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Abstract
We study the algorithmic complexity of embeddings between bi-embeddable equiv-
alence structures. We define the notions of computable bi-embeddable categoricity,
(relative) �0

α bi-embeddable categoricity, and degrees of bi-embeddable categoricity.
These notions mirror the classical notions used to study the complexity of isomor-
phisms between structures.We show that the notions of�0

α bi-embeddable categoricity
and relative �0

α bi-embeddable categoricity coincide for equivalence structures for
α = 1, 2, 3. We also prove that computable equivalence structures have degree of
bi-embeddable categoricity 0, 0′, or 0′′. We furthermore obtain results on the index
set complexity of computable equivalence structure with respect to bi-embeddability.
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1 Introduction

The systematic study of the complexity of isomorphisms between computable copies
of structures was initiated in the 1950s by Fröhlich and Shepherdson [1] and inde-
pendently by Maltsev [2]. The notions of computable categoricity (in the Russian
tradition also called autostability) and relative computable categoricity are probably
the most prominent in this line of research. A computable structure A is computably
categorical if for every computable copy B there is a computable isomorphism from
B to A. A structure A is relatively computably categorical if for every copy B of A
there is a deg(A ⊕ B)-computable isomorphism from B to A. For a survey of this
topic see Fokina et al. [3].

In this article we study the algorithmic complexity of embeddings between bi-
embeddable equivalence structures. The relation of bi-embeddability has attracted a
lot of attention of specialists in computable structure theory and descriptive set the-
ory in the recent years. Two structures A and B are bi-embeddable if there is an
embedding of A in B and vice versa. In the literature A and B are sometimes called
equimorphic [4–6]. Montalbán [4] showed that any hyperarithmetic linear ordering is
bi-embeddable with a computable one and together with Greenberg [6] they showed
the same for hyperarithmetic Boolean algebras, compact metric spaces, and Abelian
p-groups. Fokina et al. [7] studied degree spectra with respect to the bi-embeddability
relation and noticed that any countable equivalence structure is bi-embeddable with a
computable one. For this reason, the study of the algorithmic complexity of embed-
dings is particularly interesting for this class of structures.

In this paper we focus on computability-theoretic properties of equivalence struc-
tures. An equivalence structureA = (A, E) has a computable subset A of the natural
numbers as its universe and is equipped with an equivalence relation E on A. We iden-
tify such a structure A with its atomic diagram, which is the set of atomic formulas
and negations of atomic formulas with parameters from A that are true of A under
a fixed Gödel numbering. Our computability theoretic notions are standard and as in
Soare [8].

Calvert et al. [9] initiated the study of computable categoricity for equivalence
structures. Given a structure A and a structure B bi-embeddable with A, we say that
B is a bi-embeddable copy of A. We study the complexity of embeddings through
the following notions analogous to computable categoricity and relative computable
categoricity.

Definition 1.1

– A computable structureA is d-computably bi-embeddably categorical if any com-
putable bi-embeddable copy of A is bi-embeddable with A by d-computable
embeddings. Here d is a Turing degree. For the case d = 0(n), we usually use
the term “�0

n+1 bi-embeddably categorical” instead.
– A countable (not necessarily computable) structure A is relatively �0

n bi-
embeddably categorical if for any bi-embeddable copy B, A and B are
bi-embeddable by �A⊕B

n embeddings. A computable structure is relatively com-
putably bi-embeddably categorical if n = 1.
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The definitions can be extended to arbitrary hyperarithmetic α in the usual way. In
this paper we only focus on the cases of n = 0, 1, 2.

Fokina et al. [10] introduced the notion of a (strong) degree of categoricity of a
structure. Given a computable structure A that is d-computably categorical in the
classical sense, the degree of categoricity of A is the least degree that computes an
isomorphism between any two computable isomorphic copies of A. It is the strong
degree of categoricity of A if there are two computable copies A0 and A1 such that
for any f : A0 ∼= A1, f ≥T d. Note that A might not have a (strong) degree of
categoricity [11,12]. A Turing degree d is a (strong) degree of categoricity if there
exists a structure having d as its (strong) degree of categoricity. This notion has seen
a lot of interest over the last years. Fokina et al. [10] showed that all strong degrees of
categoricity are hyperarithmetical. Csima et al. [13] extended this result by showing
that all degrees of categoricity are hyperarithmetical. Miller [11] exhibited a field that
does not have a degree of categoricity, and Fokina et al. [12] gave an example of a rigid
structure without degree of categoricity. Recently, Csima and Stephenson [14], and
independently, Bazhenov et al. [15,16] found examples of structures that have degree
of categoricity but no strong degree of categoricity. The question whether there exists
a degree of categoricity that is not strong is still open. We give an analogous definition
for bi-embeddability.

Definition 1.2 The degree of bi-embeddable categoricity of a computable structure
A is the least Turing degree d that, if it exists, computes embeddings between any
computable bi-embeddable copies of A. If, in addition, A has two computable bi-
embeddable copiesA0,A1 such that for all embeddingsμ: A0 ↪→ A1, ν: A1 ↪→ A0,
μ ⊕ ν ≥T d, then d is the strong degree of bi-embeddable categoricity of A.

Csima and Ng [unpublished] showed that a computable equivalence structure has
strong degree of categoricity 0, 0′, or 0′′. Our main result reflects theirs in our setting.

Theorem 1.1 Let A be a computable equivalence structure.

(1) If A has bounded character and finitely many infinite equivalence classes, then
its degree of bi-embeddable categoricity is 0.

(2) IfA has unbounded character and finitely many infinite equivalence classes, then
its degree of bi-embeddable categoricity is 0′.

(3) If A has infinitely many infinite equivalence classes, then its degree of bi-
embeddable categoricity is 0′′.

Thus, the degree of bi-embeddable categoricity of equivalence structures is either
0, 0′, or 0′′. Furthermore, the degrees of bi-embeddable categoricity of equivalence
structures are strong.

The proof of Theorem 1.1 combines various theorems proved in Sects. 2 and 3. In these
sections we also obtain results on the relation between classical notions of categoricity
and bi-embeddable categoricity, summarized in Fig. 1.

In Sect. 2 we characterize the computably bi-embeddably categorical equivalence
structures. In Sect. 3 we study �0

2 and �0
3 bi-embeddably categorical and relatively
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Fig. 1 Relations between categoricity for computable equivalence structures

�0
2 and�0

3 bi-embeddably categorical equivalence structures. We show that all equiv-
alence structures are relatively �0

3 categorical. We prove (2) and (3) of Theorem 1.1
and study the relations between those notions summarized in Fig. 1.

