, 1H), 6.59 (br, 1H), 6.40 (t, J = 6.8 Hz, 1H), 6.27 (br, 1H),
6.12 (d, J = 10.0 Hz, 1H), 4.58 (d, J = 10.0 Hz, 1H), 3.60 (s, 3H),
2.76 (s, 3H), 2.58 (dd, J1 = 14.4 Hz, J2 = 6.8 Hz, 1H), 2.14−2.20 (m,
1H), 1.98−2.05 (m, 1H), 1.77−1.85 (m, 4H), 1.51 (q, J = 12.4 Hz,
1H), 1.16−1.32 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
173.2, 172.2, 162.4, 157.4, 147.1, 133.6, 118.7, 112.0, 71.1, 54.8, 52.7,
51.7, 37.1, 32.9, 30.7, 29.2, 25.3, 24.9; IR (nujol): υmax = 3355, 3296,
1736, 1689 cm−1; MS (ESI) m/z = 358 [M + H]+; anal. calcd for
C18H23N5O3 (357.41): C 60.49, H 6.49, N 19.59; found: C 60.63, H
6.41, N 19.48.
( 8aS* , 13bR* , 13cR* ) - E thy l 8 -Carbamoy l -9 -methy l -

2,3,4,5,6,8,8a,9,13b,13c-decahydro-1H-cycloocta[5,6]pyridazino-
[3,4-b]indole-13c-carboxylate (3u). The product 3u was isolated by
column chromatography (ethyl acetate/cyclohexane 30:70) in 46%
yield (177.5 mg); white solid; mp: 182−184 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.13 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.98 (d, J = 7.2
Hz, 1H), 6.72 (s, 2H), 6.67 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.50 (d,
J = 8.0 Hz, 1H), 5.61 (dd, J = 8.4 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H),
3.72 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.33−2.40 (m, 2H), 1.90−1.98
(m, 1H), 1.47−1.75 (m, 7H), 1.28 (t, J = 7.2 Hz, 3H), 1.21−1.30 (m,
2H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 172.2, 157.6, 156.4,
151.7, 128.7, 125.5, 124.7, 117.7, 106.8, 71.4, 61.0, 50.2, 45.9, 34.1,
33.1, 29.0, 25.9, 25.8, 25.7, 23.4, 13.8; IR (nujol): υmax = 3408, 3394,
1720, 1684 cm−1; MS (ESI) m/z = 385 [M + H]+; anal. calcd for
C21H28 N4 O3 (384.47): C 65.60, H 7.34, N 14.57; found: C 65.74, H
7.39, N 14.43.
(8aS* ,13bR* ,13cR*)-8-tert-Butyl 13c-Ethyl 9-methyl-

3,4,5,6,8a,9,13b,13c-octahydro-1H-cycloocta[5,6]pyridazino[3,4-
b]indole-8,13c(2H)-dicarboxylate (3v). The product 3v was isolated
by column chromatography (ethyl acetate/cyclohexane 10:90) in 43%
yield (189.9 mg); white solid; mp: 157−159 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.14 (d, J = 8.0 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.53
(t, J = 7.6 Hz, 1H), 6.36 (d, J = 8.0 Hz, 1H), 5.74 (d, J = 9.2 Hz, 1H),
4.40 (d, J = 9.2 Hz, 1H), 3.98−4.18 (m, 2H), 3.37 (s, 1H), 2.72 (s,
3H), 2.25−2.34 (m, 1H), 2.14−2.18 (m, 1H), 1.91−2.13 (m, 2H),
1.52−1.70 (m, 6H), 1.47 (s, 9H), 1.31−1.42 (m, 1H), 1.19 (t, J = 7.2
Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 171.8, 170.2,
152.5, 151.9, 128.6, 125.2, 124.4, 116.7, 105.3, 80.4, 74.9, 60.9, 53.3,

53.2, 32.6, 31.3, 31.0, 27.8, 27.7, 25.6, 25.2, 24.7, 13.7; IR (nujol):
υmax = 1732, 1724 cm−1; MS (ESI) m/z = 442 [M + H]+; anal. calcd
for C25H35N3O4 (441.56): C 68.00, H 7.99, N 9.52; found: C 67.87,
H 7.93, N 9.64.

(8aS* ,13bR* ,13cR* )-8-tert-Butyl 13c-Ethyl 9-benzyl-
3,4,5,6,8a,9,13b,13c-octahydro-1H-cycloocta[5,6]pyridazino[3,4-
b]indole-8,13c(2H)-dicarboxylate (3w). The product 3w was isolated
by column chromatography (ethyl acetate/cyclohexane 10:90) in 50%
yield (258.8 mg); yellowish oil; 1H NMR (400 MHz, DMSO-d6) δ
7.17−7.32 (m, 6H), 6.92 (t, J = 7.6 Hz, 1H), 6.52 (t, J = 7.6 Hz, 1H),
6.10 (d, J = 8.0 Hz, 1H), 6.02 (d, J = 9.6 Hz, 1H), 4.73 (d, J = 9.6 Hz,
1H), 4.65 (d, J = 17.2 Hz, 1H), 4.24 (d, J = 17.2 Hz, 1H), 3.93−4.14
(m, 2H), 2.43−2.49 (m, 1H), 2.26−2.30 (m, 1H), 2.11−2.16 (m,
1H), 1.93−2.01 (m, 1H), 1.38−1.78 (m, 8H), 1.23 (s, 9H), 1.17 (t, J
= 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 173.5, 171.9,
152.4, 151.1, 138.7, 128.5, 128.4, 126.6, 126.1, 125.6, 124.1, 116.6,
104.9, 80.2, 75.5, 60.8, 55.8, 53.8, 49.2, 32.3, 31.7, 28.3, 27.5, 25.8,
25.6, 24.5, 13.7; IR (nujol): υmax = 1731, 1723 cm−1; MS (ESI) m/z =
518 [M + H]+; anal. calcd for C31H39N3O4 (517.66): C 71.93, H 7.59,
N 8.12; found: C 71.76, H 7.65, N 8.26.

