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Featured Application: This paper focuses on improvement in patient care and it also helps
practitioners optimize their dermatology services by means of computer-assisted diagnostic
software using data from reflectance confocal microscopy devices.

Abstract: Reflectance confocal microscopy is an appropriate tool for the diagnosis of lentigo
maligna. Compared with dermoscopy, this device can provide abundant information as a mosaic
and/or a stack of images. In this particular context, the number of images per patient varied
between 2 and 833 images and the objective, ultimately, is to be able to discern between benign
and malignant classes. First, this paper evaluated classification at the image level, with the help of
handcrafted methods derived from the literature and transfer learning methods. The transfer learning
feature extraction methods outperformed the handcrafted feature extraction methods from literature,
with a F1 score value of 0.82. Secondly, this work proposed patient-level supervised methods based
on image decisions and a comparison of these with multi-instance learning methods. This study
achieved comparable results to those of the dermatologists, with an AUC score of 0.87 for supervised
patient diagnosis and an AUC score of 0.88 for multi-instance learning patient diagnosis. According
to these results, computer-aided diagnosis methods presented in this paper could be easily used in
a clinical context to save time or confirm a diagnosis and can be oriented to detect images of interest.
Also, this methodology can be used to serve future works based on multimodality.

Keywords: computer-assisted diagnosis; classification; transfer learning; reflectance confocal microscopy;
dermatology; lentigo

1. Introduction

As the incidence rate for skin cancers has steadily increased over the years, they are now the most
prevalent form of human malignancy. These diseases affect people in their everyday life, as they have
a pronounced social impact on the affected individuals as a result of a decrease in their quality of life
as well as because they have the potential to become lethal. In addition, they have significant economic
consequences, with an estimated cost of 8 billion dollars per year in the United States [1], and they
can stretch the ability of dermatological centers to cater to the at times overwhelming demand for
screening and treatment. However, most of these repercussions can be avoided by early detection
and appropriate surgeries [1].
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Currently, clinicopathological correlation is the gold standard to diagnose skin cancers.
The histological examination is relatively time-consuming as it requires excision of the affected
area, the embedding of the sample in paraffin, the generation of thin tissue sections
that then need to be stained and examined by a histopathologist. Despite its accuracy,
this technique remains time-consuming, invasive, and inconvenient for doctors and patients.
Consequently, several non-invasive imaging techniques have been developed to help the clinical
diagnosis of skin cancers, and some of these are now commonly used by dermatologists. For instance,
clinical photography and dermoscopy are both examples of affordable and intuitive techniques that
are presently widely used by dermatologists. Dermoscopy tends to replace clinical photography as it
significantly improves the quality of the diagnoses made by experts, due largely to the acquisition of
high-magnification images of the skin [2].

Research papers on dermatology nowadays tend to focus on the dermoscopy modality used to
perform automatic classification of lesions. Most of them obtain acceptable results with melanocytic
pathologies [3]. Older methods focus on finding the most pertinent combination of preprocessing
steps and handcrafted features to be used in a machine learning scheme [4,5]. By contrast, most
recent methods use deep learning approaches, and they have yielded impressive results in this
discipline [6]. In this particular study, the authors used an Inception-V3 architecture pre-trained
on the “ImageNet” database [7], and they fine-tuned this model on a dataset of 129,450 clinical
images containing 2032 different skin lesions and distributed across 757 classes. They carried out
the classification at different taxonomy levels, and at the first level of classification (Non-neoplastic
versus benign versus malignant), they achieved an accuracy of 0.72 ± 0.9 compared to 0.66 on a subset
of these data by specialists.

However, dermoscopy imaging devices only provide surface and chromatic information.
To overcome this limitation, reflectance confocal microscopy (RCM) modality is another type of imaging
technique used by dermatologists that provides high-resolution images of the skin on a micrometer
scale. Furthermore, this modality can provide structural information at different depths of the skin
by adjustment of the wavelength properties and the focal point [8]. The RCM device was first
designed by Marvin Minsky [9]. The principle of this device is to emit and focus a low power laser on
a specific point of the skin, then the light from this spot is reflected and collected through an objective
and a pinhole that allows only the light from the in-focus plane to reach the detector (see Figure 1).
In this situation, the illuminated point and the detector aperture have confocal (a contraction of
conjugate focal) planes [10]. The main interest of this focal point/plane is to provide only tissue
information from a specifically chosen depth. Different factors can affect the depth: illumination
wavelength, illumination power, reflective and scattering properties of the skin.