In Sect. 4 we obtain results on the complexity of the index sets of equivalence
structures with degrees of bi-embeddable categoricity 0, 0′, and 0′′.

2 Computable bi-embeddable categoricity

Given an equivalence structure A and a ∈ A we write [a]A for the equivalence class
of a; if it is clear from the context which structure is meant, we omit the superscript.
The following notions are central to our analysis.

Definition 2.1 Let A be an equivalence structure. A set T ⊆ A is a transversal of A
if

(1) for x, y ∈ T , if x 	= y, then x /∈ [y]A,
(2) and A = ⋃

x∈T [x]A.

Proposition 2.1 LetA be an equivalence structure, then there is a transversal T ofA
such that T ≤T A.

Proof For each equivalence class, we choose the least element in the class. We can do
this computably in (the atomic diagram of) A. ��
Definition 2.2 (Calvert et al. [9]) Let A be an equivalence structure.

(1) We say that A has bounded character, or simply is bounded, if there is some
finite k such that all finite equivalence classes of A have size at most k. If A has
bound k on the sizes of its finite equivalence classes, we say thatA is k-bounded.

(2) I n f A = {a ∈ A: [a]A is infinite} FinA = {a ∈ A: [a]A is finite}.
We will use the following relativization of [9, Lemma 2.2].

Lemma 2.2 Let A be an equivalence structure, then

(1) For k ∈ ω, |[a]A| ≤ k is ΠA
1 , |[a]A| ≥ k is ΣA

1 , |[a]A| = k is �A
2 ,

(2) I n f A is ΠA
2 , and FinA is ΣA

2 ,

Proof Ad (1). A ΠA
1 definition for |[a]A| ≤ k is

|[a]A| ≤ k ⇔ ∀x1, . . . , xk+1

∧

1≤i≤k+1

xi Ea →
∨

1≤i< j≤k+1

xi = x j ,
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a ΣA
1 definition for |[a]A| ≥ k is

|[a]A| ≥ k ⇔ ∃x1, . . . , xk
∧

1≤i≤k

xi Ea ∧
∧

1≤i< j≤k

xi 	= x j ,

and a �A
2 definition for |[a]A| = k is then just the conjunction of |[a]A| ≤ k and

|[a]A| ≥ k.
Ad (2). The property a ∈ I n f A has a ΠA

2 definition by ∀k |[a]A| ≥ k. It follows
immediately that a ∈ FinA has a ΣA

2 definition. ��
Our first goal is to characterize computably bi-embeddably categorical equivalence

structures. In [9] the following characterization of computably categorical equivalence
structures was given.

Theorem 2.3 (Calvert et al. [9]) LetA be a computable equivalence structure, thenA
is computably categorical if and only if

(1) A has finitely many finite equivalence classes,
(2) orA has finitely many infinite classes, bounded character, and at most one finite

k such that there are infinitely many classes of size k.

Theorem 2.4 An equivalence structureA is computably bi-embeddably categorical if
and only if it has finitely many infinite equivalence classes and bounded character.

Proof (⇐). Let A be k-bounded and let l be the size of the largest equivalence class
such that A has infinitely many equivalence classes of size l (notice that l might
be 0). Then the restriction A>l of A to equivalence classes of size larger than l is
computably categorical, as the number of equivalence classes inA>l is finite, i.e., the
bi-embeddability type and the isomorphism type of A>l coincide. Hence, if B is a
bi-embeddable copy of A, then B>l is isomorphic to A>l . This furthermore implies
that l is invariant in the bi-embeddability type of B. Non-uniformly fix a computable
isomorphism f : A>l → B>l .

Let TA>l be a transversal ofA>l , and TB>l one of B>l . Clearly both TA>l and TB>l

are finite and hence computable. Furthermore the equivalence classes of size l have a
c.e. transversal as

|[a]A| ≤ l ⇔ ∀x ∈ TA>l a /∈ [x]A

and |[a]A| ≥ l is Σ1. Let (bi )i∈ω be an enumeration of the transversal of the equiva-
lence classes of size l in B and let (ai )i∈ω be a computable enumeration of A. We can
define a computable embedding ν: A ↪→ B by recursion as follows.

ν(ai ) =

⎧
⎪⎨

⎪⎩

f (ai ) ∃y ∈ TA>l ai ∈ [y]A
bk, k = μl[∀ j < i ν(a j ) /∈ [bl ]B] ∀ j < i ai /∈ [a j ]A
μx ∈ B[x ∈ [ν(a j )]B ∧ ∀l < i x 	= ν(al)] ∃ j < i ai ∈ [a j ]A

The embedding of B in A is defined similarly.
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(⇒). We show that computable equivalence structures with unbounded character
and without infinite equivalence classes are not computably bi-embeddably categori-
cal. The proof for equivalence structureswith finitelymany infinite equivalence classes
is analogous. By Corollary 3.4 below, equivalence structures with infinitely many infi-
nite equivalence classes are not even �0

2 bi-embeddably categorical.
Note that any two equivalence structures with unbounded character and the same

number of infinite equivalence classes are bi-embeddable and that any embedding
needs to map elements to elements in equivalence classes of at least the same size.
Consider the equivalence structure A with universe

⋃
i∈ω{〈i, n〉: n ≤ i} where all

elements with the same left column are in the same equivalence class. This structure
is clearly a computable equivalence structure with computable size function | · |. We
build a computable equivalence structure B = (ω, EB) in stages such that no partial
computable function is an embedding of B in A. We want to satisfy the following
requirements.

Pe: ϕe is not an embedding of B in A

We say that a requirement Pe needs attention at stage s if the restriction of the approx-
imation ϕe,s of ϕe to elements in the structure Bs is a partial embedding of B inA not
equal to ∅. The structure B is the limit of the structures Bs constructed as follows.
Construction
Stage s = 0: B0 is the singleton 〈0, 0〉.
Stage s + 1: Check if there is a requirement Pe, e ≤ s that needs attention. If such
Pe exists, do the following. Choose the least requirement Pe that needs attention.
Then ϕe,s(〈s, 0〉) ↓= 〈i, n〉 for some 〈i, n〉. Let Bs+1 = Bs ∪ {〈s, s + j〉: 0 ≤ j ≤
i} ∪ {〈s + 1, 0〉}; put all elements with s in the left column in the equivalence class of
〈s, 0〉, and let 〈s + 1, 0〉 be a singleton.