(8aS*,13bR*,13cR*)-Ethyl 8-Carbamoyl-2,3,4,5,6,8,8a,9,13b,13c-
decahydro-1H-cycloocta[5,6]pyridazino[3,4-b]indole-13c-carboxy-
late (3x). The product 3x was isolated by column chromatography
(ethyl acetate/cyclohexane 30:70) in 37% yield (136.9 mg); white
solid; mp: 168−170 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.01 (t, J
= 7.2 Hz, 1H), 6.71 (s, 2H), 6.70 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 8.0
Hz, 1H), 6.59 (t, J = 7.2 Hz, 1H), 6.10 (d, J = 4.0 Hz, 1H), 5.55 (dd,
J1 = 8.8 Hz, J2 = 4.0 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 3.44 (d, J = 8.8
Hz, 1H), 2.66 (dd, J1 = 14.4 Hz, J2 = 6.8 Hz, 1H), 2.37−2.46 (m,
1H), 1.90−1.99 (m, 1H), 1.32−1.64 (m, 8H), 1.29 (t, J = 7.2 Hz,
3H), 1.07−1.19 (m, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
172.0, 158.1, 151.9, 150.3, 128.6, 124.9, 124.3, 117.8, 109.4, 68.3,
61.1, 49.3, 45.6, 35.1, 27.9, 26.0, 24.2, 21.9, 21.3, 13.9; IR (nujol):
υmax = 3332, 3315, 3298, 1731, 1688 cm−1; MS (ESI) m/z = 371 [M
+ H]+; anal. calcd for C20H26 N4 O3 (370.44): C 64.84, H 7.07, N
15.12; found: C 64.98, H 6.99, N 15.02.

(4S*,4aS*,9aS*)-Ethyl 1-Carbamoyl-3,9-dimethyl-4,4a,9,9a-tet-
rahydro-1H-pyridazino[3,4-b]indole-4-carboxylate ((cis,cis)-3z).
The more polar product was isolated by column chromatography
(ethyl acetate/cyclohexane 20:80); amorphous white solid; 1H NMR
(400 MHz, DMSO-d6) δ 7.01−7.07 (m, 2H), 6.64 (s, 2H), 6.59 (dt,
J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.39 (d, J = 7.6 Hz, 1H), 5.74 (d, J = 8.0
Hz, 1H), 3.94 (t, J = 8.0 Hz, 1H), 3.71−3.88 (m, 2H), 3.54 (d, J = 8.0
Hz, 1H), 2.63 (s, 3H), 1.92 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 169.0, 157.5, 151.9, 151.7, 129.1,
127.3, 125.4, 117.8, 107.1, 70.8, 60.9, 44.6, 33.0, 23.0, 14.1; IR
(nujol): υmax = 3309, 3298, 1729, 1678 cm−1; MS (ESI) m/z = 317
[M + H]+; anal. calcd for C16H20 N4 O3 (316.35): C 60.75, H 6.37, N
17.71; found: C 60.64, H 6.49, N 17.56.

During the course of the reaction, the following workup, and the
long standing in DMSO-d6 solution at 20 °C for 24 h, the
diastereomer (cis,cis)-3z gives a partial isomerization to more stable
(cis,trans)-3z together with the ring-opening reaction leading to the
byproduct 4a. Diastereomers 3z were isolated in a combined yield of
32%, based on the amount of 1,2-diaza-1,3-diene consumed.

The relative configurations of diastereomers 3z were assigned by
means of two-dimensional (2D) NOESY experiments.

(4R*,4aS*,9aS*)-Ethyl 1-Carbamoyl-3,9-dimethyl-4,4a,9,9a-tet-
rahydro-1H-pyridazino[3,4-b]indole-4-carboxylate ((cis,trans)-3z).
The less polar product was isolated by column chromatography
(ethyl acetate/cyclohexane 20:80); amorphous white solid; 1H NMR
(400 MHz, DMSO-d6) δ 7.03−7.11 (m, 2H), 6.34 (dt, J1 = 7.6 Hz, J2
= 0.8 Hz, 1H), 6.58 (s, 2H), 6.46 (d, J = 7.6 Hz, 1H), 5.72 (d, J = 8.4
Hz, 1H), 4.11−4.24 (m, 2H), 3.84 (dd, J1 = 8.4 Hz, J2 = 6.0 Hz, 1H),
3.29 (d, J = 6.0 Hz, 1H), 2.68 (s, 3H), 1.90 (s, 3H), 1.20 (t, J = 7.2
Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 170.2, 157.3,
151.8, 150.8, 129.1, 129.0, 123.6, 118.3, 107.3, 70.3, 61.6, 46.4, 33.0,
23.1, 14.4; IR (nujol): υmax = 3314, 3306, 1736, 1682 cm−1; MS (ESI)
m/z = 317 [M + H]+; anal. calcd for C16H20 N4 O3 (316.35): C 60.75,
H 6.37, N 17.71; found: C 60.64, H 6.49, N 17.56.
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(4S*,4aS*,9aS*)-Ethyl 1-Carbamoyl-3,4a-dimethyl-4,4a,9,9a-
tetrahydro-1H-pyridazino[3,4-b]indole-4-carboxylate ((cis,cis)-
3ab). NOESY correlations allowed the assignment of the relative
stereochemistry. The compound partially isomerized to (cis,trans)-3ab
when allowed to stand in a CDCl3 solution at 20 °C for 24 h, while no
conversion was observed using DMSO-d6 as a solvent. The product
was isolated by column chromatography (ethyl acetate/cyclohexane
30:70) in 24% yield (75.9 mg); white solid; mp: 171−173 °C; 1H
NMR (400 MHz, DMSO-d6) δ 7.21 (d, J = 7.6 Hz, 1H), 6.96 (t, J =
7.6 Hz, 1H), 6.58−6.65 (m, 3H), 6.54 (d, J = 7.6 Hz, 1H), 5.97 (d, J
= 2.8 Hz, 1H), 5.25 (d, J = 2.8 Hz, 1H), 3.57−3.80 (m, 2H), 3.28 (s,
1H), 1.91 (s, 3H), 1.34 (s, 3H), 0.88 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 168.5, 157.5, 149.5, 145.2, 131.6,
128.5, 124.4, 118.0, 109.7, 73.1, 60.8, 51.1, 44.2, 25.4, 23.1, 13.9; IR
(nujol): υmax = 3338, 3306, 3301, 1728, 1694 cm−1; MS (ESI) m/z =
317 [M + H]+; anal. calcd for C16H20 N4 O3 (316.35): C 60.75, H
6.37, N 17.71; found: C 60.59, H 6.31, N 17.58.
(7aS*,12bR*,12cR*)-Methyl 7-Carbamoyl-8,12b-dimethyl-

