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Abstract: A possible direction for exploiting the computational power of multi/many core chips is to rely on

a massive usage of Thread Level Parallelism (TLP). We focus on the Decoupled Threaded Architecture, a hybrid

dataflow architecture which efficiently uses TLP by decoupling and scheduling threads on chip processing elements

in order to provide on-chip scalable performance. The DTA architecture currently lacks a specific mapping to high

level languages. Our idea is to use a functional language to match this execution paradigm because we think it is

very fit for this environment. We choose Haskell as our language and in particular one of the features we want to

implement is the concurrency control based on Transactional Memory, which is fully supported in Haskell. The

main goal of this research is twofold. First, the study of a method to unite the functional paradigm of the Haskell

programming language with the DTA execution paradigm. Second, the development of a Transactional Memory

model for DTA architecture based on the STM (Software Transactional Memory) API. Our results show promising

speedup of the Haskell based front-end for the DTA architecture.
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1 Introduction

Functional programming is a paradigm that treats

computation as the evaluation of mathematical func-

tions and avoids state and mutable data. It emphasizes

the application of functions, in contrast with the im-

perative programming style that emphasizes changes

in state [1].

Software Transactional Memory (STM) is a con-

currency control mechanism analogous to database

transactions for controlling access to shared memory

[2], [3]. Transactions replace locking with atomic ex-

ecution units, so that the programmer can focus on

determining where atomicity is needed, rather than

how to realize it. With this abstraction, the program-

mer identifies the operations within a critical section,

while the STM implementation determines how to run

that section safely.

We feel that a decoupled multithreaded architec-

ture like DTA [4] could lead to an efficient symbiosis

with Haskell and its TM API.

The advance of this research took two major

steps. First, the creation of a tool to translate simple

Haskell programs (using External Core intermediate

language) in DTA language, looking for a good way

to reproduce the program behavior. Second, the devel-

opment of a DTA specific implementation of STM.

The following subsections will briefly describe

the DTA architecture (section 1.1), the Haskell STM

(section 1.2) and the Haskell Core (section 1.3). The

rest of the paper is organized as follows: first, we

describe the tool we have developed for translating

Haskell programs in DTA (section 2). Second, we

show our first implementation of STM in DTA (sec-

tion 3). At last, we show some experiments made for

evaluating the performance of our tools (section 4).

1.1 DTA

The DTA architecture [4] is a hybrid dataflow ar-

chitecture that is based on the Scheduled Data-Flow

(SDF) execution paradigm [5] and more recently has

lead to the TERAFLUX architecture [7], [10], [6], [8],

[9], which binds to coarse grained data flow and mul-

tithreading. A DTA program is compiled into a series

of non-blocking threads where all memory accesses

are decoupled from the execution.

Starting from a Control Data Flow Graph of a pro-

gram (or a portion of it), each thread is isolated in such

a way that it consumes a number of inputs and pro-

duces a number of outputs (Figure 1). In this example

a program is subdivided into four threads. Thread 1

computes the variables a, b and c from the input and
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sends them to other threads. Threads 2 and 3 execute

the calculation of F and G, they can act in parallel be-

cause their bodies are independent. At last, Thread 4

waits for the results of the other threads, then it start

its execution.

��������
			

����
����
������

�
			

��������
			
�����
			�
�����
			�
�����
			�
			

��������
			
����
����
			

��������
			
�����
����
			

Figure 1: SDF execution paradigm.

In order to ensure that any thread will not start ex-

ecuting before all of its data is ready, a synchroniza-

tion count (SC) is associated to each of them. This

synchronization count is the number of inputs needed

by the thread. In this example, Thread 2 needs a and b,

so its synchronization count is 2. Whenever the data

needed by a thread are stored, synchronization count

is decremented, once it reaches zero, it means that the

thread is ready to execute. SDF execution model uses

frames, a part of a frame memory, which is a small on-

chip memory, for communicating data among threads.