If no Pe needs attention setBs+1 = Bs∪{〈s+1, 0〉} and let 〈s+1, 0〉 be a singleton.
Verification Assume towards a contradiction that ϕe is an embedding of B in A and
no ϕ j , j < e is an embedding. Then there is a stage s such that ϕe,s is a partial
embedding of Bs in A and no Pj , j < e, needs attention. Thus, Pe receives attention
at stage s + 1 and ϕe,s(〈s, 0〉) ↓; say ϕe,s(〈s, 0〉) = 〈i, n〉. Then, by construction, the
equivalence class of 〈s, 0〉 in Bs+1 is bigger than the one of 〈i, n〉. Thus, ϕe can not be
an embedding. However, by construction of B, every equivalence class is grown only
once and has the size of an equivalence in A plus one. Thus, B is unbounded without
infinite equivalence classes and hence, is bi-embeddable with A. ��

The following corollaries follow directly from Theorems 2.3 and 2.4.

Corollary 2.5 There is a computably bi-embeddably categorical equivalence structure
that is not computably categorical.

Corollary 2.6 There is a computably categorical equivalence structure that is not com-
putably bi-embeddably categorical.

Calvert et al. [9] showed that a computable equivalence structure is computably
categorical if and only if it is relatively computably categorical. The analogous result
holds in the context of bi-embeddability.
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Proposition 2.7 LetA be a computable equivalence structure. ThenA is computably
bi-embeddably categorical if and only if it is relatively computably bi-embeddably
categorical.

Proof Relativization of the proof of Theorem 2.4 ensures the result. ��

3 10
2 and10

3 bi-embeddable categoricity

In this section we characterize �0
2 and �0

3 bi-embeddably categorical equivalence
structures. We will show that a computable equivalence structure is �0

2 (�0
3) bi-

embeddably categorical if and only if it relatively so. We will also see that all
equivalence structures are relatively�0

3 bi-embeddably categorical. This, togetherwith
the fact that any countable equivalence structure is bi-embeddable with a computable
one [7] gives a complete structural characterization of bi-embeddable categoricity
for equivalence structures. We also establish the remaining parts of Theorem 1.1. At
first we characterize �0

2 bi-embeddably categorical equivalence structures. We start
by exhibiting a class of equivalence structures that is relatively �0

2 bi-embeddably
categorical.

Theorem 3.1 If A has finitely many infinite equivalence classes, then A is relatively
�0

2 bi-embeddably categorical.

Proof By Theorem 2.4 and Proposition 2.7 equivalence structures with bounded
character are relatively computably bi-embeddably categorical and thus relatively
�0

2 bi-embeddably categorical. It remains to show that equivalence structures with
unbounded character and finitely many infinite equivalence classes are relatively �0

2
bi-embeddably categorical.

Let A have finitely many infinite equivalence classes and unbounded character,
and let B be a bi-embeddable copy of A. Note that B must have the same number of
infinite equivalence classes as A. Fix transversals TA and TB of I n f A and I n f B,
respectively. Let f : TA → TB be a bijection. As TA and TB are finite sets, they are
computable. We define a �A⊕B

2 embedding ν: A ↪→ B by recursion. Let (ai )i∈ω be
a computable enumeration of A.

ν(a0) =
{
f (t) if ∃t ∈ TA a0 ∈ [t]A
μx ∈ B[|[x]B| ≥ |[a0]A| ∧ ∀t ∈ TB x /∈ [t]B] otherwise

Assume ν has been defined for a0, . . . as . We define ν(as+1); there are three cases.

Case 1 as+1 is equivalent to an element for which ν has already been defined, i.e.,
∃ j ≤ s as+1 ∈ [a j ]A. Then

ν(as+1) = μx ∈ B[x ∈ [ν(a j )]B ∧ ∀i ≤ s x 	= ν(ai )].
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Case 2 as+1 is not equivalent to any element for which ν has been defined and its
equivalence class is infinite, i.e., ∃t ∈ TA as+1 ∈ [t]A, then

ν(as+1) = μx ∈ B[x ∈ [ f (t)]B ∧ ∀i ≤ s x 	= ν(ai )].

Case 3 as+1 is not equivalent to any element for which ν has been defined and its
equivalence class is finite. Then

ν(as+1) = μx ∈ B[|[x]B| ≥ |[as+1]A| ∧ ∀t ∈ TB x /∈ [t]B ∧ ∀i ≤ s x /∈ [ν(ai )]B].

As A and B are both unbounded, at any stage s of the construction we can find an
element in B with an equivalence class greater than or equal to the one of as in A.
Therefore, ν is an embedding. As TA, TB, and f are computable and comparing the
size of two equivalence classes is �A⊕B

2 , ν is �A⊕B
2 . ��

The following is the relativization of the classical computability theoretic concepts of
immune and simple sets to 0′.
Definition 3.1 An infinite set A is 0′-immune if it contains no infinite set which is
computably enumerable in 0′. A Σ0

2 set A is 0′-simple if it is the complement of a
0′-immune set.

Theorem 3.2 There is a computable equivalence structure A with infinitely many
infinite equivalence classes such that FinA is 0′-simple. Hence, I n f A is 0′-immune.
Proof We buildA with universe ω such that FinA is 0′-simple, i.e., for every infinite
Σ0

2 set S the intersection of FinA and S is nonempty. It has to satisfy the following
requirements.

Pe: |W ∅′
e | = ∞ ⇒ W ∅′

e ∩ FinA 	= ∅

and the overall requirement that any transversal TInfA of InfA is infinite.

G: TInfA is infinite.

Our strategy to satisfy a requirement Pe is to pick a witness xe for W ∅′
e and prevent

the equivalence class of xe from growing any further.
We will construct A in stages. Elements and equivalence classes can be in one of

three states. An element is blocked by Pe if it is equivalent to a witness picked by Pe.
During the construction we also designate unblocked elements for expansion, i.e., we
allow the equivalence class of such elements to grow in a later stage. Elements which
are neither designated nor blocked are fresh, these elements have equivalence classes
of size 1.