1,2,3,4,5,7,7a,8,12b,12c-decahydrocyclohepta[5,6]pyridazino[3,4-
b]indole-12c-carboxylate (3ad). The product 3ad was isolated by
column chromatography (ethyl acetate/cyclohexane 60:40) in 40%
yield (148.2 mg); white solid; mp: 127−129 °C; 1H NMR (400 MHz,
DMSO-d6) δ 7.17 (d, J = 7.6 Hz, 1H), 7.02 (dt, J1 = 7.6 Hz, J2 = 0.8
Hz, 1H), 6.58 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.45 (br, 2H), 6.38
(d, J = 7.6 Hz, 1H), 5.39 (s, 1H), 3.59 (s, 3H), 2.71 (s, 3H), 2.53−
2.57 (m, 1H), 2.13−2.24 (m, 1H), 1.91−2.05 (m, 2H), 1.65−1.80
(m, 3H), 1.52 (s, 3H), 1.12−1.43 (m, 3H); 13C{1H} NMR (100
MHz, DMSO-d6) δ 172.2, 166.0, 156.5, 150.9, 132.0, 128.2, 123.6,
117.3, 106.0, 78.6, 55.7, 52.3, 51.5, 36.2, 31.8, 29.7, 29.0, 25.1, 24.9,
22.2; IR (nujol): υmax = 3347, 3298, 1729, 1698 cm−1; HRMS (ESI)
calcd for C20H27N4O3[M + H]+: 371.2083; found: 371.2069.
N-Phenyl-3,4,7,11c-tetrahydro-1H-6a,11b-propanoindolo[2,3-c]-

cinnoline-6(2H)-carboxamide (3ae). The product 3ae was isolated
by column chromatography (ethyl acetate/cyclohexane 15:85) in 67%
yield (258.9 mg); whitish oil; 1H NMR (400 MHz, DMSO-d6) δ 8.54
(s, 1H), 7.41−7.58 (m, 2H), 7.26 (t, J = 7.6 Hz, 2H), 6.93−7.01 (m,
3H), 6.14−6.61 (m, 3H), 1.40−2.18 (m, 15H); 13C{1H} NMR (100
MHz, DMSO-d6) δ 156.2, 150.1, 139.5, 133.5, 128.6, 127.1, 122.9,
121.8, 118.5, 117.8, 113.2, 108.9, 100.6, 68.9, 26.4, 25.2, 25.1, 22.4,
22.1, 21.2, 20.8, 20.7; IR (nujol): υmax = 3375, 3246, 1696 cm−1; MS
(ESI) m/z = 387 [M + H]+; anal. calcd for C24H26N4O (386.49): C
74.58, H 6.78, N 14.50; found: C 74.42, H 6.86, N 14.62.
Methyl 3,4a,9a-Trimethyl-4-phenyl-4,4a,9,9a-tetrahydro-1H-

pyridazino[3,4-b]indole-1-carboxylate (3af). The product 3af was
isolated by column chromatography (ethyl acetate/cyclohexane
20:80) in 22% yield (76.9 mg); white solid; mp: 186−188 °C, 1H
NMR (400 MHz, CDCl3) δ 7.01−7.12 (m, 3H), 6.88 (dt, J1 = 7.6 Hz,
J2 = 1.2 Hz, 1H), 6.81−6.85 (m, 2H), 6.67 (d, J = 8.0 Hz, 1H), 6.62
(dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.25 (d, J = 8.0 Hz, 1H), 5.38 (s,
1H), 3.90 (s, 3H), 3.39 (s, 1H), 2.10 (s, 3H), 1.67 (s, 3H), 1.49 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 157.8, 155.3, 147.7, 134.2,
131.5, 130.0, 128.3, 127.4, 127.1, 123.9, 118.3, 108.9, 82.8, 54.9, 53.5,
52.3, 24.3, 23.4, 21.7; IR (nujol): υmax = 3290, 1736 cm−1; MS (ESI)
m/z = 433 [M + H]+; anal. calcd for C21H23N3O2 (349.43): C 72.18,
H 6.63, N 12.03; found: C 72.03, H 6.72, N 12.17.
General Procedure for the Formal [3 + 2] Cycloaddition

Reactions of Indoles 1 with Linear Azoalkenes 2. A mixture of
indole 1 (0.6 mmol), azoalkene 2 (0.4 mmol), and zinc dichloride
(0.04 mmol, 5.45 mg) was stirred in dry dichloromethane (2 mL).
After the disappearance of azoalkene 2 (TLC check), the crude
mixture was purified by column chromatography on silica gel to afford
product 5.
(3aR* ,8aS* )-Ethyl 2,3a-Dimethyl-1-ureido-1,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-3-carboxylate (5a). The product
5a was isolated by column chromatography (ethyl acetate/cyclo-
hexane 40:60) in 27% yield (85.3 mg); white solid; mp: 218−220 °C;
1H NMR (400 MHz, DMSO-d6) δ 10.74 (s, 1H), 9.23 (s, 1H), 7.43
(d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H),
6.96 (t, J = 7.6 Hz, 1H), 6.23 (br, 2H), 4.94 (s, 1H), 4.16 (q, J = 7.2
Hz, 2H), 2.20 (s, 3H), 1.82 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 170.1, 157.6, 145.1, 136.2, 128.8,

128.5, 121.5, 118.7, 118.5, 111.6, 108.4, 61.3, 52.0, 15.6, 14.5, 8.8; IR
(nujol): υmax = 3478, 3464, 3328, 3321, 1725, 1688 cm−1; MS (ESI)
m/z = 317 [M + H]+; anal. calcd for C16H20 N4 O3 (316.35): C 60.75,
H 6.37, N 17.71; found: C 60.88, H 6.29, N 17.84.

(3aR*,8aS*)-Methyl 1-((Methoxycarbonyl)amino)-2,3a,8-tri-
methyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5b). The product 5b was isolated by column chromatography (ethyl
acetate/cyclohexane 30:70) in 46% yield (60.9 mg); white solid; mp:
127−129 °C; 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 7.6 Hz,
1H), 7.09 (dt, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H), 6.84 (br, 1H), 6.72 (dt, J1
= 7.6 Hz, J2 = 0.8 Hz, 1H), 6.45 (d, J = 7.6 Hz, 1H), 4.92 (s, 1H),
3.79 (s, 3H), 3.75 (s, 3H), 2.96 (s, 3H), 2.09 (s, 3H), 1.67 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 166.5, 160.0, 156.1, 149.7,
134.7, 127.9, 124.9, 118.8, 106.9, 106.6, 96.1, 54.5, 53.2, 50.5, 34.8,
25.4, 12.5; IR (nujol): υmax = 3287, 1739, 1701 cm−1; HRMS (ESI)
calcd for C17H22N3O4[M + H]+: 332.1610; found: 332.1639.