Source

Detector

Objec�ve

Pinholes

Beam spli�er

Skin

In-focus

Out-of-focus

Figure 1. Principle of the RCM designed by Marvin Minsky [9]. The light source is transmitted through
a pinhole and focused on the sample through an objective. Then the in-focus reflected light is collected
by the detector with the help of the second pinhole.
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Presently, this tool has greater diagnostic accuracy compared to dermoscopy, both for melanocytic
and for non-melanocytic skin tumors [11–13]. Unlike the previous modalities, RCM remains expensive,
although the number of users continues to increase [14] and recent developments have led to a degree
of improvement in the portability of RCM devices [15].

By contrast, relatively fewer studies have been published on the RCM modality by use of
computer vision techniques, despite their promising results in the clinical context. The use of artificial
intelligence could be particularly useful for RCM images because their evaluation by dermatologists is
time-consuming. Indeed, unlike with dermoscopy, many RCM images need to be acquired for each
skin lesion. Many studies of computer vision focus on understanding these images by predicting
the position in the skin layer [16,17] using stacks of 3D data provided by this modality. A number of
other studies have described the structural components of the skin [18] and few of them have classified
pathologies based on that specific modality. One of these studies [19] is quite similar to the problem
explored in this work, and it suggests several image descriptors for undertaking a classification task.
These authors introduced two methods using frequency representation: the first one based on Fourier
transform and the second one based on wavelet representation by use of Daubechies 4. The idea
behind spectral representation is to extract information at different frequency levels, thereby yielding
information about smoothness or complex structures inside the images, and to be consistent with
rotations and translations as the pathologies are non-oriented. The second category of descriptors that
they employed was based on spatial features by use of gray level histogram (GLH) and gray level
co-occurrence matrix (GLCM) statistical descriptors. The statistical descriptors computed from GLCM
had been derived from previous work [20]. Finally, the authors proceeded with the classification
of images by using different image parts at multiple sizes and they proceeded to classification and
regression trees (CART) classification. In a two-class situation, this paper reached an accuracy of
0.96 for the detection of nevi and 0.97 for melanoma pathologies by applying a wavelet extraction
and CART classification on a subpart of the 256 × 256 pixel images. Another paper is more relevant,
as the authors followed the same purpose as this work by suggesting a way to classify solar lentigo
pathologies by use of the previous wavelet decomposition, and by fitting the decomposition values to
a generalized Gaussian distribution (GGD) to reduce the number of variables. They also suggested
that only one variable and only one scale decomposition are relevant for solar lentigo detection.
This method was applied to 45 subjects with healthy skin or solar lentigo, and it achieved a sensitivity
of 0.81 and a specificity of 0.83 [21].

The scope of this work is to detect malignant tumors and particularly lentigo maligna/lentigo
maligna melanoma (LM/LMM) (the most common type of facial melanoma) in RCM images and to
help specialists reach a diagnosis based on these images at the patient-level. The previous feature
extraction methods and extraction through different convolutional neural network (CNN) architectures
were investigated first. As wavelet decomposition and reduction through GGD [21] were shown to be
irrelevant in our data context [22], this work did not focus on any of these methods. A comparison of
several classification models on full-size images was then carried out to estimate the relevance of these
methods. Also, this study will employ the term “lentigo maligna” instead of the term “melanoma
in situ type lentigo maligna” as it was used by the last RCM clinical studies [23–26] and for the sake
of simplicity.

The following parts of this paper are organized as follows. Section 2 covers the data by proving
details about their composition, the feature extraction methods implemented, and the process used to
compute image-level and patient-level decisions. Section 3 then displays all of the results and provides
an analysis of them, and finally, Section 4 provides a conclusion of this work and it offers a number
of perspectives.
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2. Materials and Methods

2.1. Data

The data for this paper were originally obtained in a previous clinical study [27] that performed
a comparison between dermoscopy and RCM modalities in the diagnosis of benign lesions such as
solar lentigo and malignant tumors by focusing essentially on LM/LMM. These images were acquired
by three specialists, experts in regard to non-invasive skin imaging tools, by use of a hand-held
VivaScope R© 3000 camera that uses a laser with a wavelength of 830 nm and images to a depth of up
to 250 µm. In addition, these data included lesions that can be highly misleading for dermatology
specialists. From an ethical perspective, this study was conducted following the Declaration of Helsinki
and the protocol was approved by the Ethics Committee of the University Hospital of Saint-Etienne
(Institutional review board number 672016/CHUSTE).