When a new thread is created, the system assigns a

frame to it. The frame has a fixed size and it can be

written by other threads and read only by the thread

that it belongs to.
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Figure 2: Overview of DTA architecture.

The DTA is based on this execution paradigm and

adds the concept of clustering resources, while trying

to address the on-chip scalability problem [4]. Each

cluster in the architecture has the same structure and

can be considered as a modular tile of the architecture.

Scalability can be achieved by simply adding tiles.

DTA consists of several clusters, as seen in Fig-

ure 2. Each includes one or more Processing Elements

(PE) and a Distributed Scheduler Element (DSE).

Each PE need a Local Scheduler Element (LSE) to

talk with the DSE. The set of all DSEs constitutes the

Distributed Scheduler (DS).

This property of the cluster logically leads to the

need of a fast interconnection network inside the clus-

ter (intra-cluster network), while the network for con-

necting all clusters (inter-cluster network) can be cho-

sen with more flexibility. The actual amount of pro-

cessing elements that can fit into one cluster will de-

pend on the technology that is used.

1.2 Transactional Memory

The Glasgow Haskell Compiler (GHC) [12] provides

a compilation and runtime system for Haskell 98 [11],

a pure, lazy, functional programming language. Since

version 6.6 (we used the version 6.8) GHC contains

STM functions built into the Concurrent Haskell li-

brary [14], providing abstractions for communicating

between explicitly-forked threads. STM is expressed

elegantly in a declarative language and Haskell’s type

system (particularly the monadic mechanism) forces

threads to access shared variables only inside a trans-

action. This useful restriction is more likely to be vio-

lated under other programming paradigms, for exam-

ple direct access to memory locations [19], [20].

Although the Haskell is very different from other

languages like C# or C++, the actual STM opera-

tions are used with an imperative style, thanks to

the monadic mechanism, and the STM implementa-

tion uses the same techniques used in mainstream lan-

guages [15]. The use of monads also grants a safe ac-

cess to shared memory only inside a transaction and

assures that I/O actions can be performed only out-

side a transaction. This guarantees that shared mem-

ory cannot be modified without the protection of the

Haskell atomically function. This kind of protection is

known as strong atomicity [17]. Moreover this context

makes possible the complete separation between com-

putations that have side-effects and the ones that are

effect-free. Utilizing a purely-declarative language for

TM also provides explicit read/writes from/to mutable

cells (cells that contain data of different types). Mem-

ory operations that are also performed by functional

computations are never tracked by STM unnecessar-

ily, since they never need to be rolled back [15].

Threads in STM Haskell communicate by reading

and writing transactional variables, or TVars, pointers

to shared memory locations that can be accessed only

within transactions. All STM operations make use of

the STM monad [18], which supports a set of trans-

actional operations, including the functions newTVar,

readTVar and writeTVar, which perform the operation
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of creating, reading and writing transactional vari-

ables as shown in Table 1.

When a transaction is finished, it is validated by

the runtime system by looking if it is executed on a

consistent system state and no variable used in the

transaction was modified by some other thread exe-

cuted. In this case, the modications of the transaction

are committed, otherwise, they are discarded [16].

The other operation in the STM monad are the

retry and orElse functions. The first blocks a transac-

tion until at least one of the TVars it uses is modified.

The second allows two transactions to be tried in se-

quence. If the first makes a retry then the second start.

Table 1: Haskell STM operations.

STM Function Haskell Type

atomically STM a ->IO a

newTvar a ->STM (TVar a)

readTVar TVar a ->STM a

writeTvar TVar a ->a ->STM()

retry STM a

orElse STM a ->STM a ->STM a

The Haskell STM runtime maintains a list of ac-

cessed transactional variables for each transaction,

where all the modified variables are in the writeset,

and the ones reads are in the readset of the transaction.