(3aR*,8aS*)-Methyl 1-((Methoxycarbonyl)amino)-2,3a,8a-tri-
methyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5c). The product 5c was isolated by column chromatography on
silica gel (ethyl acetate/cyclohexane 20:80) in 58% yield (76.9 mg);
white solid; mp: 128−130 °C; 1H NMR (400 MHz, DMSO-d6) δ
9.31 (s, 1H), 7.28 (d, J = 7.6 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.55
(t, J = 7.6 Hz, 1H), 6.42 (d, J = 7.6 Hz, 1H), 6.13 (s, 1H), 3.65 (s,
3H), 3.59 (s, 3H), 2.01 (s, 3H), 1.46 (s, 3H), 1.26 (s, 3H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 165.5, 159.1, 157.1, 148.7, 133.7,
126.9, 124.7, 117.3, 107.9, 102.8, 92.8, 55.3, 52.1, 49.8, 19.6, 18.6,
12.0; IR (nujol): υmax = 3274, 1739, 1698 cm−1; MS (ESI) m/z = 332
[M + H]+; anal. calcd for C17H21N3O4 (331.36): C 61.62, H 6.39, N
12.68; found: C 61.74, H 6.31, N 12.57.

(3aR*,8aS*)-Benzyl 1-((tert-Butoxycarbonyl)amino)-2,3a,8a-tri-
methyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5d). The product 5d was isolated by column chromatography on
silica gel (ethyl acetate/cyclohexane 20:80) in 88% yield (158.3 mg);
white solid; mp: 149−151 °C; 1H NMR (400 MHz, DMSO-d6) δ
9.02 (s, 1H), 7.29−7.54 (m, 5H), 7.20 (d, J = 7.6 Hz, 1H), 6.86 (t, J =
7.6 Hz, 1H), 6.45 (t, J = 7.6 Hz, 1H), 6.41 (d, J = 7.6 Hz, 1H), 6.13
(s, 1H), 5.10 (s, 2H), 2.03 (s, 3H), 1.46 (s, 3H), 1.43 (s, 9H), 1.27 (s,
3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 164.9, 159.9, 155.6,
148.6, 137.1, 133.9, 128.3, 127.9, 127.7, 126.8, 124.9, 117.2, 107.8,
101.5, 92.8, 79.5, 64.1, 55.4, 27.9, 19.8, 18.4, 12.1; IR (nujol): υmax =
3363, 3324, 1741, 1696 cm−1; HRMS (ESI) calcd for C26H32N3O4[M
+ H]+: 450.2393; found: 450.2411.

(3aR*,8aS*)-Ethyl 2,3a,8a-Trimethyl-1-ureido-1,3a,8,8a-
tetrahydropyrrolo[2,3-b]indole-3-carboxylate (5e). The product 5e
was isolated by column chromatography on silica gel (ethyl acetate/
cyclohexane 70:30) in 68% yield (89.9 mg); white solid; mp: 171−
173 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.63 (s, 1H), 7.30 (d, J =
6.4 Hz, 1H), 6.88 (t, J = 6.4 Hz, 1H), 6.56 (t, J = 6.4 Hz, 1H), 6.43
(d, J = 6.4 Hz, 1H), 6.17 (br, 2H), 6.01 (br, 1H), 4.05 (q, J = 7.2 Hz,
2H), 2.07 (s, 3H), 1.51 (s, 3H), 1.28 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 164.9, 159.7, 159.3, 148.9,
133.1, 126.7, 124.9, 117.0, 107.7, 102.5, 92.9, 58.2, 55.2, 18.6, 15.1,
14.3, 12.1; IR (nujol): υmax = 3482, 3467, 3338, 3325, 1731, 1684
cm−1; HRMS (ESI) calcd for C17H23N4O3[M + H]+: 331.1770;
found: 331.1791.

(3aR*,8aS*)-Methyl 2,3a,8a-Trimethyl-1-(3-phenylureido)-
1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate (5f). The
product 5f was isolated by column chromatography on silica gel
(ethyl acetate/cyclohexane 70:30) in 88% yield (138.1 mg); white
solid; mp: 226−228 °C; 1H NMR (400 MHz, DMSO-d6) δ 8.41 (br,
2H), 7.19−7.77 (m, 5H), 6.86−7.05 (m, 2H), 6.41−6.72 (m, 2H),
6.15 (br, 1H), 3.62 (s, 3H), 2.10 (s, 3H), 1.54 (s, 3H), 1.33 (s, 3H);
13C{1H} NMR (100 MHz, DMSO-d6) δ 165.5, 159.6, 155.6, 148.6,
139.1, 133.3, 128.5, 126.9, 124.8, 122.1, 118.9, 118.3, 117.6, 108.1,
93.0, 55.4, 49.8, 20.6, 18.8, 12.3; IR (nujol): υmax = 3389, 3282, 3270,
1726, 1694 cm−1; HRMS (ESI) calcd for C22H25N4O3[M + H]+:
393.1927; found: 393.1963.

(3aR*,8aS*)-Methyl 2-Ethyl-1-((methoxycarbonyl)amino)-3a,8a-
dimethyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5g). The product 5g was isolated by column chromatography on
silica gel (ethyl acetate/cyclohexane 25:75) in 73% yield (100.9 mg);
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white solid; mp: 157−159 °C; 1H NMR (400 MHz, CDCl3) δ 7.48
(d, J = 7.6 Hz, 1H), 7.01 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.80 (dt, J1
= 7.6 Hz, J2 = 1.2 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.38 (br, 1H),
3.86 (br, 1H), 3.80 (s, 3H), 3.68 (s, 3H), 2.47−2.68 (m, 2H), 1.62 (s,
3H), 1.42 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 165.8, 163.8, 156.9, 147.6, 134.2, 127.5, 126.0, 120.1,
109.5, 105.9, 93.4, 56.4, 53.1, 50.4, 20.0, 19.7, 19.4, 12.5; IR (nujol):
υmax = 3332, 3275, 1727, 1692 cm−1; HRMS (ESI) calcd for
C18H24N3O4[M + H]+: 346.1767; found: 346.1761.
(3aS*,8bR*)-Methyl 11-((Methoxycarbonyl)amino)-10-methyl-