Only images considered relevant for the diagnosis by two out of the three investigators were
retained, at different depths of the skin: the epidermis, the dermal-epidermal junction (DEJ),
and the dermis. However, most of the information was acquired at the DEJ. Each RCM image
corresponding to a horizontal 920 µm × 920 µm section of the skin at a selected depth with a lateral
resolution of 1 µm and axial resolution of 3 µm to 5 µm. For specifications, these images have a spatial
resolution of 1000 × 1000 pixels with quantification on a single 8-bits channel.

The relative position between images of a single patient was unknown, and this could not provide
any further knowledge in the next part of this work. Furthermore, the metadata available regarding
the age of the patients was not used as the purpose of this work was to evaluate the relevance of image
classification techniques, although it was initially provided to the experts during their assessments.

These data include 223 lesions from 201 patients, for a total of 7846 RCM images. Generally, one
lesion is equal to one patient so we will discuss of a lesion as a patient in the next paragraphs. Each
of these cases varies between 2 and 833 images (with a mean of 35 and a standard deviation of 64).
For each patient, the data provided a diagnosis based on clinicopathological correlation that served as
a reference basis and there was the following distribution of cases:

• 135 patients had “malignant” tumors: 115 LM/LMM and 20 basal cell carcinoma (BCC).
• 88 patients had “benign” tumors: mainly represented by solar lentigines.

No collision tumors were included in this series. Also, the study [27] evaluated 21 experts,
and they achieved a mean sensitivity of 0.80 (range 0.66–0.90, standard deviation 0.07) and a specificity
of 0.81 (range 0.73–0.90, standard deviation 0.05), with an area under the curve (AUC) score of 0.89 for
the detection of LM/LMM.

In order to reduce the imbalance of the data, a further 28 additional benign tumors were
provided by dermatologists, with the number of images per tumor varying between 4 and 103 images
(608 images in total). These new patients were only considered for training purposes and they were
not taken into account in Section 3.

In addition, these data did not provide any information regarding individual images. As these
annotations were required in the next part of the work, each of these images was annotated by
a specialist, with the help of a graphical interface designed for this purpose. Images with BCC tumors
were not considered as the objective is to be able to discern LM/LMM. Whereas the patient labels were
“benign” or “malignant”, some of the images could not be classified into either of these two categories
because they did not contain any of these pathology signs. For this particular reason, a “healthy” label
was introduced to characterize them. Figure 2 provides an overview of these different data. As this
study focused only on binary classification of malignant diseases, an annotation hierarchy was defined
as follows:

• A “malignant” label: an image with at least some malignant tissues from LM/LMM tumors.
• A “benign” label: an image with no malignant tissues (either “benign” or “healthy” skin).



Appl. Sci. 2020, 10, 2830 5 of 16

These annotated images amounted to 5277 images, divided equally between men and women.
The “malignant” labels accounted for 44% of the annotated images, while the “benign” label accounted
for 56%.

Healthy Benign Malignant

Benign Malignant

Figure 2. This figure shows several examples of images related to the three different types of tissue:
namely “healthy”, “benign” and “malignant”. For this work purpose, the “healthy” and “benign”
labels are merged under the “benign” label.

2.2. Feature Extraction Methods

In order to classify the data, a reduction of the image information had to be performed in
a new feature space able to distinguish “malignant” from “benign” image types. According to
the dermatologists, texture plays an important role in the differentiation of tissue types. The first part
of this section focuses on handcrafted feature extractors based on texture from previous work [19].
The deep extraction methods applied to this context and inspired by a previous work on dermoscopy
images [6] are then detailed. All of the feature extraction methods are listed in Table 1, and the next
parts follow this table structure.

Table 1. The list of all of the feature extraction methods performed in this paper and their associated
extracted number of features.

Category Name Number of Features

Spatial Haralick 12

GLH + GLCM 17

Frequency Fourier 38

Wavelet 39

Transfer Learning

VGG-16 512

Inception-V3 2048

ResNet 2048

Inception-ResNet 1536

The “Spatial” extraction methods were based on spatial patterns of pixels, by use of GLH
and GLCM. The method called “Haralick” refers to previous work based on texture features [20] and it
uses the GLCM concept by computation of the twelve statistical characteristics listed in Table 2—GLCM



Appl. Sci. 2020, 10, 2830 6 of 16

Features column. These characteristics were extracted along horizontal, vertical, and two diagonals.
A mean was computed along these axes as the tissues are not oriented in space, and to reduce
the number of features. A second method from previous work [19], called “GLH + GLCM” in this
paper, expanded the first twelve initial characteristics of Haralick and it added five others based on
GLH. In total, 17 features were extracted for each image, and all of the statistical properties extracted
are listed in Table 2. The Haralick features extraction was performed using the “Mahotas” library [28]
and histogram feature extraction was computed with help from the “Scipy” library [29].

