
Making IoT with UDOO

Antonio Rizzo1,2, Giovanni Burresi2, Francesco Montefoschi1,2,
Maurizio Caporali1,2, Roberto Giorgi3

1 Communication Science Dept, University of Siena, Via Roma 56,

53100 Siena, Italy
2 UDOO Team, Aidilab s.r.l., Viale Toselli 94,

53100 Siena, Italy
3 Computer Sciences Dept, University of Siena, Via Roma 56,

53100 Siena, Italy

rizzo@unisi.it, giovanni.burresi@udoo.org, francesco.montefoschi@unisi.it,
maurizio.caporali@unisi.it, giorgi@dii.unisi.it

Abstract. The advent of massively interconnected objects, devices, and sensors
raises equally substantial challenges regarding the resources that will allow
makers to manage the complexity of such systems and to exploit the
opportunities such technologies open up. Simplicity in management and a
smooth, creative integration of everyday life objects empowered by digital
technology in our own environment are two key factors for a successful
penetration of Internet of Things (IoT). We present UDOO IoT, a combined set
of open hardware (UDOO Quad, Blu and Bricks) and open software (UAPPI,
an extension of MIT App Inventor) technologies that allow novices from their
early steps in the maker’s world to create their own digital objects connected to
the cloud, easily defining custom behavior logic for sensors and actuators.
UDOO IoT is illustrated through one of the field studies carried out along its
design process.

Keywords: Internet of Things, UDOO, Blocks programming, Bluetooth low
energy, App Inventor.

1 Introduction

The advent of massively interconnected objects, devices, and sensors raises equally
massive challenges regarding the resources that will allow makers to manage the
complexity of such systems and to exploit the opportunities such technologies will
open up. IoT represents one of the fastest growth points in the history of computing,
with a projected 50 billion devices by the end of 2020 [1][2]. The scope of impact of
computing in this new era is also pervasive. The IoT is likely to increase the already
large population of end user programmers. The growing number of “smart” devices
and possible features suggests that makers’ communities could potentially form
around specific interests and projects. In such a context an unavoidable challenge is
the need of authoring environments and architectural infrastructures for supporting
end-user programming and simplified sharing opportunities. Such authoring

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

environments should enable the creation of domain-specific applications supporting
non-programmers to connect IoT appliances and to specify behaviors and presentation
of information in a highly personalized manner, tailored according to the end-user and
its context-of-use [3].

In the following we present UDOO IoT, an open source and open hardware
solution we are designing and producing to give makers and aspiring makers the
opportunity to design and manage their own smart environment. Our approach shares
the conviction of the maker’s movement that the future will be determined by
creators, not consumers, of technology. In 2015, almost 200 million students around
the world were exposed to coding through the Hour of Code event. Over 90% of
American parents want programming added to their child’s curriculum [4].
Programming today is considered a global language, more common than spoken
languages like English, or Spanish. It is ubiquitous, it takes the mystery out of
technology and it allows people to control some aspect of current technology. Thus,
we should expect coding to be the language we will use in everyday life for
programming reality—for turning data into things and things into data. However,
coding even if fundamental, is just one component of the skills needed to give shape
to our environment. For this we are designing UDOO IoT, a full set of material and
conceptual resources that seamlessly merge sensors, actuators, microcontroller,
microcomputer and a powerful integrated programming environment for makers.
UDOO IoT aims to introduce novices to the world of making by addressing an
emerging topic with technical, social, and economic significance [5].

In the following we present the key elements of the UDOO IoT solution, that is: i)
the UDOO Quad, a prototyping board that encloses in a single board the power of
Android and the simplicity of Arduino; ii) the UDOO Blu, a stamp size board with
wireless communication protocol; iii) the UDOO Bricks, a set of sensors easy to
connect and use; iv) the UDOO App Inventor IDE (UAPPI), an extension of the MIT
App Inventor 2, which allows easy prototyping of Android solutions that interact with
the environment. Finally, we present one of our field studies, carried out along the
design process, concerning an installation at the Buonconvento Sharecropping
Museum in order to illustrate how the system work and how we used design thinking
together with the users to improve step by step UDOO IoT within the Research trough
Design framework.

2 The UDOO IoT Platform

Designing for the IoT is more complex than designing for web services, IoT poses
new challenges. Today it is quite easy to design beautiful user interfaces, and striking
hardware, however users could still have a poor experience of the IoT products as a
whole. Designing a great connected product requires a different approach to user
experience [6].