1,2,3,4-tetrahydro-3a,8b-(epiminoetheno)cyclopenta[b]indole-9-
carboxylate (5h). The product 5h was isolated by column
chromatography on silica gel (ethyl acetate/cyclohexane 20:80) in
98% yield (134.8 mg); white solid; mp: 150−152 °C; 1H NMR (400
MHz, CDCl3) δ 7.54 (d, J = 7.6 Hz, 1H), 7.02 (dt, J1 = 7.6 Hz, J2 =
1.2 Hz, 1H), 6.79 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.62 (br, 1H),
6.61 (d, J = 7.6 Hz, 1H), 4.16 (br, 1H), 3.79 (s, 3H), 3.75 (s, 3H),
2.16−2.45 (m, 3H), 2.14 (s, 3H), 1.60−1.88 (m, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 166.6, 159.5, 157.3, 148.7, 135.4, 127.8, 125.9,
120.7, 110.3, 104.3, 99.9, 67.3, 53.2, 50.5, 41.0, 40.2, 25.3, 12.4; IR
(nujol): υmax = 3370, 3302, 1718, 1662 cm−1; HRMS (ESI) calcd for
C18H22N3O4 [M + H]+: 344.1610; found: 344.1606.
(4bR*,8aS*)-Methyl 10-((Methoxycarbonyl)amino)-11-methyl-

6,7,8,9-tetrahydro-5H-8a,4b-(epiminoetheno)carbazole-12-car-
boxylate (5i). The product 5i was isolated by column chromatog-
raphy on silica gel (ethyl acetate/cyclohexane 30:70) in 95% yield
(135.8 mg); yellowish solid; mp: 121−123 °C; 1H NMR (400 MHz,
DMSO-d6) δ 9.27 (s, 1H), 7.26 (d, J = 7.6 Hz, 1H), 6.89 (t, J = 7.6
Hz, 1H), 6.57 (t, J = 7.6 Hz, 1H), 6.45 (d, J = 7.6 Hz, 1H), 6.04 (s,
1H), 3.64 (s, 3H), 3.58 (s, 3H), 2.04 (s, 3H), 1.40 (s, 8H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ 165.6, 159.2, 157.1, 149.6, 132.6,
126.8, 124.4, 117.4, 108.3, 103.4, 91.3, 55.0, 52.0, 49.8, 30.3, 26.3,
18.9, 18.5, 12.0; IR (nujol): υmax = 3370, 3302, 1736, 1697 cm−1;
HRMS (ESI) calcd for C19H24N3O4 [M + H]+: 358.1767; found:
358.1782.
(3aR*,8aS*)-Methyl 5-Chloro-3a-ethyl-1-((methoxycarbonyl)-

amino)-2,8a-dimethyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-
carboxylate (5j). The product 5j was isolated by column
chromatography (ethyl acetate/cyclohexane 30:70) in 85% yield
(129.2 mg); white solid; mp: 113−115 °C; 1H NMR (400 MHz,
DMSO-d6) δ 9.34 (s, 1H), 7.19 (d, J = 2.0 Hz, 1H), 6.89 (dd, J1 = 8.4
Hz, J2 = 2.0 Hz, 1H), 6.39 (d, J = 8.4 Hz, 1H), 6.27 (br, 1H), 3.64 (s,
3H), 3.58 (s, 3H), 2.26−2.42 (m, 1H), 2.05 (s, 3H), 1.63−1.79 (m,
1H), 1.31 (s, 3H), 0.60−0.89 (m, 3H); 13C{1H} NMR (100 MHz,
DMSO-d6) δ 165.3, 160.0, 156.9, 148.1, 134.8, 126.5, 124.9, 120.3,
108.6, 99.5, 93.3, 59.2, 52.1, 49.9, 17.9, 15.1, 11.9, 9.0; IR (nujol):
υmax = 3360, 3266, 1739, 1694 cm−1; HRMS (ESI) calcd for
C18H23N3O4Cl [M + H]+: 380.1377; found: 380.1374.
(3aR*,8aS*)-Methyl 3a-Ethyl-5-methoxy-1-((methoxycarbonyl)-

amino)-2,8a-dimethyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-
carboxylate (5k). The product 5k was isolated by column
chromatography (ethyl acetate/cyclohexane 40:60) in 98% yield
(147.2 mg); white solid; mp: 153−155 °C; 1H NMR (400 MHz,
DMSO-d6) δ 9.28 (s, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.49 (dd, J1 = 8.0
Hz, J2 = 2.4 Hz, 1H), 6.34 (d, J = 8.0 Hz, 1H), 5.64 (s, 1H), 3.64 (s,
3H), 3.63 (s, 3H), 3.58 (s, 3H), 2.27−2.45 (m, 1H), 2.06 (s, 3H),
1.60−1.79 (m, 1H), 1.30 (s, 3H), 0.69−0.91 (m, 3H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ 166.1, 160.5, 157.6, 152.5, 143.6, 134.6,
112.5, 112.3, 108.5, 100.3, 93.9, 59.9, 55.8, 52.5, 50.3, 25.0, 18.5, 12.4,
9.6; IR (nujol): υmax = 3369, 3267, 1754, 1693 cm−1; HRMS (ESI)
calcd for C19H26N3O5[M + H]+: 376.1872; found: 376.1837.
(5aS*,10aR*)-Methyl 2-Methoxy-13-((methoxycarbonyl)amino)-

12-methyl-5,6,7,8,9,10-hexahydro-5a,10a-(epiminoetheno)-
cyclohepta[b]indole-11-carboxylate (5l). The product 5l was
isolated by column chromatography on silica gel (ethyl acetate/
cyclohexane 30:70) in 60% yield (96.4 mg); brown solid; mp: 166−
168 °C; 1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 2.8 Hz, 1H), 6.72
(br, 1H), 6.57 (dd, J1 = 8.4 Hz, J2 = 2.8 Hz, 1H), 6.49 (d, J = 8.4 Hz,
1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.69 (s, 3H), 3.62 (br, 1H), 2.16 (s,
3H), 1.42 (s, 10H); 13C{1H} NMR (100 MHz, CDCl3) δ 166.2,
160.1, 156.9, 154.3, 140.7, 137.3, 113.1, 112.0, 110.2, 103.7, 95.9,

63.2, 55.9, 52.9, 50.3, 35.8, 33.9, 30.8, 27.0, 25.5, 12.9; IR (nujol):
υmax = 3392, 3317, 1738, 1691 cm−1; MS (ESI) m/z = 332 [M + H]+;
anal. calcd for C21H27N3O5 (401.45): C 62.83, H 6.78, N 10.47;
found: C 62.98, H 6.70, N 10.36.