Table 2. The statistical measures derived from GLCM and GLH, respectively, and extracted in order to
perform “Spatial” extraction methods.

GLCM Features GLH Features

Angular Second Moment Mean value
Difference Moment Mean square deviation
Correlation Skewness
Sum of Squares Kurtosis
Inverse Difference Moment Entropy
Summed Average
Sum Variance
Entropy
Sum Entropy
Difference Entropy
Measure of Correlation 1
Measure of Correlation 2

The second category of extraction methods, called “Frequency”, refers to a set of methods based on
frequency approaches. The first method of this category is called “Fourier” and is based on the Fourier
transform. The main idea is to provide different levels of information as high frequency refers to
high-contrast parts and low frequencies to homogeneous areas in the image. As the spectrum is
symmetrical around the origin, only half of this spectrum was considered for the sake of computational
efficiency. Then, a mean value was computed for all of the coefficients located at the same radial
distance from the origin, at 22 different radius sizes between 0 and the diagonal size of the image.
A previous paper [30] has also shown the relevance of this method in the context of textural images.
Finally, 16 constant directions were taken from the origin of the power spectrum, and a mean value
was computed for each of them [19]. The second method of this category is called “Wavelet” in this
work and is based on Wavelet transform by use of a decomposition based on a Daubechies 4 that
provides quite fine localization properties [19]. This decomposition was made at five scales, and only
the four last scales were considered to compute coefficients. For each of them, three statistical measures
were computed: the standard deviation, the energy, and the entropy.

The third category of methods investigated was in regard to deep learning methods and more
specifically in regard to CNN, which are known to be well-suited methods for image classification,
thanks to robust feature patterns [5]. Many architectures were used to address ImageNet challenges,
and their associated performances were analyzed [31]. Instead of training this network from scratch,
as we have data constraints and also computational constraints, we choose a Domain Adaptation
approach for these models. Most of the papers to date have dealt with CNN trained on ImageNet [7],
as this database contains thousands of classes and more than 14 million images, meaning that
the extracted features from these networks can be used in various fields. As discussed in a previous
work [32], Inception-V3 architecture pre-trained on ImageNet is thought to be the most relevant
for medical applications. As RCM images can have various forms and can contain specifics details
compared to other image modalities, this research compares the most well known CNN architectures:
VGG-16 [33], Inception-V3 [34], ResNet [35] and Inception-ResNet [36], with accuracies of 0.71,
0.76, 0.78, and 0.80, respectively, on the ImageNet database [31]. This method involves the use
of Transfer Learning, by removing the last layers devoted to the classification task, in order to obtain
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a new representation of the image data as features. Furthermore, in order to reduce the number
of features provided by the previous step, a global pooling layer on each activation layer was
performed. For convenience, this whole method is called “Transfer Learning” in the next paragraphs
and the names of the respective networks are used. The CNN computation was implemented using
the “Keras” library [37].

2.3. Image-Level Decision

The image-level decision was the first level of classification achieved in this study, whereby
the image classification must be carried out according to the two classes “malignant”, as the positive
class, and “benign”. In order to satisfy this objective, the process consisted of using the image
as a single instance that has several discriminant characteristics and sufficient information to
allow its classification. As formulated by [38], such a problem can be set as a pair X|y,
in which X = {x1, x2, . . . , xn} is a vector characteristic for which n is the number of features and y
the associated label. The task consisted of finding the existing relationship between X and y, using
a classification process.

To achieve this task, an extraction method (see Section 2.2) was applied to the images, depending
on the currently evaluated method. The features were then normalized based on a standard score
computation to make the classification task more accurate and robust [39]. This scaling was computed
by subtracting the mean and then dividing by the standard deviation. The schematic outline in Figure 3
provides an overview of this process.
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Figure 3. The classification process performed on the RCM images. The “Extraction” box refers to one
of the Feature Extraction methods mentioned in Section 2.2. The “Fit Model” and “Prediction” boxes
are related to the training and inference steps, respectively, of one of the trained and inferred models
discussed in Section 2.3. The testing set was predicted based on two classes: “benign” and “malignant”.

Finally, the classification was performed on scaled features using different models. In the first
stage, CART was investigated as in a previous study in the same data context [19]. In a second stage,
this study explored alternatives of simple trees based on ensemble methods (set of models instead
of a single model) as the CART model tends to overfit. On the one hand, bagging methods were
investigated by the use of random forest (RF) model [40] and extremely randomized trees (ERT) [41]
as they both tend to remove the overfitting issues. Moreover, the ERT model are assumed to be more
robust to noise than the RF model. On the other hand, the boosting method was considered by the use
of the gradient boosting (GB) model [42] as the most common type of tree-based algorithm for most of
the recent applications. Lastly, Support Vector Machine (SVM) models were evaluated that are known



Appl. Sci. 2020, 10, 2830 8 of 16

to be suitable in multiples contexts [30,43]. As the relationship between the features and the expected
outputs can be complex, SVM models were compared over linear and RBF kernels.