The set W ∅′
e,s is the Σ2 approximation of W ∅′

e at stage s and the set FinAs is the set
of blocked elements at stage s; we will have that FinA = lims FinAs . A strategy Pe
needs attention at stage s + 1 if

W ∅′
e,s ∩ FinAs = ∅ & ∃x > e3 (x ∈ W ∅′

e,s). (
)
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Construction
Stage s = 0: Let A = ω and EA = {(x, x): x ∈ ω}. Define FinAs = ∅.
Stage s + 1: Assume we have built As .

(1) Choose the least e < s such that Pe needs attention. Take the least x > e3

satisfying the second part of the matrix in Eq. (
). Check if x ≤ s. If so, then
take the element y, e3 < y ≤ s which has been in the approximation the longest
without interruption and declare its equivalence class as blocked by Pe. If not,
then declare the equivalence class of x as blocked by Pe. If Pe receives attention
for the first time, designate the least fresh element.

(2) Add to all designated equivalence classes a fresh element bigger than s.
(3) Check if for any e < s there is an element x blocked by Pe that is not blocked by

any Pj , j < s, and x ∈ W ∅′
e,s−1 but x /∈ W ∅′

e,s . If so, declare the equivalence class
of x as designated.

Verification It is clear from the construction thatA = lims As is a computable equiv-
alence structure. The following two claims establish that it has the desired properties.

Claim 3.2.1 Every requirement Pe is eventually satisfied.

Proof By construction, no requirement Pe injures a requirement Pj , j 	= e, so it is
sufficient to consider them in isolation. As W ∅′

e,s is a Σ2 approximation we have that

x ∈ W ∅′
e iff there is a stage s0 such that for all t > s0, x ∈ W ∅′

e,t . In particular, there is

a stage after which an element x0 ∈ W ∅′
e , x0 > e3 will be in the approximation longer

than any element y /∈ W ∅′
e . This element will be chosen by our strategy the next time

that Pe receives attention (which it will if its current witness is not inW ∅′
e ). Hence, Pe

is satisfied in the limit. ��
Claim 3.2.2 The requirement G is satisfied.

Proof Assume that Pe is the maximum requirement that acted at some stage in the
construction. At most e equivalence classes are blocked at this stage and because at
every stage every designated equivalence class grows by one element, at most e2 out of
e3 elements are blocked. By the same reasoning at most e2 elements are designated for
expansion. Hence, at least e3 − 2e2 fresh elements are left to expand the equivalence
classes of designated elements and so, for e > 2 there are enough fresh elements
smaller than e3 left to expand the designated elements. As every requirement that
receives attention for the first time designates one fresh element, in the limit there are
infinitely many infinite equivalence classes. ��

It is immediate that two equivalence structuresA andBwith infinitelymany infinite
equivalence classes are bi-embeddable. To obtain an embedding of A in B just map
all equivalence classes of A to infinite equivalence classes of B.

Proposition 3.3 If an equivalence structureA has infinitely many infinite equivalence
classes, then it is not �0

2 bi-embeddably categorical.
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Proof LetA be a computable equivalence structure with infinitelymany infinite equiv-
alence classes and no finite equivalence classes, and take B as in Theorem 3.2. Then,
by the above argument, they are bi-embeddable and every embedding of A in B has
as range an infinite subset of I n f B.

Now, assume that ν: A ↪→ B is 0′-computable. Then, its range is a Σ0
2 set and an

infinite subset of I n f B. But I n f B is 0′-immune, a contradiction.Hence, no embedding
of A in B is 0′-computable and therefore A is not �0

2 bi-embeddably categorical. ��
Corollary 3.4 An equivalence structureA is�0

2 bi-embeddably categorical if and only
if it has finitely many infinite equivalence classes.

Calvert et al. [9] characterized relatively �0
2 categorical computable equivalence rela-

tions. Their result relativizes.

Proposition 3.5 (Relativization of [9, Corollary 4.8]) A countable equivalence struc-
tureA is relatively�0

2 categorical if and only ifA has finitelymany infinite equivalence
classes or A has bounded character.

Corollary 3.6 An equivalence structure with bounded character and infinitely many
infinite equivalence classes is relatively �0

2 categorical but not relatively �0
2 bi-

embeddably categorical.

Corollary 3.7 Let A be a computable equivalence structure. Then A is �0
2 bi-

embeddably categorical if and only if it is relatively �0
2 bi-embeddably categorical.

Proof By Theorem 3.1 computable equivalence structures with finitely many infi-
nite equivalence classes are relatively �0

2 bi-embeddably categorical and therefore,
also �0

2 bi-embeddably categorical. It follows from Proposition 3.3 that these are
all equivalence structures which are �0

2 bi-embeddably categorical. As relatively �0
2

bi-embeddably categorical equivalence structures have the same characterization the
result follows. ��

Kach and Turetsky [17] gave an example of a �0
2 categorical but not relatively

�0
2 categorical equivalence structure. Downey et al. [18] showed that an equivalence

structure A is �0
2 categorical iff the structure containing only one equivalence class

of A for each finite size and all its infinite equivalence classes is �0
2-computably

categorical.
We now proceed with the study of possible degrees of categoricity for equivalence

structures.

Definition 3.2 A function f is limitwise monotonic if there is a computable approxi-
mation function h f (·, ·) such that
(1) f (x) = lims h f (x, s)
(2) for all x, s h f (x, s) ≤ h f (x, s + 1)

It is not hard to see that for any limitwise monotonic function f , f ≤T 0′. For more
on limitwise monotonic functions and their applications see Downey et al. [19].
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Theorem 3.8 The degree of bi-embeddable categoricity of computable equivalence
structures with unbounded character and finitely many infinite equivalence classes is
0′.

Proof First notice that there are countablymany bi-embeddability types of equivalence
structures with unbounded character and finitely many infinite equivalence classes.
Namely exactly one for each number of equivalence classes of infinite size. We prove
the theorem for equivalence structures with no infinite equivalence classes. However,
the argument can be easilymodified to accomodate equivalence structures with finitely
many infinite equivalence classes.

We define the following function.

f (x) := 1 +
∑

0≤i≤x,ϕi (x)↓
ϕi (x)

Clearly f is limitwise monotonic and dominates every partial computable function.
By the domination theorem (see [8, Theorem 4.5.4]) it holds that for any set D such
that f ≤T D, D ≥T 0′; hence, in particular, f ≡T 0′.

We build a computable equivalence structure A f with universe ω and no infinite
equivalence classes in stages such that

|[〈x, 0〉]A f | = f (x).