This list is maintained in a per-thread transaction log

that records the state of the variables before the be-

ginning of the transaction and every access made to

those TVars. When atomically function is invoked,

the STM runtime checks that these accesses are valid

and that no concurrent transaction has committed con-

flicting updates. In case the validation turns out to be

successful, then the modications are committed.

1.3 Haskell Core

The Glasgow Haskell Compiler (GHC) uses an inter-

mediate language, called Core [21] [22] as its inter-

nal program representation during some pass in the

compiler chain. The Core language consists of the

lambda calculus augmented with let-expressions (both

non-recursive and recursive), case expressions, data

constructors, literals, and primitive operations. We

present a simple syntax of this language in Figure 3.

Actually GHC’s intermediate language is more com-

plicated than that given here. It is an explicitly-typed

language based on System FC [25].

In our tool, we use External Core (EC) [23],

which is an external representation of this language

created by GHC’s developers to help people trying to

Figure 3: Core Syntax.

write part of an Haskell compiler to interface with the

GHC itself.

2 Haskell-DTA Compiler Tool

The first part of this work involved the development

of a simple compiler prototype for Haskell programs

able to create an equal representation in DTA assem-

bly. Such application uses External Core (EC) in-

termediate language, produced by GHC compilation

chain, as input. In this way, we exploit the front end

of GHC compiler while we focus on the mapping to

the DTA architecture.

The utilization of External Core representation

has some advantages compared to the use of Core, the

internal representation of this Intermediate language.

First, the existence of some instruments already using

this language. In particular, we extracted an EC parser

from the front end tool of an existing tool for translat-

ing EC to Java [26], and found some Haskell library

in this format which helps the specifications of some

data types. Another advantage is a more expressive

specification of the data types that are found during

the compilation of the program. This is extremely use-

ful in case we have to work on structured data types,

and in the management of functions and methods.

Our compiler is composed of two main parts. The

front end has the task of analyzing the EC input file,

performing the lexical and semantic analysis, then re-

turning a data structure holding the lexical tree repre-

senting the entire examined program. Using this tree,

a series of steps are performed to optimize the code

generated in the first draft to simplify its structure. In

particular, a rewriting phase applies a series of trans-
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formation to that tree to make sure the module is in

canonical form, so it can not be reduced further, and it

is ready for the next steps. Once this part is finished,

the back end of our compiler analyzes the data tree,

according to the features of the program’s workflow.

Then the corresponding DTA code is generated.

Another important aspect to point in the trans-

lation from Haskell is the monadic mechanism. It

makes possible to execute actions, defined within the

monad itself, sequentially. In our case, this method is

translated by the creation of a series of sub-threads,

called one after another. This method makes possible

to execute the specific actions in the right order. Many

of those sub-threads, nevertheless, have a very small

body. Often the only action they execute is the call

to a function that actually performs the computation

and passing the data correctly. This creates a great

overhead in the execution model. A similar problem

is present in the management of polymorphic func-

tions. In Haskell, those functions are resolved creat-

ing a middle function, which calls the correct function

implementation, according to the data types of the pa-

rameters. In our compiler, in this situation, a thread is

created, to represents the intermediate function. This

thread calls the code for the actual compilation. Usu-

ally this is a single I/O instruction in our experiments.

We are studying new methods to manage this situa-

tions, trying to reduce the overhead generated.

This first version of the program can execute

the automatic translation of simple Haskell programs,

performing integer calculations, basic I/O operations,

and management of the more common data type like

enumerations and lists.

3 Transactional Memory in DTA

As a first step for porting the STM system in DTA, we

have chosen a simple example benchmark performing

the increment of a variable that is shared between two

threads, each performing a fixed number of iterations.

This program translated in a DTA implementation by

hand, trying to follow as closely as possible the meth-

ods specified for the compiler, with the goal of mak-

ing it as generic as possible. We use this program as

a starting point to have some ideas about the concur-

rency system, the performance, and the problems that

the introduction of this model can generate.

We implemented three basic mechanism:

• Concurrent paradigm.

• Blocking threads.