In addition, to provide the best performance with each of these models, a search in regard to their
optimum hyperparameters was carried out (see Table 3).

Table 3. List of all of the classification models performed in this study and their referring evaluated
hyper-parameters.

Name Parameter Values

CART/RF/ERT Maximum depth [3, ∞]

Criterion [Gini, Entropy]

GB Maximum depth [3, ∞]

Criterion [Mean squared error, Mean absolute error]

SVM - Linear C [0.01, 0.1, 1, 10, 100, 1000]

SVM - RBF C [0.01, 0.1, 1, 10, 100, 1000]

Gamma [0.01, 0.1, 1, 10, 100, 1000]

2.4. Patient-Level Decision

This part relates to different ways to achieve classification at the patient-level based on the same
two categories: “malignant”, as the positive class, and “benign”. With this assumption, a patient should
be considered “malignant” if at least one image is considered to be “malignant”. Additionally, this part
needs to consider the varying number of samples per patient (as a reminder, the number of instances
per patient can vary between 2 and 833 images).

In order to achieve this, the best combination of the feature extraction method and the classification
model from Section 2.3 was used. The classification model provided two types of information for each
image: the score was based on prediction probabilities and the decision (i.e., the class that achieved
the best probability). In both cases, due to the varying number of images per patient, the information
needs to be transformed into constant-size matrices to make a decision for existing and for new
patients. At the score level, the structure was composed of patients, images, and scores of classes
and transformed into a new matrix of size P× C, where P is the number of patients and C is the number
of classes. A dynamic threshold was then used to adjust the positive class that maximizes the chosen
metric. Multiple strategies can be used to achieve this:

• Mean—Allows the contribution of each instance on the patient to be retained
• Maximum—Retention of the best confidence prediction as to the trusted one.

At the decision level, the structure was composed of structure, combining patients, images,
and scores of classes and transformed into a new matrix of size P*C, where P is the number of patients
and C is the number of classes. Also, C refers to the probability vector of each decision between 0 and 1.

• At Least One—At least one positive decision to consider the input as positive (initial assumption)
• Dynamic—Find a dynamic threshold that minimizes false-positive decisions.

A global overview of the processing scheme of this method is presented in Figure 4. In a second
stage, a number of multiple instance learning (MIL) concepts are implemented in this part, as they
fit the issue at hand: a patient is constitutive of several instances (consider it as a bag) and a positive
instance assumes that the patient should be positive. Furthermore, only the patient label is known,
and the annotation step of individual images is time-consuming. Such a problem can be set as a pair
{X|y}, in which X = {X1, X2, . . . , Xb} is a bag containing b instances and each Xb formulated as
follows: Xb = {xb

1, xb
2, . . . , xb

n}, in which n is the number of features and y is the patient label [38].
Two ideas are developed regarding this context in the paragraphs that follow. In a first stage,
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a Single-Instance Learning (SIL) classification is used in which a bag is considered as negative if
all of the instances are considered to be negative, and positive if at least one of the instances has
a positive label that fits our initial formulation of the patient label. In a second stage, the MI-SVM
is an extension of Support Vector Machine (SVM) upon MIL theory and is employed in these due to
the results of Section 2.3. These experiments are configured to function with a linear kernel due to
the observation made by the experiments of Section 2.3. In this part, the experiments were implemented
using the “MISVM” library [44].

In addition, to provide the best performance on each of these models, a search for their optimal
hyper-parameters was carried out (see Table 4).
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Figure 4. The classification process performed on RCM patients in which the first part of the process
remained the same as in Section 2.3. The “Fit Model” and “Prediction” boxes refer to the decision
and score level methods discussed in Section 2.4. The testing set was predicted for the patients based
on “benign” and “malignant” classes.

Table 4. List of all of the classification models and referring evaluated hyper-parameters.