Great UX start with understanding users. But more often than not the designer’s
ability to meet those users’ needs depends on the technology enablers. Designing
flexible and easy to integrate enabling technology for prototyping IoT solutions
constitutes our main motivation for the creation of the UDOO IoT set. From a

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

manufacturer perspective, great UX can be achieved when activities such as rapid
prototyping, tinkering and user feedback are embraced and integrated into the
development process of the same enabling technologies that will allow the
development of end-user products.

IoT devices have a defined set of features that make their design unique: sensing,
connectivity, security, power-consumption, cloud, and easy use (see Fig. 1). As often
noted, an IoT solution will use some of these. Some features may be missing, but all
need to be addressed while designing enabling technologies for IoT [7].

Fig. 1. Internet of Things devices’ must-have characteristics.

Before reporting on each component of the current UDOO IoT set, Figure 2
presents an overview of the components and their relationships: UDOO Quad can be
connected with the world though different Bricks (sensors and actuators) in a wired
(plug & play) way or wirelessly through the UDOO Blu using a Bluetooth Low
Energy connections. While the Blu is mainly a bridge for connecting the Bricks to the
Quad. The Quad is the core of the system with extended computational power and
wired (Ethernet) or wireless (Wi-Fi) connection to the Cloud.

Fig. 2. UDOO IoT Set. The main board (UDOO Quad) communicates with sensors (UDOO
Bricks), both wired and wireless (via UDOO Blu).

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

2.1 UDOO Quad

UDOO Quad (see Fig. 3) is the first heterogeneous board designed for makers. It
combines the aptitude of Arduino to connect to the physical world with the power of
computation and easiness of human-computer interaction of a PC. UDOO Quad
allows makers to have easy access to the physical world through the Arduino sensors
and actuators directly connected to the board, plus the direct control of GPIOs by
Linux or Android.

Fig. 3. UDOO Quad single board computer.

In order to accomplish the sensing activity, UDOO Quad embeds the same
microcontroller unit of Arduino Due, the Atmel SAM3X. It provides full-access to a
large variety of sensors and actuators and the required code to make them work. The
use of this chip allows the user to benefit from the Arduino community which
provides free support, a large number of tutorials and well documented examples. It
also guarantees a high level of portability for all the projects that need a Linux or
Android OS connected to the Arduino unit. The main ARM Cortex A9 processor - a
dual or quad version of NXP i.MX 6 - has dedicated and officially supported versions
of Ubuntu 14.04 and Android 6.0.1.

Both processors are hardware connected to the same pin header that is fully
Arduino Due compatible. Via software it is possible to export and mix these signals to
create a custom solution for each needs. A peculiarity of UDOO is the high
customization level of its external pin header. The external pins can also be used as
digital inputs/outputs from both processors (see Fig. 4). Part of the pins can be set in
input for the SAM3X, and another part set in output mode for the i.MX 6.

Fig. 4. UDOO external pin header shared between the two processors. The red IC is i.MX6
processor, the blue is the SAM3X microcontroller.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

Connectivity functionalities are provided with an embedded Wi-Fi USB module, a
Gigabit Ethernet port and a USB Bluetooth LE dongle. Using the connectivity of the
Internet, it is possible to share and get data from the most common cloud services.

Among connectivity, the Quad facilitates also the interconnection with most
sensors and devices. The most common communication protocols signals are all
supported, like I2C, SPI, CAN, UART, I2S, SPDIF and SDIO.

All of these features are embedded on the same PCB on the single board computer.
The i.MX 6 processor combines high computational power with reduced power
consumption. This is also possible due to dedicated GPU which manages high
definition multimedia with low energy absorption. Regarding security, the i.MX 6
implements several features like the secure boot and a random number generator, plus
hardware-accelerated algorithms (such as AES, 3DES, SHA, etc.) that are important
for cryptographic capabilities, like secure HTTPS communications.

Developing IoT solutions requires unprecedented collaboration, coordination, and
connectivity for each piece in the system, and throughout the system as a whole [8].
However, the effort to integrate and make accessible different hardware resources is
not enough, it should be combined with an easy way to manage the complexity of
merging the physical and digital world. For this we are designing a further set of
hardware components and an intuitive development software platform. So to allow
end users to prototypes physical, interconnected objects and services.