• Basic transactional memory system.

Haskell concurrent paradigm involves the use of

forkIO function, which takes as input an Haskell IO

action (it can be a single action or, more likely, a se-

quence of actions) creating a thread operating concur-

rently with the main thread. To realize this mecha-

nism, we use the threading system that is present in

the DTA paradigm. We consider the whole input ac-

tion as the body of the generated thread.

The second point is the management of thread

communication and synchronization. In Haskell, it is

solved by the use of particular data structures called

MVar. Each MVar represents a reference to a mutable

location, which can be empty or full. The communica-

tion between threads makes use of those variables. If

they are in an unsafe state (if a reading MVar is empty,

or a writing MVar is full) the thread is blocked until

the state is safe. It is important to point that Haskell

thread are blocking, while DTA thread are not, so

we had to introduce a way to translate the behavior

of blocking threads in a non blocking environment,

trying to maintain a close similarity with the original

Haskell behavior. When the thread should block, it

saves the data needed for continue its execution then

it terminates itself. The data needed are:

1. The parameters needed to the continuation of the

execution.

2. The values needed to restart the execution of the

thread from the right point, like the thread iden-

tifier, the pointer to the correct restarting thread

and the number of the needed parameters.

For the implementation of the basic transactional

system, we dealt with the reading and writing of

TVars, the creation and management of logs, and the

validation and commit of transactions. Currently our

implementation is based non DTA code. The basic

components of the model are the Transaction Initial-

ization and the Transaction Validation.

• Transaction Initialization: In Haskell, a trans-

action is the body of the atomically function.

Like in the case of forkIO function, the code

within this function is translated into a series of

threads, maintaining the correct dependency or-

der between the specified STM actions. A start-

ing thread has the duty tasks of activating the

above function threads and creating the Trans-

actional Log. This thread makes sure, accord-

ing to the transactional variables that are present

in the function writeset and readset, that the pa-

rameters passed to the function will go to write

and read the log instead of the actual memory lo-

cation, making the computation safe until it will

be validated. This method make possible to face
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another general feature of Haskell functional be-

havior, that is the passing of functions as argu-

ments to other functions. This feature was treated

in a very similar way as the thread synchroniza-

tion. A memory structure is created, containing

all the information needed to execute a thread.

The management of the communication of pa-

rameters involving function passing is one of the

greatest difficulties in our efforts to manage an

automatic Haskell-DTA translation, and yet not

fully resolved.

• Transaction Validation: The validation is per-

formed by a specific thread called at the end of

the operations described in the transaction body.

This thread performs the control needed to as-

sure the correctness of the transaction, by check-

ing that the value of the variables involved in the

transaction is not changed. The validation, and

eventually the commit phases, are executed in a

serialized way, in order to assure the TVars con-

sistency.

n our example we use only a single TVar, so we used

the simplest mechanism available in the STM system,

a global lock on the entire TVar set. We are working to

extend this simple mechanism to manage more com-

plex situations, like a wide TVar set for transactions,

and the use of complex data types. To solve the above

problems we are evaluating the possibility to support

purely software mechanisms by using the underling

architecture, like convenient System Calls or ad hoc

instructions.

4 Experiments

We make three different types of experiments.

The first series involves the evaluation of a DTA

program compiled by our tool from Haskell, com-

pared with an equivalent program, initially specified

in C language. The chosen program performs the cal-

culus of the Fibonacci number, by using a recursive

algorithm, with a specific input (15). First we execute

this programs changing the number of processors for

a fixed input, in order to show the performance of the

programs on a multi-processor environment. Then we

show some statistics of those executions in a single

processor environment.

The second series of experiments shows the com-

parison between the Fibonacci program generated by

our tool, and the same program compiled with GHC,

with no optimization for fair comparison. The com-

parison is made by computing the number of Fi-

bonacci with several inputs (10,12,15,17) for one pro-

cessor, in order to compare our results on a reference

implementation on a standard linux base single pro-

cessor platform.