Let h f be the computable approximation for f . At stage 0 of the construction, let the
universe of the approximationA f beω and put 〈0, n〉 in the equivalence class of 〈0, 0〉
for n < h f (0, 0). At stage s+1 check if for any 〈x, 0〉 x ≤ s, |[〈x, 0〉]| < h f (x, s+1).
If so, add 〈x, s + 1〉 to the equivalence class.

Now consider the equivalence structure A with universe
⋃

i∈ω{〈i, n〉: n ≤ i} and
where all elements with the same left column are in the same equivalence class. This
structure is clearly a computable equivalence structure bi-embeddable with A f and
computable size function | · |. Any embedding ν: A f → A must map [〈x, 0〉]A f �→
[〈y, 0〉]A with |[〈y, 0〉]A| ≥ |[〈x, 0〉]A f | = f (x). Consider the function g(x) =
|[ν(〈x, 0〉)]A|; as | · | is computable, g ≡T ν and as ∀x g(x) ≥ f (x), g ≡T ν ≥T 0′ by
the domination theorem. As by Corollary 3.4 every computable equivalence structure
with finitely many infinite equivalence classes is �0

2 bi-embeddably categorical the
theorem follows. ��
Theorem 3.9 Equivalence structures are relatively �0

3 bi-embeddably categorical.

Proof By Theorem 3.1, equivalence structures with finitely many infinite equiva-
lence classes are relatively �0

2 bi-embeddably categorical. Thus, it suffices to show
that equivalence structures with infinitely many infinite classes are relatively �0

3 bi-
embeddably categorical. Let A and B be equivalence structures with infinitely many
infinite classes. Recall that any two such equivalence structures are bi-embeddable.
There is an embedding ofA in B that maps every equivalence class inA to an infinite
equivalence class in B. As InfB is ΠB

2 there is at least one such embedding which is

�A⊕B
3 . By the same argument there is a �A⊕B

3 embedding of B in A. ��
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The analogous result about classical relative �0
3 categoricity of equivalence struc-

tures is also true [9], as every equivalence structure has a Σc
3 Scott family.

We close by proving the remaining parts of Theorem 1.1.

Theorem 3.10 The degree of bi-embeddable categoricity of computable equivalence
structures with infinitely many infinite equivalence classes is 0′′.

Proof We first build a computable equivalence structure A with the property that
any infinite partial transversal of I n f A computes 0′′. Let (σi )i∈ω be a computable
1 − 1 enumeration of 2<ω and associate to every σi an infinite set of witnesses
{〈i, x, y〉: x, y ∈ ω}. Elements of the form 〈i, x, 0〉 will serve as witnesses while
all other elements will be used to grow the equivalence classes. We will build A
using a Π2 approximation to ∅′′. Let ∅′′

s be the Π2 approximation at stage s of our
construction.
Construction
Stage s = 0: Let A = ω and EA = {(x, x) : x ∈ ω}. Furthermore, for all strings σi
in our computable enumeration of 2<ω designate witnesses 〈i, 0, 0〉.
Stage s + 1: Assume we have built As .

(1) For all witnesses with left column i < s + 1 check if for some x with σi (x) =
0, x ∈ ∅′′

s+1. If 〈i, j, 0〉 is a witness for such σi , discard it (never touch its
equivalence class again during the construction) and designate the witness 〈i, s+
1, 0〉.

(2) For any σi , i < s+1 grow the equivalence class of its designated witness 〈i, j, 0〉
to match min{|{t : t ≤ s, x ∈ ∅′′

t }|: σi (x) = 1} using fresh elements 〈i, j, r〉
with r > s.

VerificationWe have to show that any infinite partial transversal of InfA computes 0′′.
The following claim establishes the crucial part.

Claim 3.10.1 σi ≺ ∅′′ ⇔ ∃y〈i, y, 0〉 ∈ I n f A.

Proof (⇒). Assume σi ≺ ∅′′. As we have a Π2 approximation to ∅′′ there is a stage
s such that no x < |σi |, x /∈ ∅′′ enters ∅′′

t at any stage t > s. Hence, by construction
there is a j < s such that 〈i, j, 0〉 has infinite equivalence class.

(⇐). Assume |[〈i, j, 0〉]| = ω and let τ ≺ ∅′′ with |τ | = |σi |. Assume, for some x ,
τ(x) = 0 and σi (x) = 1. Then there are only finitely many stages t such that x ∈ ∅′′

t .
Thus, by construction, no equivalence class of elements with i in the left column can
become infinite. Therefore, if τ(x) = 0, then σi (x) = 0 as well. Now assume that
τ(x) = 1 and σi (x) = 0. Then there are infinitely many stages s such that x ∈ ∅′′

s .
Hence, by construction, there can not be finite j such that |[〈i, j, 0〉]| = ω because for
any j if 〈i, j, 0〉 is designated at stage s = j there is a stage t > s such that x ∈ ∅′′

t .
Let t0 be the least such stage for given j , then 〈i, t0, 0〉 will be designated at stage t0
and no new elements will be added to the equivalence class of [〈i, j, 0〉] at any stage
t ≥ t0. Thus [〈i, j, 0〉] is finite, τ(x) = 1 ⇒ σi (x) = 1 and hence τ = σi . ��
Consider an infinite partial transversal T of I n f A. To check whether some fixed
x ∈ 0′′, consider an enumeration of T . As all elements in T code an initial segment
of ∅′′ in their left column there is a finite stage t and y, z, such that 〈i, y, z〉 ∈ Tt
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and |σi | ≥ x . Hence, x ∈ 0′′ ⇔ σi (x) = 0 and we can find σi uniformly. Therefore,
T ≥T 0′′.

Now consider the structure B with universe ω and where ∀x∀n 〈x, n〉 ∈ [〈x, 0〉]B.
It is a computable equivalence structure consisting only of infinite equivalence classes
and it clearly embeds intoA. To compute 0′′ from any embedding ν: B ↪→ A look at
the strings coded by the left column of the images of elements of the form 〈x, 0〉. By
the above argument, after enumerating a finite number of images of such elements we
can decide whether x ∈ 0′′, hence ν ≥T 0′′. Since, by Theorem 3.9, any equivalence
structure is relatively �0

3 bi-embeddably categorical the theorem follows. ��
At last we put together the pieces that prove Theorem 1.1.