(3aR*,8aS*)-Ethyl 1-((Ethoxycarbonyl)amino)-2,3a,5,8a-tetra-
methyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5m). The product 5m was isolated by column chromatography (ethyl
acetate/cyclohexane 30:70) in 47% yield (70.2 mg); white solid; mp:
151−153 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.19 (s, 1H), 7.13
(d, J = 1.2 Hz, 1H), 6.69 (dd, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 6.33 (d, J
= 8.0 Hz, 1H), 5.88 (s, 1H), 3.98−4.20 (m, 4H), 2.15 (s, 3H), 2.02
(s, 3H), 1.44 (s, 3H), 1.15−1.31 (m, 9H); 13C{1H} NMR (100 MHz,
DMSO-d6) δ 165.2, 159.2, 156.5, 146.3, 133.8, 127.1, 125.5, 125.4,
107.7, 102.3, 93.0, 60.6, 58.1, 55.3, 20.6, 19.7, 18.4, 14.4, 14.3, 11.9;
IR (nujol): υmax = 3343, 3306, 1734, 1689 cm−1; HRMS (ESI) calcd
for C20H28N3O4 [M + H]+: 374.2080; found: 374.2091.

(3aR*,8aS*)-tert-Butyl 1-((tert-Butoxycarbonyl)amino)-2,3a,8a-
trimethyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5n). The product 5n was isolated by column chromatography (ethyl
acetate/cyclohexane 20:50) in 50% yield (85.9 mg); whitish oil; 1H
NMR (400 MHz, DMSO-d6) δ 8.88 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H),
6.69 (dd, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 6.32 (d, J = 8.0 Hz, 1H), 5.86
(s, 1H), 2.16 (s, 3H), 1.97 (s, 3H), 1.49 (s, 3H), 1.46 (s, 9H), 1.43 (s,
9H), 1.23 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 165.1,
158.8, 155.8, 146.4, 134.4, 127.0, 125.4, 124.8, 107.8, 103.3, 92.9,
79.3, 77.9, 55.3, 28.4, 27.9, 20.6, 19.8, 18.3, 11.9; IR (nujol): υmax =
3439, 3304, 1738, 1696 cm−1; MS (ESI) m/z = 430 [M + H]+; anal.
calcd for C24H35N3O4 (429.52): C 67.11, H 8.21, N 9.78; found: C
67.26, H 8.12, N 9.69.

(3aR*,8aS*)-Methyl 1-((Methoxycarbonyl)amino)-3a,5,8a-tri-
methyl-2-propyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-car-
boxylate (5o). The product 5o was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 20:80) in 74% yield (110.6 mg);
white solid; mp: 163−165 °C; 1H NMR (400 MHz, CDCl3) δ 7.30
(s, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 6.31 (br,
1H), 3.80 (br, 1H), 3.79 (s, 3H), 3.68 (s, 3H), 3.47 (q, J = 7.2 Hz,
1H), 2.42−2.64 (m, 2H), 2.28 (s, 3H), 1.61 (s, 3H), 1.40 (s, 3H),
1.21 (t, J = 7.2 Hz, 1H), 0.92 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 165.9, 162.4, 156.9, 145.3, 134.4, 129.3, 128.0, 126.7,
109.4, 106.5, 93.7, 65.9, 56.4, 50.3, 28.1, 21.1, 20.1, 19.5, 15.4, 14.3;
IR (nujol): υmax = 3394, 3272, 1729, 1691 cm−1; HRMS (ESI) calcd
for C20H28N3O4 [M + H]+: 374.2080; found: 374.2091.

(7aS*,10aR*)-Methyl 8-((Methoxycarbonyl)amino)-7a,9,10a-tri-
methyl-7,7a,8,10a-tetrahydrobenzo[e]pyrrolo[2,3-b]indole-10-car-
boxylate (5p). The product 5p was isolated by column chromatog-
raphy (ethyl acetate/cyclohexane 20:80) in 38% yield (58.1 mg);
white solid; mp: 137−139 °C; 1H NMR (400 MHz, CDCl3) δ 7.83
(d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H),
7.41 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.4 Hz,
1H), 6.80 (s, 1H), 5.26 (s, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 2.06 (s,
3H), 1.79 (s, 3H), 1.63 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
166.8, 159.5, 157.1, 148.2, 131.3, 130.9, 129.8, 129.5, 126.9, 121.6,
121.5, 120.5, 113.7, 104.5, 79.8, 65.9, 53.4, 50.6, 21.2, 17.4, 12.5; IR
(nujol): υmax = 1732, 1730 cm−1; MS (ESI) m/z = 414 [M + H]+;
anal. calcd for C21H23N3O4 (381.42): C 66.13, H 6.08, N 11.02;
found: C 65.98, H 6.16, N 11.16.

(3aR*,8aS*)-N,N,2,3a,8a-Pentamethyl-1-ureido-1,3a,8,8a-
tetrahydropyrrolo[2,3-b]indole-3-carboxamide (5q). The product
5q was isolated by column chromatography (methanol/ethyl acetate
05:95) in 52% yield (68.5 mg); white solid; mp: 191−193 °C; 1H
NMR (400 MHz, DMSO-d6) δ 7.04 (br, 1H), 6.89 (t, J = 7.2 Hz,
1H), 6.77 (d, J = 8.0 Hz, 1H), 6.53 (t, J = 7.2 Hz, 1H), 6.44 (d, J = 8.0
Hz, 1H), 6.16 (br, 2H), 6.04 (s, 1H), 2.73 (s, 3H), 2.32 (s, 3H), 1.58
(s, 3H), 1.46 (s, 3H), 1.25 (s, 3H); 13C{1H} NMR (100 MHz,
DMSO-d6) δ 167.2, 159.9, 148.9, 142.7, 132.3, 127.0, 121.8, 117.3,
109.8, 107.9, 92.6, 56.9, 20.7, 18.9, 18.0, 11.0; IR (nujol): υmax = 3489,
3337, 3326, 3297, 1698, 1689 cm−1; HRMS (ESI) calcd for
C17H24N5O2[M + H]+: 330.1930; found: 330.1932.