Category Name Parameter Values

Score Mean - []
Maximum

Decision At Least One - []
Dynamic

MIL SIL C [0.01, 0.1, 1, 10, 100, 1000]
MI-SVM

3. Results

3.1. Validation and Evaluation Metric

The validation protocol remains the same for each of these experiments, based on a nested
cross-validation that is known to be less biased than a simple cross-validation scheme [45].
This protocol allows (1) cross-validation of hyper-parameters and (2) objective evaluation of
the prediction models. Each of the cross-validation step is based on a K-fold strategy with a k
value of 4 on the testing loop and 2 on the validation loop. Also, each time, the patients are separated
and balanced as best as possible based on the image labels. In order to achieve an objective evaluation,
each data cluster remains the same for the experiments in a given section (refer to Sections 2.3
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and 2.4). Moreover, each experiment is validated and evaluated using a F1 score metric, as it is
statistically suitable for unbalanced populations in comparison with accuracy, and it represents in
a single value both recall and precision information. In addition, standard deviation is computed to
analyse the stability of models along the nested cross-validation. For this purpose, we used the “Scikit
Learn” library for Machine Learning classification, validation, and metric [46].

3.2. Experiments and Discussion

The results of Section 2.3 regarding image-level decisions were performed only on the labeled
images and are listed in Table 5. The most suitable handcrafted extraction method was based on
the “Wavelet” method combined with the “SVM-Linear” model, reaching an weighted F1 score of 0.74
with stable performance of 0.04. In general, all of the handcrafted methods performed in a quite similar
and stable way, varying from 0.69 to 0.74 for the F1 score and 0.03 to 0.07 for the deviation. In addition,
the Transfer Learning-based feature extraction reached higher scores with the “SVM-Linear” model,
in particular with the “Inception-ResNet” architecture, which achieved a weighted F1 score of 0.82
with a deviation of 0.04. With this same model, the Transfer Learning feature extraction methods
varied from 0.76 to 0.82, with a deviation range from 0.02 to 0.04. By contrast, all of these architectures
were poorly processed by the “SVM-RBF” model and can be explained by the high-dimensionality
of the extracted features that resulted in overfitting despite the cross-validation of the regularization
term. In this situation, the “VGG-16” architecture was more suitable with only 512 features than
the remaining architectures providing 1536 or 2,048 features. In regards to tree-based models, the CART
model weighted F1 score varies between 0.69 and 0.71 (deviation between 0.03 and 0.05) and 0.58 to
0.64 (deviation between 0.02 and 0.12), respectively for handcrafted methods and transfer learning
methods. On the other hand, the gradient boosting (GB) model weighted F1 score varies from
0.67 to 0.73 (deviation between 0.04 and 0.07) and 0.78 to 0.81 (deviation between 0.04 and 0.05).
The above two sentences can be explained by an overfit in a high dimensional situation for the CART
model and in a low dimensional situation for the GB model. In opposition, the random forest (RF)
and extremely randomized trees (ERT) models were homogeneous along with handcrafted and transfer
learning features as they are less prone to overfitting in both low and high dimensional feature spaces.
To sum up the aforementioned results, the rest of this article retains only the best combination, with
“Inception-ResNet” as the feature extraction methods and the Linear SVM as the classification model.

Table 5. List of the results based on combinations of features extraction methods from Section 2.2
and the classification models from Section 2.3 evaluated over a weighted F1 score based on benign
and malignant classifications.

Classifier Type

CART RF ERT GB SVM - Linear SVM - RBF

Haralick 0.71 ± 0.05 0.71 ± 0.04 0.71 ± 0.05 0.67 ± 0.05 0.71 ± 0.05 0.70 ± 0.07

GLH + GLCM 0.71 ± 0.03 0.71 ± 0.03 0.72 ± 0.05 0.67 ± 0.07 0.70 ± 0.05 0.72 ± 0.04

Fourier 0.69 ± 0.05 0.70 ± 0.03 0.70 ± 0.04 0.69 ± 0.04 0.73 ± 0.03 0.69 ± 0.06

Wavelet 0.70 ± 0.03 0.72 ± 0.04 0.74 ± 0.05 0.73 ± 0.05 0.74 ± 0.04 0.72 ± 0.03

VGG-16 0.58 ± 0.12 0.73 ± 0.03 0.76 ± 0.06 0.78 ± 0.04 0.76 ± 0.03 0.64 ± 0.20

Inception-V3 0.63 ± 0.04 0.74 ± 0.06 0.78 ± 0.04 0.79 ± 0.05 0.79 ± 0.03 0.44 ± 0.04

ResNet 0.62 ± 0.08 0.75 ± 0.05 0.78 ± 0.02 0.81 ± 0.05 0.79 ± 0.02 0.43 ± 0.05

Inception-ResNet 0.64 ± 0.02 0.76 ± 0.03 0.79 ± 0.05 0.81 ± 0.05 0.82 ± 0.04 0.44 ± 0.06