2.2 UDOO Blu

When we want to move the sensing activity away from the board, it is necessary to
use wires, succumbing with all related problems (e.g. usability, infrastructure, signal
loss, etc.). Born in 2009, the new Bluetooth Low Energy (BLE) protocol lends itself
as one of the most reliable solutions in the wireless communication area for the IoT
market and for the Maker World. BLE’s key-features are low-power consumption,
interoperability with other devices and its low cost. As seen above, IoT requires low
power consumption characteristics to build its distributed nodes and BLE seems to be
a very suitable technology to achieve this [9][10]. Furthermore, BLE is easily
accessible by its presence in most new smartphones “avoiding the need of gateways
such as 6LoWPAN border routers to connect Bluetooth LE devices with the Internet”
[10]. But even more important, BLE Stack is available under an open source BSD
license in order to involve the huge community of makers and freelance developers.
On some chips - e.g. TI CC2650 - a version of the open-source Contiki OS was
ported, and all the ambitious developers can experiment and test their own BLE
implementations [11]. It is just using this technology that we complemented the
UDOO Boards with the UDOO Blu.

UDOO Blu is a microcontroller that connects over BLE to provide analog and
digital I/O and some common communication protocols, like I2C, SPI and UART.
Moreover, it provides a snap-in connector for the UDOO Bricks (I2C sensors of the
UDOO family, see below).

In this way, UDOO Quad, in addition to its own wired I/O, gains new I/O,
allowing remote, wireless interaction with the physical world with low power
consumption. The combination of UDOO Board and UDOO Blu generates new ways

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

to design cyber-physical application for makers. Sensing activity is no longer
confined in the proximity of the main board. The UDOO Blu module does not need to
be programmed. It is equipped with a firmware that exposes the basics Arduino
functionalities, such as diglitalWrite, digitalRead, analogRead, analogWrite and
PWM outputs. The firmware allows also to read values from the sensors mounted on
the UDOO Bricks.

To understand the potentials of these configurations, we can imagine a simple
indoor scenario. UDOO Blu can be used to get information from the environment
connecting most of the analog or digital sensors (PIR presence, IR distance, light, gas,
temperature, humidity, pressure). Moreover, with its 9-axis motion sensors, we can
detect movements (e.g., a door opening), knocks and orientation changes. It can be
also used as a digital wireless switch to activate relays or to send signals to digital
devices. Since UDOO Quad can run Android Marshmallow, we can combine the
power of Android -including its cloud services- with the sensing versatility of
Arduino, through the low power consumption of Bluetooth Low Energy. A Field Test
scenario used along the design of UDOO IoT is described later with all these
technologies applied.

2.3 UDOO Bricks

UDOO Bricks are a set of sensors placed on a stamp sized PCB with a snap-in I2C
connector. They are made to allow a fast connection in IoT and DIY applications. The
connectors are keyed, preventing the risk of wrong wire connections. Currently, the
available sensors are: temperature, barometer/altimeter, light, humidity (see Fig. 5).

A Brick can be directly connected to UDOO Quad, and the values from the sensors
can be read by an Arduino sketch or by Linux/Android. Connecting a Brick to UDOO
Blu, it is possible to create a wireless network of sensors, and UDOO Quad will get
sensor values via BLE. It is also possible to create a mixed environment. UDOO
Bricks can be connected in a cascade configuration. Cables are available from 5cm to
5 meters. Each Brick is equipped with an I2C signal extender, if needed is possible to
reach long distances.

Fig. 5. UDOO Bricks (on the left) and UDOO Bricks Expansion Shield (on the right) that
allows to connect UDOO Bricks to an Arduino compatible pinout.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

2.4 UDOO App Inventor

In the design of UDOO IoT, our vision included the possibility to create a seamless
developing environment between Arduino and Android, exploiting the software
potentialities of Android Cloud Services. The best opportunities were offered by App
Inventor, an open source Web IDE, and by the Android Accessory Development Kit.

App Inventor for Android is a visual programming platform for creating mobile
applications (apps) for Android based smartphones and tablets. It was developed at
Google Labs by an MIT team led by Hal Abelson [12]. Developing apps in App
Inventor does not require writing classic source code. The look and behavior of the
app is developed “visually”, using a series of building blocks for each intended
component. App Inventor aims to make programming enjoyable for and accessible to
novices. App Inventor has an enormous potential for attracting newcomers of any age
to coding, computing, and making in general.