Methyl ((4bS*,8aS*)-12-(Dimethoxyphosphoryl)-11-methyl-
6,7,8,9-tetrahydro-5H-8a,4b-(epiminoetheno)carbazol-10-yl)-
carbamate (5r). The product 5r was isolated by column
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chromatography (ethyl acetate/cyclohexane 90:10) in 31% yield
(50.6 mg); white solid; mp: 198−200 °C; 1H NMR (400 MHz,
DMSO-d6) δ 9.14 (s, 1H), 7.20 (d, J = 7.6 Hz, 1H), 6.91 (t, J = 7.6,
1H), 6.59 (t, J = 7.6, 1H), 6.46 (d, J = 7.6 Hz, 1H), 6.01 (s, 1H), 3.62
(s, 3H), 3.35 (s, 3H), 3.18 (s, 3H), 1.91 (s, 3H), 1.75−1.96 (m, 1H),
0.91−1.54 (m, 7H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 160.0,
157.0, 149.7, 131.5, 127.0, 124.1, 117.4, 108.4, 97.0, 91.7, 59.7, 56.1
(2JCP = 10.1 Hz), 51.9, 50.9 (2JCP = 4.3 Hz), 31.5, 26.3, 20.7, 19.3,
11.6; IR (nujol): υmax = 3319, 3283, 1695 cm−1; MS (ESI) m/z = 408
[M + H]+; anal. calcd for C19H26N3O5P (407.40): C 56.01, H 6.43, N
10.31; found: C 56.16, H 6.35, N 10.18.
(3aR*,8aS*)-Methyl 1-((Methoxycarbonyl)amino)-2,3a,8,8a-tet-

ramethyl-1,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-3-carboxylate
(5s). The product 5s was isolated by column chromatography (ethyl
acetate/cyclohexane 25:75) in 94% yield (129.9 mg); white solid; mp:
155−157 °C. Notably, compound 5q at NMR analysis shows two sets
of peaks. This fact is probably ascribable to the presence of a second
axis along the N−N bond that determines the existence of syn/anti
rotamers of carbamates.9,30 1H NMR (400 MHz, DMSO-d6) δ 9.59
and 9.38 (s, 1H), 7.32 and 7.29 (d, J = 7.6 Hz, 1H), 7.01 and 6.96 (dt,
J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.59 and 6.56 (dt, J1 = 7.6 Hz, J2 = 1.2
Hz, 1H), 6.37 and 6.33 (d, J = 7.6 Hz, 1H), 3.67 and 3.66 (s, 3H),
3.63 and 3.59 (s, 3H), 2.75 and 2.69 (s, 3H), 1.99 and 1.95 (s, 3H),
1.45 and 1.39 (s, 3H), 1.30 and 1.26 (s, 3H); 13C{1H} NMR (100
MHz, DMSO-d6) δ 166.1 and 165.5, 160.9 and 158.8, 157.0 and
156.4, 149.4 and 148.8, 134.4 and 133.1, 127.4 and 127.2, 124.2 and
123.4, 117.5 and 117.1, 105.7 and 104.9, 102.8 and 102.5, 95.5 and
95.1, 55.6 and 55.0, 52.3 and 52.1, 50.1 and 49.8, 29.8 and 27.9, 21.1
and 19.8, 14.2 and 13.6, 12.0 and 11.8; IR (nujol): υmax = 3369, 1741,
1693 cm−1; MS (ESI) m/z = 346 [M + H]+; anal. calcd for
C18H23N3O4 (345.39): C 62.59, H 6.71, N 12.17; found: C 62.43, H
6.80, N 12.31.
Ethyl 3-(2-Carbamoylhydrazono)-2-(1-methyl-1H-indol-3-yl)-

butanoate (4a). The product 4a was isolated by column
chromatography (ethyl acetate/cyclohexane 80:20) in 48% yield
(151.8 mg); white solid; mp: 189−191 °C, 1H NMR (400 MHz,
CDCl3) δ 8.73 (br, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.6 Hz,
1H), 7.23 (t, J = 7.6 Hz, 1H), 7.08−7.13 (m, 2H), 5.99 (br, 1H), 5.67
(br, 1H), 4.87 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 1.86 (s,
3H), 1.29 (s, J = 7.8 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
171.0, 158.2, 147.4, 137.0, 128.0, 127.2, 121.9, 119.5, 119.2, 109.4,
108.1, 61.2, 52.0, 32.8, 14.2, 13.9; IR (nujol): υmax = 3502, 3387,
3177, 1738, 1693 cm−1; MS (ESI) m/z = 317 [M + H]+; anal. calcd
for C16H20N4O3 (316.35): C 60.75, H 6.37, N 17.71; found: C 60.61,
H 6.25, N 17.82.
Methyl 2-(4-Methoxy-3-(1-methyl-1H-indol-3-yl)-4-oxobutan-2-

ylidene)hydrazinecarboxylate (4b). The product 4b was isolated by
column chromatography (ethyl acetate/cyclohexane 40:60) in 70%
yield (222.2 mg); white solid; mp: 189−191 °C, 1H NMR (400 MHz,
DMSO-d6) δ 9.88 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0
Hz, 1H), 7.33 (s, 1H), 7.16 (dt, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 7.03
(dt, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 4.87 (s, 1H), 3.77 (s, 3H), 3.68 (s,
6H), 1.79 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 171.6,
155.1, 151.5, 137.0, 129.0, 127.3, 121.8, 119.5, 119.2, 110.3, 108.0,
52.4, 52.3, 51.8, 32.9, 14.9; IR (nujol): υmax = 3354, 1740, 1726, 1696
cm−1; MS (ESI) m/z = 318 [M + H]+; anal. calcd for C16H19N3O4
(317.33): C 60.56, H 6.03, N 13.24; found: C 60.42, H 6.12, N 13.31.
Methyl 2-(3-(1,2-Dimethyl-1H-indol-3-yl)-4-methoxy-4-oxobu-

tan-2-ylidene)hydrazinecarboxylate (4c). The product 4c was
isolated by column chromatography (ethyl acetate/cyclohexane
30:70) in 52% yield (172.3 mg); white solid; mp: 223−225 °C, 1H
NMR (400 MHz, DMSO-d6) δ 9.84 (s, 1H), 7.35−7.42 (m, 2H),
7.08 (dt, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 6.97 (dt, J1 = 8.0 Hz, J2 = 1.2
Hz, 1H), 4.85 (s, 1H), 3.68 (s, 3H), 3.66 (s, 3H), 3.63 (s, 3H), 2.34
(s, 3H), 1.75 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 172.1,
155.0, 152.3, 136.7, 136.1, 127.0, 120.7, 119.4, 118.6, 109.7, 104.6,
52.2, 52.1, 51.5, 29.9, 15.5, 10.6; IR (nujol): υmax = 3365, 1743, 1732,
1701 cm−1; MS (ESI) m/z = 332 [M + H]+; anal. calcd for
C17H21N3O4 (331.36): C 61.62, H 6.39, N 12.68; found: C 61.57, H
6.50, N 12.52.