Proof of Theorem 1.1 (1) follows directly from Theorem 2.4. Theorem 3.8 proves
that 0′ is the degree of bi-embeddable categoricity of equivalence structures with
unbounded character and finitely many infinite equivalence classes. The two equiva-
lence structures A f and A constructed in the proof witness that 0′ is a strong degree
of bi-embeddable categoricity for equivalence structures with unbounded character
and no infinite equivalence classes. Similar structures can be easily constructed for
equivalence structures with any finite number of infinite classes. This proves (2). The-
orem 3.10 shows that 0′′ is the degree of bi-embeddable categoricity of equivalence
structures with infinitely many infinite classes. To see that it is a strong degree of
bi-embeddable categoricity, consider the structuresA and B constructed in the proof.
Any embedding ν: B ↪→ A computes 0′′, hence, for any μ: A ↪→ B, μ ⊕ ν ≥T 0′′.

��

4 Index sets

Let (Ce)e∈ω be an enumeration of the partial computable equivalence structures, i.e.,
given a computable function ϕe: ω × ω → {0, 1}, Ce has universe ω and

xECe y: ⇔ ϕe(x, y) = 1.

Note that it is Π0
1 to check whether Ce is indeed an equivalence structure.

We say that a set is D0
n if it is the difference of two Σ0

n sets, or equivalently, the
intersection of a Σ0

n and a Π0
n set. We start by recalling a simple observation.

Lemma 4.1 For computably bi-embeddably categorical equivalence structures A we
have that B≈A if and only if

(1) B has the same number of infinite equivalence classes as A,
(2) B has the same bound as A,
(3) and ifA has infinitely many equivalence classes of size n and for all k > n there

are only finitely many equivalence classes of size k, then for every m ≥ n, B has
the same number of equivalence classes of size m as A.

Theorem 4.2 LetA be a computable, computably bi-embeddably categorical equiva-
lence structure.
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(1) If A is finite then the index set {Ce: Ce ≈A} is D0
1-complete.

(2) If A has infinitely many equivalence classes of size n for some n < ω, and no
infinite equivalence classes, then the index set {Ce: Ce ≈A} is Π0

2 -complete.
(3) If A has r > 0 infinite equivalence classes, then the index set {Ce: Ce ≈A} is

Π0
2 -complete.

Proof Ad (1). Assume A is finite, say |A| = m. Let θA be the formula obtained from
the atomic diagram by replacing the constants from A by variables. Then the index
set is definable by the following D0

1 formula.

Ce ≈A ⇔ Ce ∼= A ⇔ ∃x1, . . . xm(θA(x1, . . . , xm))

∧∀x1, . . . xm+1

⎛

⎝
∨

1≤i< j≤m+1

xi = x j

⎞

⎠ .

To see that the index set is D0
1-hard, we define a computable function g such that

Cg(e,i) ≈A if and only if e ∈ ∅′ and i ∈ ∅′. Fix an element a of A. Let B be a
computable equivalence structure isomorphic to A \ [a]A; say |[a]A| = n. We build
a computable function f and a structure E f (e,i) disjoint from B in stages such that
Cg(e,i) = B ⊕ E f (e,i).

Let ∅′
s, E f (e,i),s be the approximations to ∅′ and E f (e,i), respectively, at stage s. Let

E f (e,i),0 = ∅ and assume we have defined E f (e,i),s . To define E f (e,i),s+1 check if (i)
e↘ ∅′

s and (ii) i ↘∅′
s . The structure E f (e,i),s+1 extends E f (e,i),s as follows. If (i), add

a new equivalence class of size n to E f (e,i),s+1 by using the elements 2(s + j) for
j ∈ 1, . . . , n. If (ii), add a new equivalence class of size n + 1 by using the elements
2(s + j) + 1 for j ∈ 1, . . . n + 1.

Let E f (e,i) = lims E f (e,i),s . It is now easy to see that Cg(e,i) = B ⊕ E f (e,i) is
bi-embeddable with A (in this case even isomorphic) if e ∈ ∅′ and i ∈ ∅′.

Ad (2). Assume n is the maximal size such that A has infinitely many equivalence
classes of size n. LetA>n be the substructure ofA restricted to classes bigger than n.
Then A>n is finite. The index set is definable by the following Π0

2 formula.

Ce ≈A ⇔ ∀x∃y > x([y]Ce ≥ n ∧ ∀z < y ¬zEy) ∧ Ce,>n ∼= A>n

To see that it is hard, consider the Π0
2 complete set Inf = {e: We is infinite}. We

will build a computable function g such that Cg(e) ≈A ⇔ e ∈ Inf. Fix a computable
equivalence structure B isomorphic to A>n . Our desired structure Cg(e) will be the
disjoint union of B with the structure E f (e), where f is a computable function con-
structed as follows. Let We,s be the computable approximation to We after s stages
of our construction; we make the standard assumption that x ∈ We,s ⇒ x < s.
Assume we have defined E f (e),s and are at stage s + 1 of the construction. The struc-
ture E f (e),s+1 extends E f (e),s by a new equivalence class of size n for every x ↘We,s ,
i.e., if x ↘We,s let 〈x, s〉, . . . , 〈x, s + n〉 ∈ E f (e),s+1 and set them to be equivalent.
This finishes the construction; let E f (e) = lims E f (e),s .
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By construction E f (e) has only equivalence classes of size n and it has infinitely
many of those if and only if We is infinite. As B ∼= A>n , we have that

Cg(e) = B ⊕ E f (e) ≈A ⇔ e ∈ Inf .

Thus the index set is Π0
2 complete.

Ad (3). To see that it is in Π0
2 one has to consider two cases. Either the finite part

of A is as in (1) or as in (2). In any case, let k be the bound. If we are in case (1), let
m be the number of elements in the finite part of A. If we are in case (2), let m be the
number of elements in the finite part ofA restricted to equivalence classes bigger than
n, where n is as above.