In a very short time (for example, a few days), beginners can build apps that are
not only fun, but have real-world utility. “App Inventor allows creative people to
transform their ideas into working, interactive apps that can be taken up by large
companies, used by non-profit organizations, and turned into startups” [13][14]. The
visual nature of its language reduces the syntax problems common among
programming beginners first starting to design an app. More importantly are two key
features of the programming environment, namely live programming and event-
driven programming. These features help beginners address the formidable challenges
of developing a robust programming logic and specifying interactive behavior with a
static, graphic language. UDOO App Inventor extension was designed to exploit such
features.

Live programming is a concept with origins in the earliest days of computing [15],
but one that has long lain dormant. Recently, the prevalence of asynchronous
feedback in programming languages such as JavaScript, as well as advances in
visualizations and user interfaces, have led to a resurgence of interest in live
programming in domains such as online educational communities and experimental
IDEs [16]. In a live programming environment, code changes are immediately and
continually reflected in a constantly running program. Liveness makes program
development more interactive by incorporating the effects of program edits more
quickly than if they are incorporated in the traditional edit-compile-run-test approach.
Live programming environments not only integrate debugging into editing but also
permit an expansion away from the limits of a computer into the kind of dialogue a
craftsman would conduct with his materials.

Live programming offers immediate feedback, which translates into concrete
value, as follows [17]:

• it minimizes the latency between a programming action and its effect on
program execution;

• it allows performances in which programmer actions control the dynamics of
the audience experience in real time;

• it simplifies the “credit assignment problem” faced by a programmer when
some programming actions

• induce new runtime behaviors (such as a bug);

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

• it supports learning (hence the early connections between liveness and visual
programming and program visualization).

Live programming is a feature that is essential for attracting novices to the
computing world in general and for encouraging them to program real-world objects
in particular.

The other key feature is Event-driven programming. It was broadly introduced
when personal computers, graphical user interfaces (GUIs) and other types of
interactive applications were introduced in [18][19].

Event-driven programming encourages programmers to use flexible and
asynchronous techniques with as few bonds as possible. GUI applications are usually
created with an event-driven approach. With an event-driven approach, managing the
program evolution is easy. The state is changed only when a certain action occurs. In
App Inventor, these events activate one or more blocks containing logical and
arithmetical instructions. Each of these blocks can generate other events and activate
other blocks.

They can be grouped and integrated into sets of macroblocks. The nature and
graphical formulation of the IDE promotes the emergence of blocks, modules and
events. Implementing a functional block requires the use of basic programming
blocks. App Inventor allows for grouping and for the creation of procedures that
makes the graphical language more accessible. Grouping blocks encourages the
creation of modules that reflect the functional application blocks. App Inventor
inherently promotes basic methods of refactoring, such as function extraction.

UDOO Quad shares some features of an Android tablet (camera, audio
input/output, Wi-Fi connection) but at the same time have direct access to the
Arduino microcontroller.

Our extension of App Inventor, UDOO App Inventor (UAPPI), gives novices the
tools to develop applications by providing must-have functionality like GUI, network
access and storage on databases and by incorporating the popular Arduino sensors and
actuators. In short, UAPPI integrates two worlds, Android and Arduino, by mean of a
powerful and easy to learn visual programming platform. UDOO can be understood
as an extension of App Inventor for the physical computing world [20].

3 Field Test

Following our motivation for designing flexible and easy to integrate enabling
technology for prototyping IoT solutions, our main research objective is to easy the
bridge between the digital and physical worlds. The key factor for bridging these two
worlds is the design of embedded interactions. These interactions are embedded
within our environment, they put more emphasis on the context created rather than on
a specific device, and sometime may even eschew the conventions of HCI. Instead of
focusing on creating dedicated GUIs these interactions are rooted in the space and in
the objects that populate it. In the following, we report one example of the Field Tests
carried out within the Research to Design Approach in order to address our research
objective by the design of both hardware and software components of UDOO IoT.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

Research through Design (RtD) in Human Computer Interaction (HCI) is a
research practice focused on improving the current state of art by creating the
enabling conditions for new kind of behaviors and interactions between human and
technology [21]. Between Research and Design there is a tension concerning the
unique versus the general. Design is about the unique, the particular, or even the
ultimate particular, i.e. the unique final manifested outcome of an intentional design
process. A digital artifact or an information system implemented in a specific
organization are ultimate particulars. While Research aims to the comprehensive, the
general, the universal knowledge that explains the complexities of reality on a level
removed from specifics and particulars [22]. RtD is an attempt to mitigate this tension
by producing new and valuable knowledge. The key factor is that RtD produces
knowledge that function as a proposal, not as prediction.