Ethyl 2-(2-Carbamoylhydrazono)-1-(1,2-dimethyl-1H-indol-3-
yl)cyclohexanecarboxylate (4d).10e The product 4d was isolated
by column chromatography on silica gel (ethyl acetate/cyclohexane
60:40) in 61% yield (113.0 mg); white solid; mp: 207−210 °C; 1H
NMR (400 MHz, DMSO-d6) δ 9.57 (s, 1H), 7.37 (t, J = 9.2 Hz, 2H),
7.04 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 6.91 (dt, J1 = 8.0 Hz, J2 = 0.8
Hz, 1H), 5.84 (br, 2H), 3.94−4.13 (m, 2H), 3.64 (s, 3H), 2.67−2.91
(m, 2H), 2.25 (s, 3H), 2.14−2.23 (m, 2H), 1.38−1.59 (m, 4H), 1.09
(t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 173.2,
157.4, 152.6, 136.2, 135.0, 126.3, 119.8, 119.4, 118.6, 109.3, 108.1,
60.3, 56.9, 35.7, 29.3, 25.5, 24.8, 21.5, 13.9, 11.6; IR (nujol): υmax =
3510, 3393, 3182, 1734, 1687 cm−1; MS (ESI) m/z = 371 [M + H]+;
anal. calcd for C20H26N4O3 (370,45): C 64.84, H 7.07, N 15.12;
found: C 64.69, H 6.99, N 14.99.

Procedure for the Ring-Opening Reaction of Tetrahydro-
1H-pyridazino[3,4-b]indole (3b). To a solution of compound 3b
(0.4 mmol) in dichloromethane (2 mL), Amberlyst 15(H) (500 mg/
mmol) was added. After the disappearance of starting 3b (TLC check,
20 h), the crude mixture was purified by column chromatography on
silica gel to afford product 4e.

Ethyl 1-(1-Methyl-1H-indol-3-yl)-2-(2-(phenylcarbamoyl)-
hydrazono)cyclohexanecarboxylate (4e). The product 4e was
isolated by column chromatography (ethyl acetate/cyclohexane
25:75) in 71% yield (122.8 mg); white solid; mp: 210−212 °C, 1H
NMR (400 MHz, DMSO-d6) δ 10.02 (s, 1H), 7.51 (t, J = 8.4 Hz,
2H), 7.33 (s, 1H), 7.25 (s, 1H), 7.18 (dt, J1 = 8.4 Hz, J2 = 1.2 Hz,
1H), 7.07 (t, J = 8.4 Hz, 2H), 6.96 (dt, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H),
6.85 (dt, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H), 6.48 (d, J = 8.4 Hz, 2H), 4.05−
4.19 (m, 2H), 3.79 (s, 3H), 3.04 (d, J = 14.4 Hz, 1H), 2.68 (d, J =
14.4 Hz, 1H), 2.11−2.23 (m, 2H), 1.79−1.85 (m, 2H), 1.44−1.55
(m, 2H), 1.13 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-
d6) δ 172.5, 153.3, 151.0, 138.1, 137.1, 128.3, 127.5, 126.6, 121.9,
120.9, 120.8, 118.8, 117.5, 113.5, 109.8, 60.7, 55.5, 35.6, 32.4, 25.5,
25.3, 22.6, 13.9; IR (nujol): υmax = 3190, 3088, 1726, 1681 cm−1; MS
(ESI) m/z = 433 [M + H]+; anal. calcd for C25H28N4O3 (432.51): C
69.42, H 6.53, N 12.95; found: C 69.57, H 6.44, N 12.87.

Ethyl 2-(2-Carbamoylhydrazono)-1-(1-methyl-1H-indol-3-yl)-
cyclopentanecarboxylate (4f). The product 4f (see Scheme 1) was
isolated by column chromatography (ethyl acetate/cyclohexane
90:10) in 67% yield (229.4 mg); white solid; mp: 168−170 °C; 1H
NMR (400 MHz, DMSO-d6) δ 9.14 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H),
7.38 (d, J = 8.0 Hz, 1H), 7.12 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 7.09
(s, 1H), 6.98 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 5.92 (br, 2H), 4.04−
4.12 (m, 2H), 3.73 (s, 3H), 2.43−2.56 (m, 3H), 2.29−2.36 (m, 1H),
1.62−1.87 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, DMSO-d6) δ 172.7, 156.9, 156.4, 137.2, 127.5, 126.1, 121.0,
120.2, 118.4, 113.4, 109.8, 60.6, 56.8, 36.2, 32.3, 27.9, 21.4, 14.1; IR
(nujol): υmax = 3470, 3200, 3160, 1733, 1696 cm−1; MS (ESI) m/z =
343 [M + H]+; anal. calcd for C18H22N4O3 (342.39): C 63.14, H 6.48,
N 16.36; found: C 62.98, H 6.58, N 16.45.

Ethyl Bromoacetate-Assisted Cleavage of the N−N Bond in
5s (Magnus’ Procedure16). Ethyl 2-bromoacetate (1.5 equiv) and
Cs2CO3 (2.5 equiv) were added to a solution of compound 5s (0.3
mmol) in acetonitrile (2 mL). The reaction mixture was stirred in an
oil bath heated at 50 °C until the starting material was consumed
(TLC check, 1 h) and then refluxed for an additional 1.5 h (TLC
check). The crude mixture was filtered and then purified by column
chromatography on silica gel to afford the product 6a. The NMR
experiments show that the title compound has no rotamers.

(3aR* ,8aR*)-Methyl 2,3a,8,8a-Tetramethyl-1,3a,8,8a-
tetrahydropyrrolo[2,3-b]indole-3-carboxylate (6a). The product
6a was isolated by column chromatography (ethyl acetate/cyclo-
hexane 30:70) in 64% yield (52.3 mg); whitish oil; 1H NMR (400
MHz, DMSO-d6) δ 7.45 (s, 1H), 7.26 (dd, J1 = 7.6 Hz, J2 = 1.2 Hz,
1H), 6.92 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 6.52 (dt, J1 = 7.6 Hz, J2 =
1.2 Hz, 1H), 6.30 (dd, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 3.55 (s, 3H),
2.67 (s, 3H), 2.03 (s, 3H), 1.39 (s, 3H), 1.27 (s, 3H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ 165.9, 159.3, 149.3, 134.7, 126.8, 123.8,
116.9, 104.9, 101.6, 90.9, 56.4, 49.3, 28.2, 19.8, 17.4, 14.5; IR (nujol):
υmax = 3369, 1741 cm−1; MS (ESI) m/z = 273 [M + H]+; anal. calcd
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for C16H20N2O2 (272.34): C 70.56, H 7.40, N 10.29; found: C 70.41,
H 7.47, N 10.39.
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