If we are in case (1) we can define the index set by

Ce ≈A ⇔ ∀y1, . . . , ym+1

⎛

⎝
∧

1≤i≤m+1

[yi ] ≤ k →
∨

1≤i< j≤m+1

yi = y j

⎞

⎠

(∗)

∧∀y1, . . . , yr+1

⎛

⎝
∧

1≤i≤r+1

[yi ] > k →
∨

1≤i< j≤r+1

yi Ey j

⎞

⎠

∧∃x1, . . . , xm(θA f in (x1, . . . , xm))

∧∀y1, . . . , ym
⎛

⎝

⎛

⎝
∧

1≤i≤m

[yi ] ≤ k ∧
∧

1≤i< j≤m

yi 	= y j

⎞

⎠ → �A f in (y1, . . . , ym)

⎞

⎠

∧∃x1, . . . , xr
⎛

⎝
∧

1≤i≤r

[xi ] > k ∧
∧

1≤i< j≤r

¬xi Ex j

⎞

⎠

∧∀x([x] > k → ∃y > x yEx)

where θA f in is the formula obtained from the atomic diagram of the finite part
of A by replacing the constants by variables and �A f in is the disjunction over
θA f in (x1, . . . , xm) permuting over all variables. Let the formula in Eq. (∗) be ϕA.
If we are in case (2) the defining formula is

Ce ≈A ⇔ ∀x∃y > x([y]Ce ≥ n) ∧ ϕ′
A>n

where ϕ′
A>n

is as above with the slight difference that the second and third universal
quantifiers now range over all x where n < [x] ≤ k instead of only [x] ≤ k. The two
formulas are easily seen to be Π0

2 .
For the hardness consider the Π0

2 complete set Inf = {e: We is infinite} and fix a
computable structure B without infinite equivalence classes isomorphic to the finite
part of A. We build a computable function g such that

Cg(e) = B ⊕ E f (e) ≈A ⇔ e ∈ Inf
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where f is again a computable function. We prove the hardness for the case that A
has one infinite equivalence class, the case for r > 1 is similar. The construction of
E f (e) is in stages, at stage 0 the universe of E f (e),0 is empty. Assume we have defined
E f (e),s and are at stage s + 1 of the construction.

For any x < s such that x ↘We,s , add 〈x, s+1〉 to E f (e),s+1 and make it equivalent
to all elements already in E f (e),s . It is easy to see that the structure E f (e) = lims E f (e),s

has an infinite equivalence class if and only if e ∈ Inf and thus Cg(e) ≈A if and only
if e ∈ Inf. ��
Theorem 4.3 Let A be an equivalence structure with degree of categoricity 0′. Then
the following holds.

(1) If A has no infinite equivalence classes, then the index set {Ce: Ce ≈A} is Π0
3 -

complete.
(2) If A has 0 < k < ω infinite equivalence classes, then the index set {Ce: Ce ≈A}

is D0
3-complete.

Proof Recall that an equivalence structure has degree of cateogricity 0′ if and only
if it has finitely many infinite classes and is unbounded. Notice that two unbounded
equivalence structures are bi-embeddable if and only if they have the same number of
infinite classes and assume that A has 0 < k < ω infinite equivalence classes. Then
the index set is definable by

Ce ≈A ⇔ ∀x
(
x ∈ FinCe → ∃y

(
y ∈ FinCe ∧[y] ≥ [x]

))

∧∃x1, . . . , xk ∈ InfCe
⎛

⎝
∧

1≤i< j≤k

¬xi Ex j

⎞

⎠

∧∀x0, x1, . . . , xk ∈ InfCe
⎛

⎝
∨

1≤i< j≤k

xi Ex j

⎞

⎠ .

The part of the formula defining the finite equivalence classes is Π0
3 and the part

defining the infinite equivalence classes is Σ0
3 . Thus, the formula is D0

3. If A has no
infinite equivalence classes then the part of the defining formula defining the infinite
classes becomes ∀x x ∈ FinCe , a Π0

3 formula. Hence, in this case the above formula
is Π0

3 .
To show the completeness of (2) we will define a computable function f such that

for every Π0
3 set P and every Σ0

3 set S

C f (p,e) ≈A ⇔ p ∈ P ∧ e ∈ S.

By Π0
2 completeness of Inf = {e: We is infinite} we have that there is a computable

function g such that

e ∈ S ⇔ ∃x Wg(x,e) is infinite.
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In the same vein, as Fin = Inf is Σ0
2 complete we have that there is a computable

function h such that

p ∈ P ⇔ ∀x Wh(x,p) is finite.

We may assume without loss of generality that

e ∈ S ⇔ ∃!x Wg(x,e) is infinite.

In other words, we may assume that there is a unique x witnessing that e ∈ S. See for
instance [8, Theorem 4.3.11] for a proof of this fact. We build the structure C f (p,e) in
stages.
Construction
Stage 0: The universe of C f (p,e) is ω and C f (p,e) has exactly one equivalence class for
each finite size, i.e., for each x ∈ ω, we set 〈2x, 0, 0〉E〈2x, 0, i〉 for i ≤ x . All other
elements are singletons.
Stage s+1 = 2 j : For every x < j , if for some t < j , t ↘Wh(x,p), j , then put 〈2x, i, j〉
into the equivalence class of 〈2x, i, 0〉 for all i with 0 ≤ i ≤ k.
Stage s + 1 = 2 j + 1: For every x < j , if for some t < j , t ↘Wg(x,e), j , then put
〈2x + 1, i, j〉 into the equivalence class of 〈2x + 1, i, 0〉 for all i with 0 ≤ i < k.
Verification

p ∈ P, e ∈ S: The construction at even stages, taking care of the Π0
3 part, will not

contribute any infinite equivalence classes and C f (p,e) is unbounded from the begin-
ning. To see that it has k infinite equivalence classes just notice that by our assumption
above there is exactly one x such thatWg(x,e) is infinite. Thus, the construction at odd
stages guarantees that the equivalence classes of elements 〈2x+1, i, 0〉with 0 ≤ i < k
become infinite in the limit.

p /∈ P, e ∈ S: Then there is an x such that Wh(x,p) is infinite. By construction
the equivalence class of 〈2x, 0, 0〉 is infinite and our strategy for S builds k infinite
equivalence classes. Thus, C f (p,e) has more than k infinite equivalence classes and
hence, C f (p,e) is not bi-embeddable with A.

p ∈ P, e /∈ S: Then for no x the set Wg(x,e) is infinite. So, by construction, no
equivalence class of elements with an odd number in the left column will grow to be
infinite and all equivalence classes with an even number in the left column have finite
equivalence classes as Wh(x,p) is finite for all x .

p /∈ P, s /∈ S: There will be some x such that Wh(p,x) is infinite. By construction
the equivalence classes of 〈x, i, 0〉 with 0 ≤ i ≤ k will be infinite and thus C f (p,e)

will have k + 1 infinite equivalence classes.
To prove completeness for (1), at every stage, we apply the strategy described above

for even stages. ��
Theorem 4.4 The index set {e: Ce is computably bi-embeddably categorical} is Σ0

2
complete.