 In order to formalize RtD, Zimmerman et al. [23] proposed that this approach
must satisfy a set of criteria: process, invention, relevance, extensibility. All of them
are oriented to guarantee well-established key features of the scientific endeavor such
as, reproducibility of the enquiring process and cumulative knowledge production. In
order to potentially replicate the enquiring process and documenting the cumulative
knowledge production the UDOO hardware documentation is released under the
Creative Commons license, and available on the UDOO web site [24]. The full source
code used to build UAPPI is available on GitHub [25]. The git repository also
contains the whole development history, which documents how we built on top of the
resulting outcome of previous research, and how we gradually modified the product
following Lab and Field Tests.

Beside this, each specific Field Test bought its own results concerning the
resources needed to bridge the digital and physical world. The results of the test at the
Sharecropping Museum, reported below as a fundamental step of the design thinking
process, brought us significant lessons that we tried right away to implement for
improving the design of our enabling software and hardware resources.

3.1 Testing at the Sharecropping Museum

In order to refine and improve both hardware and software solutions, besides classic
Lab Tests, we are carrying out Field Tests using the scenario based approach [26]. In
this tests we, as a team composed usually by a hardware engineer, a software
developer, an interaction designer, a system analyst, a product designer, attempt to
design together with one or more end user a working prototype of a product of interest
for the user. The prototyping exercise is at the core of the Design Thinking process, a
process where we build to think and test to learn [27]. In example below the field was
an installation at the Sharecropping Museum of Buonconvento (Italy). The museum is
situated inside a seventeenth-century stone barn organized in several areas over two
floors [28]. The Test consisted in producing, on the fly, simple interactions with
objects in the museum. The activity was carried out by the design Team together with
an aspiring digital Maker, a person in charge of the exhibition, passionate with DIY
but with no prior programming or electronics experience. It consisted of a walk
through the museum, exploring potential interactions with some of the existing
objects and tools of the exhibition [29]. We were concerned with the use of UDOO

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

Blu, Bricks and the related software in UAPPI. In line with the RtD approach the
following description is not reported as a users’ assessment of UDOO IoT, but as an
example of the practice of using design thinking, processes, and products as an
inquiry methodology for our research objective: Defining what could be a sound set
of resources for makers and aspiring makers for easy the merging of physical and
digital resources. From this test emerged some principles discussed in the following
Lesson Learned paragraph.

A

B

Fig. 6. A. A view of the Sharecropping Museum. B. The placement of a sensor on an
Museum object.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

3.2 Smooth lighting control

The lightning sensor reveals data about the level and intensity of light in each specific
room. With UAPPI, the museum can adjust the ambient lightning in order to preserve
the quality of the guests’ experience and optimize the visibility of all the objects,
information panels, installations and artifacts. When the light sensor detects that
natural light in the area is low (e.g. after the sunset or during rainy days), UDOO
Quad activates the artificial lights and LEDs to augment the visibility.

If we replace the standard lamps (connected to relays) with an LED strip, it is
possible to dynamically change the light intensity preserving a constant luminosity in
the room. When the light is poor, the LED power gradually starts to grow, keeping a
fixed light intensity and introducing power saving benefits. The block’s code is shown
in Fig. 7.

Fig. 7. Blocks to power on the LED strip when the lighting in the room is poor.

3.3 Interactive cooking pot

The wireless nature of UDOO Blu can be better exploited on small and distributed
objects. The museum, among the other rooms, reproduces a kitchen with all the tools
used during the Medieval ages.

With UDOO Quad, Blu and UAPPI, we set up a series of hidden tricks in the
kitchen. For instance, we glued a UDOO Blu to the lid of a pot on the kitchen table
(see Fig. 8). The UDOO Quad constantly polls the accelerometer values. When a
person opens the lid, an audio message is played (“the dinner is not ready yet, come
back later”). The same kind of installation can be easily replicated among other parts
of the kitchen, like to the doors of the furniture.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

A

B

Fig. 8. Interactive cooking pot in the Sharecropping Museum. A. The setting. B. An UDOO Blu
board is taped to the lid of a pot to detect its opening.