The last series of experiments tested the first ver-

sion of our TM-DTA implementation. We use a

counter benchmark (Figure 4) to study the potential of

this work. This benchmark creates two threads, which

concurrently access a shared variable protected by the

TM mechanism, for a fixed number of times. The ex-

periments are made with the same configuration of the

previous experiment, only using a two process config-

uration both for the DTA, and for the GHC compiler

(with parallel execution enabled).

module Main where

import GHC.Conc

incTVar :: TVar Int -> STM ()

incTVar a = do

tmp <- readTVar a

writeTVar a (tmp+1)

loop n f = mapM_ (\_ -> f) [1..n]

main = do

x <- newTVarIO 0

n <- return 5000

join1 <- newEmptyMVar

join2 <- newEmptyMVar

forkIO $ do

loop n $ do

atomically (incTVar x)

putMVar join1 ()

forkIO $ do

loop n $ do

atomically (incTVar x)

putMVar join2 ()

takeMVar join1

takeMVar join2

tmp <- atomically (readTVar x)

print tmp

Figure 4: Code of the counter benchmark.

4.1 Methodology

All the experiments are executed on an Intel Core 2

2,66 GHz, CPU E8200 with and 1,33 GHz front side

bus. This is a superscalar processor with Wide Dy-

namic Execution that enables each core to complete

up to four instruction per cycle, a 32KB L1 data cache

and 32KB instruction cache 8 way associative, and a

6MB shared L2 cache 32 way associative. This pro-

cessor optimizes the use of the data bandwidth from

the memory subsystem to accelerate out-of-order ex-

ecution, and uses a prediction mechanism that re-

duces the time in-flight instructions have to wait for

data. New pre-fetch algorithms move data from sys-

tem memory into fast L2 cache in advance of execu-

tion. These functions help to keep the pipeline full.
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The DTA programs is analyzed using a DTA sim-

ulator with a 5 step pipeline, 64 register and 4096

frames of 64 bit per processing element. This archi-

tecture uses a 128 bit intra cluster single bus with 2

latency cycles, and an inter cluster with 128 bit and

4 latency cycles, no cache and a simulated memory

access with perfect response.

The analysis of the Haskell programs compiled

in the PC are obtained by the followings instruments.

The statistics for memory utilization are obtained by

the profiling options available in GHC.

The information about the CPU cycle spent by the

Haskell programs are collected by a rdtsc library [?],

which allows to read the Time Stamp Counter.

The cache statistic using the cachegrind tool of

the valgrind profiler [28] which allows to keep track

of the memory access of the user program and of the

libraries it uses without involving the operation of the

kernel.

4.2 Results
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Figure 5: Number of CPU cycles of the execution of Fi-

bonacci(15) in the Haskell generated DTA version (Fib-

HDTA) and the general DTA version (Fib-HC-DTA) in a

multiprocessor environment.

First, we evaluate the CPU cycles needed to end

the calculation produced by the simulator (Figure 5)

to compare the efficiency of those example. The ex-

periments are made using a single cluster architecture,

changing the number of Processing Elements. We see

that the the implementation of the Haskell version of

the program is more efficient than the general version,

obtaining a reduction of CPU cycles of 30% in all

the configuration of architecture. Those results shows

that, for pure computational programs, the functional

paradigm of Haskell has a better behavior, in this ar-

chitectural environment, and it generates more opti-

mized code. Moreover, we can see how, when aug-

menting the number of processing units, the version

generated by our tool shows a better parallel behavior,

although the Fib-HC-DTA program generates more

execution thread at the same time. This is probably

due to the fact that, not only the Haskell program gen-

erates less threads, but it generates them only at need,

while the other program creates more threads in the

beginning of its execution then waits for all them to

complete their computation.
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Figure 6: Number of instructions dynamically executed by

the compilation of Fibonacci (15).