Proof Recall that an equivalence structure is computably bi-embeddably categorical
if and only if it has bounded character and finitely many infinite equivalence classes.
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Thus the index set is definable by the following computable Σ2 formula.

Ce is computably bi-embeddably categorical

⇔ ∃k
∨

r∈ω

⎛

⎝∀x1, . . . , xr+1

⎛

⎝
∧

1≤i≤r+1

|[xi ]| ≥ k →
∨

1≤i< j≤r+1

xi Ex j

⎞

⎠

⎞

⎠ .

To see that it is hard consider the classical Σ0
2 complete set Fin = {e: We is finite}.

We build a computable function f such that

C f (e) is computably bi-embeddably categorical ⇔ We is finite.

Let We,s be the computable approximation of We at stage s. We construct C f (e) in
stages. At stage 0, C f (e),0 has universe ω and the equivalence relation is the identity
relation. Assume we have defined C f (e),s . To define C f (e),s+1 check for x < s if
x ↘We,s . If so declare 〈x, s + i〉 for i ∈ 0, . . . , x to be equivalent. This finishes the
construction. Let C f (e) = lims C f (e),s . It follows directly from the construction that
C f (e) has bounded character if and only if We is finite. This completes the proof. ��
Theorem 4.5 The index set {e: Ce has degree of b.e. categoricity 0′} is Σ0

4 complete.

To prove that Theorem 4.5 is Σ0
4 hard we use the function constructed in the proof

of Theorem 4.7. We will state and prove this theorem after proving the following
representation lemma for Π0

4 sets.

Lemma 4.6 Let P be a Π0
4 set, then there is a computable function g such that the

following two conditions hold.

x ∈ P ⇔ ∀y∃!z Wg(x,y,z) is infinite (1a)

∀x, y (∃z Wg(x,y,z) is infinite → ∃!z Wg(x,y,z) is infinite
)

(1b)

∀x, y (∀z Wg(x,y,z) is finite → ∀z Wg(x,y+1,z) is finite
)

(2)

Proof Using a proof similar to the one of [8, Theorem 4.3.11] we get a computable
function h satisfying (1a) and (1b) if we replace g by h. For y > 0 let

f (x, y, s) =
{

μ(z < s)[|Wh(x,y−1,z),s | > |Wh(x,y−1,z),s−1|] such z < s exists

s otherwise

Now at stage s + 1, for y = 0 let Wg(x,y,z),s = Wh(x,y,z),s and otherwise let
u = f (x, y, s) and enumerate into Wg(x,y,u),s all elements in Wh(x,y,z),s .
Verification

x ∈ P: Then for all y there is one zy such that Wh(x,y,zy) is infinite. Hence, there
is a stage s such that for given y, u < zy−1 and t > s, Wh(x,y−1,u),t = Wh(x,y−1,u),s .
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Thus, for infinitely many stages t , zy−1 is the least such that |Wh(x,y−1,zy−1),t | >

|Wh(x,y−1,zy−1),t−1| and therefore by construction there is z such that Wg(x,y,z) is
infinite. By definition of h there can be at most one such z.

x /∈ P: Then there is a least y0 such that for all z,Wh(x,y0,z) is finite. By construction
lims→∞ f (x, y0 + 1, s) does not exist and thus no Wg(x,y0+1,z) can be infinite. By
induction the same holds for all y > y0. ��
Theorem 4.7 The index set {e : Ce has degree of b.e. categoricity 0′′} isΠ0

4 -complete.

Proof By Theorem 3.10 the index set of the equivalence structures having degree of
bi-embeddability categoricity 0′′ is the same as the index set

{e: Cehas infinitely many infinite equivalence classes}.

This index set is clearly Π0
4 . To see that it is complete consider a Π0

4 set P , then there
is a computable function g such that

e ∈ P ⇔ ∀x∃y Wg(e,x,y) is infinite.

We may assume that g satisfies the matrices in Lemma 4.6. We build a computable
function f such that

C f (e) has infinitely many infinite equivalence classes. ⇔ e ∈ P

The construction is in stages; the universe of C f (e),0 is ω and EC f (e),0 = {(x, x) :
x ∈ ω}. Assume we have defined C f (e),s and are at stage s + 1 of the construction.
The structure C f (e),s+1 extends C f (e),s as follows. For each x, y ≤ s + 1, if there is
u < s + 1 such that u ↘Wg(e,x,y),s+1, then add 〈x, y, s + 1〉 to the equivalence class
of 〈x, y, 0〉. Then proceed to the next stage.

The desired structure C f (e) is the structure in the limit of the construction. If e ∈ P ,
then C f (e) has infinitely many infinite equivalence classes as for every x there is a y
such that Wg(e,x,y) is infinite and by construction the elements having the same first
and second column are in the same equivalence class. Assume e /∈ P , then there exists
an x0 such that for no y0 the above set is infinite; so no equivalence class of elements
with x0 in the left column will be infinite. Then by Lemma 4.6 the same holds for all
x > x0 and for all x1 < x there is exactly one y with Wg(e,x1,y) infinite. Hence, C f (e)

has only finitely many infinite equivalence classes. ��
Proof of Theorem 4.5 The index set is definable by the Σ0

4 formula

∀k(∃x(x ∈ FinCe ∧ [x] ≥ k)) ∧ ∃r(TInfCe ≤ r).

where TInfCe is a Π0
2 transversal of InfCe . For the hardness we use the strategy used in

the proof of Theorem 4.7. There, given a Π0
4 set P , we define a computable function

f such that

C f (e) has degree of b.e. categoricity 0′′ ⇔ e ∈ P.
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Clearly, P is Σ0
4 and using the same function we have that

C f (e) has degree of b.e. categoricity 0 or 0′ ⇔ e /∈ P

since if e /∈ P , f produces an equivalence structure with finitely many infinite equiv-
alence classes. Notice that C f (e) need not have unbounded character and thus might
have degree of categoricity 0. Therefore, define a computable unbounded equivalence
structure B and a function g such that

Cg(e) = C f (e) ⊕ B.

The function g is clearly computable and

Cg(e) has degree of b.e. categoricity 0′ ⇔ e ∈ P .

This proves that the index set is Σ0
4 hard. ��
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