3.4 Interactive door

As already seen in the kitchen example, the museum could contain several tricks to
entertain younger visitors. For example, it was proposed to lock the farmer’s
bathroom door and equip it with a sensor to detect if someone is knocking. If

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

someone knocks at the door, an audio message is played by a speaker placed behind
the door (see Fig. 9).

At the beginning this installation was implemented with a tilt sensor and a hacked
MP3 player. However, the tilt sensor sensitivity was not enough, and in order to start
the audio playback it was often necessary to try to knock more than once.

Instead, we selected a piezoelectric disk, glued to the door. The voltage produced
by the disk when somebody knocks on the door is amplified by a small electronic
circuit. The final signal is used as a digital interrupt connected to a UDOO board (see
Fig. 10).

Fig. 9. An interrupt is listened on digital pin 2. When a knock occurs, a text-to-speech or a
WAV file is played randomly.

Fig. 10. Electronic circuit used to amplify the voltage produced by a piezoelectric disk. The
“GPIO” voltage point is used as interrupt.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

3.5 Lessons learned

The Field Test in the Sharecropping Museum was a simple, yet fruitful opportunity to
explore the design space of the hardware and software platform that composes the
UDOO IoT platform and for producing some knowledge about the merge of digital
and physical world.

In the smooth lighting control scenario, we found the necessity to filter the signal
which drives the LED strip. Directly mapping input values from the light sensor to the
PWM output, could lead to fast and annoying light condition changes. To avoid it, we
can let the output to react less rapidly, implementing the hysteresis control. In the
museum example, hysteresis was implemented with a procedure and global variables
to keep the state. This works fine, but the global state raises the application
complexity and the blocks code is hard to understand and maintain. Thus, since
hysteresis is really useful in a lot of other IoT scenarios where a physical parameter
varies along a continuum (e.g., temperature/AC control, etc.), we developed a new
component in UAPPI, UdooControl, which implements hysteresis in a more robust
and generic way, allowing the final users to change the parameters closer to their aims
and intentions.

The second lesson learned is related to the interactive cooking pot example. We
found out that our implementation, which was using a traditional polling technique,
was power inefficient. This consideration did not come from the user experience
while carrying out his task, but simply from the process of putting in scene the test.
We started to work on a new firmware for the UDOO Blu microcontroller, which
implements a notification mechanism. In this way, UDOO Blu can be configured to
push alert messages to the UDOO Quad board when a certain value of the
accelerometer’s axis changes by a given threshold. Thus, the UDOO Blu module
communicates only when a person opens the pot lid instead of continuously reading
accelerometer’s values. This was achieved by correctly configuring the registers in
the Texas Instruments CC2650 chip so that a change in the physical world would
drive the event in the digital domain, instead of a continuous polling of the digital
world in the physical domain. This solution was then extended to all the GPIOs. Even
if we did not benchmark the power usage for both firmware revisions, we estimated to
improve the battery life from days to months.

This route change brought us to reflects on the notion of events within the event
driven programming approach. Events are powerful Abstractions very instrumental
for enabling, among the other, a smooth learning curve in Object Oriented
programming languages such as App Inventor. An object, in addition to expose its
state and operations to modify it, can also expose noteworthy changes of its state in
form of events. However, to properly exploit Abstractions in situation of real time
processing, as often occurs in IoT, we need to consider the notion of event so that it
could become closer to the intuitive notion of the user.

Abstraction are one of the Big Ideas in Computer Science. In fact, the history of
computing can be seen as an advance from very primitive abstractions to very high-
level abstractions. App Inventor language is a great example of a very high-level
abstraction. For example, location awareness is a very complex topic. It involves
dealing with the fusion of several inputs, like GPS satellites, cell phone towers, and
other complex entities. App Inventor hides almost all of the complexity and enables

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

us to deal with the app's location through a few simple high-level constructs, such as
the LocationChanged event. At difference with the everyday understanding of the
word abstraction, in Computer Science Abstraction reduces information and details to
focus on concepts relevant to understanding and solving problems.