Second, we examine the detail of the instructions

executed by the execution of our programs, in a single

processor configuration (Figure 6). We begin exam-

ining the number of Falloc instructions (frame allo-

cation), those instruction creates new threads, so we

have the maximum number of threads generated from

the compilation of the programs, therefore its com-

plexity. The second comparison is between the num-

ber of load/store operations. Those instruction gives

us the number of the argument passed by the various

threads, not the access at the main memory, absent

from those examples because they performs pure cal-

culations. Every value refers to a couple of opera-

tion, a load and a store. The third set of instruction

examined is the number of arithmetic and logic op-

erations. Both those comparison shows the Haskell

based program needs less instruction to execute cor-

rectly. In the end, we examine the use of conditional

jumps inside a the threads, in this case the general pro-

gram generates less jumps than the Haskell program.

As expected, the Haskell programs, almost ever, uses

less instructions and shows a better behavior. It man-

ages to complete the same task generating only an half

of the threads needed by the general version. Only

for the jump instructions the general program outper-

forms the Haskell program. This shows that Haskell,

because of its functional behavior, generates a less lin-

ear workflow during compilation.

At last we examine the utilization of the pipeline

during the compilation, showing the maximum

pipeline utilization for both the programs (Figure 7),

and we can see this value is almost the same but the

program compiled by our tool gains a few points.

Then we show the number of threads active during
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Figure 7: Maximum pipeline utilization generated by the

compilation of Fibonacci (15).
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Figure 8: Number of threads in the pipeline queue and

in the wait table generated by the compilation of Fi-

bonacci(15).

the compilation (Figure 8) both ready to executions

(threads in the Pre-Load Queue), and waiting for some

data to be stored (threads in the Wait-Table). Those

results shows both the programs have a similar exe-

cution flow, but the Haskell programs generates less

threads and only when needed, while the other seems

to create early most of the treads and put them in the

wait table.

Now we examine the second experiment. We be-

gin examining the number of CPU cycles needed to

complete the execution of those programs (Figure 9).

According to those results, the program compiled un-

der DTA architecture shows a better behavior. It needs

only a fraction of the time needed by the Haskell pro-

gram. Moreover, the DTA program, as seen in the

last example, shows a very good scalability on multi

processor environment, while the GHC generated ex-

ecution uses a single thread.

Second, we evaluate the memory request of the

program expressed in KB (Figure 10). It is important

to point that in the DTA program the memory refers

only at the load and store phase on the frame memory,
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Figure 9: Number of CPU cycles of the execution of Fi-

bonacci in the DTA simulated execution and the GHC com-

piled execution.
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Figure 10: Memory Allocated (in KB) by the execution

of Fibonacci in the DTA simulated execution and the GHC

compiled execution.

not at the main memory access. While the GHC com-

piled programs uses the main memory during its ex-

ecution. But, according to our evaluations, the cache

performance of those executions is very good. It gen-

erates a miss-rate under 2%, so we can assume the

memory access is not the main bottleneck of those ex-

ecutions.

Third, we show the instruction generated by the

DTA programs and the ones generated by the GHC

compiled program (Figure 11). In this second case

the number on instruction is widely bigger, and it can

be pointed that the inner parallelism of the processor

helps to contain the execution time. The comparison

shows that in this example the GHC compilation gen-

erates an execution that makes a wide use of the main

memory, about half of the instructions are memory ac-

cess, while the DTA code did not use the main mem-

ory at all, and the few memory instruction are the load

and store form the frame memory used for the data

communication between threads.
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(a) Comparison between the GHC compilation and

the DTA execution
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(b) Instruction detail for the DTA compilation.

Figure 11: Instruction generated by the various executions

of Fibonacci.

Those experiments show a good behavior of the

DTA programs generated from Haskell, compared to

the GHC generated executable. It has to be noted

that many of the complexity of the Haskell programs

comes from the run time systems, which performs

a great deal of work to implement the laziness of

the program, the management of the heap, and the

garbage collector functionality. While our program

only performs pure calculation, without a lazy behav-

ior. Nevertheless, those results show that the use of

Haskell on DTA architecture is a promising way to

exploit the capabilities of this paradigm.