This paragraph focuses on the methods implemented to reach the patient diagnosis
(see Section 2.4) and it relates to the initial RCM data (including unlabeled images) used previously
to evaluate specialists [27]. All these experimental results are listed in Table 6 and discussed below.
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Firstly, the methods performance varied between 0.61 and 0.84 in terms of the F1 score for Malignancy.
The “At Least One” method achieved poor performance due to prediction errors over the “benign”
class. This problem can be solved by the use of a dynamic activation threshold for decisions to minimize
the risk of false-positives, at the cost of resulting in an ethical consideration of this method in the clinical
context. Secondly, the methods based on the score are almost the same and varied from 0.76 to 0.83
for the F1 score for Malignancy. By contrast, with these results, the standard deviations remained
reasonable, varying from 0.03 to 0.06. Finally, MIL was also evaluated, and a substantial difference
was noted between the SIL and the MI-SVM. Indeed, the SIL assumption yielded similar results with
the decision based on the “At Least One” method, due to an insufficient ability to discriminate on
the same “benign” class. By contrast, the MI-SVM yielded a number of good results, with an F1 score
of 0.82. Both methods are stable, with a deviation that only varied from 0.02 to 0.04. Poor results with
the “At Least One” and the SIL methods can be due to a lack of discriminative information provided
by the “Inception-ResNet” for these methods.

Table 6. Results for the patient-level classification for Malignancy (LM/LMM and BCC) according to
the different methods from Section 2.4. For Malignancy and LM/LMM, the table provides a weighted
average F1 score and individual F1 score for the benign and the malignant classes.

Malignancy—F1 Score

Category Name Weighted Benign Malignant

Decision At Least One 0.61 ± 0.06 0.32 ± 0.07 0.79 ± 0.05

Dynamic 0.84 ± 0.03 0.78 ± 0.07 0.87 ± 0.02

Score Mean 0.83 ± 0.03 0.78 ± 0.08 0.87 ± 0.02

Maximum 0.76 ± 0.04 0.68 ± 0.03 0.80 ± 0.05

MIL SIL 0.70 ± 0.04 0.50 ± 0.10 0.83 ± 0.03

MI-SVM 0.82 ± 0.02 0.78 ± 0.05 0.84 ± 0.02

Following previous results, this paragraph discusses in detail the results of supervised “Dynamic”
decision threshold and MIL based on “MI-SVM” methods over the Malignancy (meaning BCC
and LM/LMM) and LM/LMM as the cited clinical study does [27]. Table 7 provides F1 score, precision,
and recall based on these experiments. As the classification is binary, recall of the positive class refers to
the sensitivity and recall of the negative class refers to the Specificity. The “Dynamic” method achieves
scores of 0.89 ± 0.03 sensitivity and 0.75 ± 0.07 specificity for Malignancy; 0.88 ± 0.04 sensitivity
and 0.75 ± 0.07 specificity for LM/LMM pathologies. The “MI-SVM” method achieves scores of
0.80 ± 0.02 sensitivity and 0.84± 0.05 specificity for Malignancy; 0.78± 0.07 sensitivity and 0.84 ± 0.07
specificity for LM/LMM pathologies. The “Dynamic” method provides more emphasis on sensitivity
while “MI-SVM” provides a good specificity. These methods are quite comparable to the evaluation of
the dermatologists, reaching 0.80 of sensitivity and 0.81 of specificity, but less homogeneous compared
to them.

Finally, Figure 5 provides receiver operating characteristic (ROC) curves for both malignancy
and LM/LMM pathologies on “Dynamic” and “MI-SVM” methods. In the context of Malignancy
evaluation, the measured AUC is 0.89 for “MI-SVM” and 0.88 for “Dynamic”. For LM/LMM evaluation,
the measured AUC is 0.88 for “MI-SVM” and 0.87 for “Dynamic”. In the same context of LM/LMM
lesions, the experts obtained an AUC score of 0.89, so close to the previous two methods. Apart from
this, Figure 6 provides some misleading images: the RCM images in the center belongs to the same
patient (image c and d) with similar patterns and homogeneous information while the RCM images on
the outside parts of the figure contain hair, artifacts, tricky patterns or nonhomogeneous information
(image a, b, e, and f). Also, the images on the bottom left and the bottom right (image b and e)
of the figure are examples of images were experts will use stacks of images to make their decision
and where the currently developed methods only use a single image.
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Table 7. Detailed results for the patient-level classification for the Decision method based on a Dynamic
threshold and MIL based on the MI-SVM assumption. The table provides the F1 score, Precision,
and Recall for the benign and malignant classes with these methods.

Malignancy LM/LMM

Name Label F1 Score Precision Recall F1 Score Precision Recall

Dynamic
Benign 0.78 ± 0.07 0.81 ± 0.08 0.75 ± 0.07 0.79 ± 0.06 0.82 ± 0.07 0.75 ± 0.07

Malignant 0.87 ± 0.02 0.85 ± 0.03 0.89 ± 0.03 0.86 ± 0.03 0.83 ± 0.03 0.88 ± 0.04

Weighted 0.84 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.83 ± 0.03

MI-SVM
Benign 0.78 ± 0.02 0.72 ± 0.08 0.84 ± 0.07 0.78 ± 0.05 0.73 ± 0.07 0.84 ± 0.07

Malignant 0.84 ± 0.02 0.89 ± 0.05 0.80 ± 0.05 0.82 ± 0.03 0.87 ± 0.06 0.78 ± 0.07

Weighted 0.82 ± 0.02 0.82 ± 0.02 0.83 ± 0.02 0.80 ± 0.03 0.80 ± 0.03 0.81 ± 0.02

Malignancy ROC curves

Random
ROC MI-SVM (AUC = 0.89)
ROC Dynamic (AUC = 0.88)

1 - Speci�city

Se
ns

iti
vi

ty

LM/LMM ROC curves

Random
ROC MI-SVM (AUC = 0.88)
ROC Dynamic (AUC = 0.87)

1 - Speci�city

Se
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Figure 5. On the left, the ROC curves for Malignancy with the Dynamic and MI-SVM methods.
On the right, the ROC curves for LM/LMM with the Dynamic and MI-SVM methods.

Same pa�ent

Benign Malignant

a)

b) c) d) e)

f)

Figure 6. Examples of RCM images that mislead the classifier with the highest F1 score
(Inception-ResNet + SVM − Linear). On the left part (a–c), RCM images belonging to the benign
label and classified as malignant. On the right part (d–f), RCM images belonging to the malignant
label and classified as benign. In the center of the figure (c,d), two RCM images of the same patient
belonging to benign and malignant labels.
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4. Conclusions

This research investigated the classification of malignant tumors and particularly LM/LMM
pathologies at the image-level and at the patient-level. Firstly, at the image-level, an analysis was
performed of previous research and proposed methods based on Transfer Learning showing that
the Inception-ResNet architecture trained on the ImageNet database is quite relevant for classifying
RCM images, with a weighted F1 score of 0.82 between benign and malignant labels. Secondly at
the patient-level, supervised decision methods were compared to MIL methods based on feature
extraction with the Inception-ResNet architecture. On the first hand, the classification of malignancy
over patients achieves a weighted F1 score of 0.84 with an AUC score of 0.88 using the supervised
method based on a dynamic threshold. It achieves a weighted F1 score of 0.82 with an AUC score
of 0.89 using the MIL method based on MI-SVM. On the other hand, the classification of LM/LMM
over patient achieves a weighted F1 score of 0.83 (Sensitivity 0.88/Specificity 0.75) with an AUC score
of 0.87 using the supervised method based on a dynamic threshold. It achieves a weighted F1 score
of 0.80 (Sensitivity 0.78/Specificity 0.84) with an AUC score of 0.88 using the MIL method based on
MI-SVM. Both techniques are relevant compared to the evaluation of dermatologists, reaching 0.80
of sensitivity and 0.81 of specificity with an AUC score of 0.89. Furthermore, the supervised method
based on the dynamic threshold has more sensitivity that can be relevant in the medical context.

To conclude, the RCM is an operator dependent technique that can be improved by use of
computer-aided diagnosis methods that can be particularly useful to confirm the diagnosis and to help
the interpretation of the images for clinicians that are not expert. Further development of these findings
should focus on the enhancement of the image classification through feature extraction enhancement,
in particular by investigation of fine-tuning of the CNN architecture. In another step, the patient
decision should be improved by working on the score meaning through score calibration methods
and by rethinking the way the decision is taken as a result of these.
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The following abbreviations are used in this manuscript:

AUC Area under the curve
BCC Basal cell carcinoma
CART Classification and regression trees
CNN Convolutional neural network
DEJ Dermal-epidermal junction
ERT Extremely randomized trees
GB Gradient boosting
GGD Generalized Gaussian distribution
GLH Gray level histogram
GLCM Gray level co-occurrence matrix
LM/LMM Lentigo maligna/lentigo maligna melanoma
MIL Multiple instance learning
RCM Reflectance confocal microscopy
RF Random forest
ROC Receiver operating characteristic
SIL Single-Instance Learning
SVM Support Vector Machine
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