Finally, we show the last series of experiments.

As before, we start evaluating the CPU cycles usage,

with a different number of iteration for each thread

(Figure 12). In the picture is expressed the total num-

ber of iteration of the whole program. In every exper-

iment the behavior of the DTA version of the program

is better. This datum, nevertheless, is not completely

accurate, because the DTA simulator didn’t has a well

established memory system yet. So, the calculation of

the CPU cycles is not precise, and often under esti-

mated. But, as shown in Table 2, the GHC compiled

program has a good cache utilization. It generates a

miss rate under 1% on the L1 cache and under 0.3%

on the L2 cache. So, we assume the distance between
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Figure 12: Number of CPU cycles of the execution of

counter example (Figure 4) in the DTA simulated execu-

tion and the GHC compiled execution.

those values and a real configuration is not too large.

Table 2: Cache miss rate for the GHC execution of the

counter example (Figure 4).

2500 It 5000 It 10000 It 25000 It

L1-I Miss Rate 0.02% 0.01% 7.5E-3% 3.3E-3%

L1-D Miss Rate 0.9% 0.8% 0.8% 0.8%

L2-I Miss Rate 0.01% 5.2E-3% 2.6E-3% 1.0E-3%

L2-D Miss Rate 0.3% 0.2% 0.1% 0.1%

Second, we examine the memory request for

those programs expressed in KB (Figure 13). In this

case, we are comparing actual request to the main

memory. We see the DTA program needs only an half

of the memory needed by the GHC program. This

is due to the lazy behavior of Haskell, which has a

greater and more sophisticated use of the memory.
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Figure 13: Max Memory Allocated at runtime (in KB)

by the execution of counter example in the DTA simulated

execution and the GHC compiled execution.

Third, we show the instruction generated by the

our DTA programs by the GHC compiled program
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(a) Comparison between the GHC compilation and the DTA ex-

ecution
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(b) Instruction detail for the DTA compilation.

Figure 14: Dynamic instruction count generated by the

various executions of counter (Figure 4).

(Figure 14). In this example can be used the same

of the previous one. The comparison shows that both

the examples use about half instructions to access the

memory, but the DTA code uses only a part of those

instruction to access the main memory. This is surely

due to the simplicity of our Transactional Memory

mechanism compared the the actual GHC TM mech-

anism and the whole run time system, but it seems a

good starting point.

Those results show us that even a really simple

implementation of a TM mechanism in DTA envi-

ronment has a good performance. So, we think this

project is very promising.

One important point those experiments display is

that this program, differently from the previous one,

didn’t have a good parallel behavior, generating al-

ways no more than three or four parallel threads.

This is important for showing the great difference be-

tween a program of pure functional calculation, like

Fibonacci, and a program using only monad compu-

tation. The first has a good thread level parallelism.

The second is mostly sequential, if not for the explicit

forking of threads.

5 Conclusion

The main goal of this research is to find a way to trans-

late the functional behavior of the Haskell language in

the DTA architecture. Then, to realize a way to repro-

duce the Transactional Memory mechanism present in

the GHC compiler into DTA.

The first part of the research involved the devel-

opment of a simple tool to translate Haskell programs

in DTA assembly. We made comparisons from code

generated by this program with already existent DTA

code generated from a general DTA version of the

same program. Then, we compared the program gen-

erated by our tool with the same program compiled di-

rectly by GHC, and executed in an real machine. Both

those experiments returned very good results, show-

ing a promising behavior of the porting of this func-

tional language in DTA.

In the second part, we developed a simple exam-

ple of a Haskell program using Transactional Memory

in DTA. We created a first simple example to make

our experiments. This program, even in its simplicity,

showed a good performance compared to the classical

implementation.
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