The final lesson, is related to the third example above reported, it concerns the
possibility to design a new hardware module. A piezo-electric element is a good
choice for sensing vibrations on a surface. However, its signal must be amplified in
order to be properly probed by Arduino. In some cases, like this one, the physical
energy is not enough to be probed by the sensor. The mechanical energy of a
vibration produces a voltage in the order of the millivolts in the piezo-electric disk.
Such signal must be amplified in order to be used as a digital interrupt connected to a
GPIO. This lead to the design of a new module that implements the circuit in Figure
9, which acts as a high-sensitivity vibration sensor, with the gain adjustable via a
screw potentiometer.

4 Conclusions

IoT objects are editable, interactive, reprogrammable, distributed and have loose
borders. Rather than being the contingent outcome of design, these attributes derive
from the constitutional texture of digital technologies, most notably the modular and
granular make–up of digital objects and their computational nature. Taken together,
the attributes of digital objects and the operations by which they are sustained mingle
with social practices redefining the scope, the object of work and their relationship
with us. In short, IoT changes the nature of artifacts: it is a crucial step in the direction
of a new human-environment ecology where the physical and the digital worlds
merge. In this new relationship embedded interactions play a crucial role. In order to
facilitate the production of such interactions we need a set of enabling technologies
that facilitate a tinkering process that allow us to move seamlessly between digital and
physical resources. From the fields test we learned how important is to have tools that
turn data into things and things into data in way appropriated to the situation at hand.

In the process of designing these tools, a post-hoc, yet worthwhile, consideration to
be reported is that our Field Test, con be considered an example of Schön’s reflective
conversation with the materials [30] [31]. Schön’s analysis of designer practice is a
clear account of a typical, fast-moving, ‘thinking on your feet’, live example of
designing. In our Field Test, as in Schön’s description, the initial situation is ‘framed’
by our user/designer. Then he, with the help of the design team, works through a
series of thinking-actions of probing-seeing-probing; that is, of posing a ‘what if?’
move, looking at what results could be get, reflecting on the consequences, and
making another, related move. One move leads to another, through the medium of the
available hardware and software resources, which not only record the process of
moves but also provoke thoughts and initiate new moves. However, at difference with
Schön’s account, while the user is focused on his frame, oriented toward the design of
embedded interactions, we, as design team, have also a different frame, that of the
resources available to our user. And in parallel with the users’ moves we try to
smooth such moves by refining the available resources in our own design process.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

Schön’s image of design as reflective conversation with the materials has also
another implication for our target users. The activity of Makers if often described as a
tinkering activity, that is, thinking with our hands and learning through doing.
Everything seems to happen while involved in the dialog with the materials at hand.
However, writing about the “reflective conversation with the material of a design
situation”, Schön’s differentiates between “reflectioninaction” and
“reflectiononaction”. In his view, reflectioninaction is responding in the moment
to a situation, using intuition and prior knowledge to act immediately.
Reflectiononaction, by contrast, happens after and outside the situation, in the
analysis of the actions and their outcome. These processes can be described as loops
over different time scales [32]. They each contain the idea of the feedback loop in
which information coming back from one action feeds into a decision about the next.
While reflectioninaction occurs over seconds or minutes, reflectiononaction
happens over hours or days or weeks or longer. Thus, there is the need to tolerate and
work with uncertainty, to have the confidence to conjecture and to explore, to interact
constructively with prototypes and models, on different time scales. And this could
become a requirement for the forthcoming of tools of the UDOO set.

The actual UDOO IoT set is just a step in the direction of empowering Makers to
exploit the opportunities such new technologies open up. UDOO IoT rests upon what
is today considered a fast growing and easy to learn integrated environment for
coding, App Inventor. The UAPPI IDE allows us to focus on the behavior we want to
emerge along with our interaction with the environment. The examples above
reported provide circumstantial evidence of how the Event driven programming
feature implemented in App Inventor and extended toward physical computing by
UAPPI offers an easy and affordable way to think about emergent interactive
behavior of the objects around us.

The maker can modify the interactions with the objects simply adding new events
in the code without changing the whole code. Furthermore, he can fine tune the
emerging behavior just interacting with the objects exploiting the Live programming
feature of App Inventor, that is, the opportunity to modify in real time the behavior of
sensors and actuators while coding events. This give us the opportunity to refine with
great degree of freedom the feature of our growing family of UDOO Bricks. Together
these hardware and software resources offer a sound basis for tinkering, for inquiring
and playing with the environment we want to modify. Our goal is to continue to
extend blocks (software) and bricks (hardware) to promote this new dialogue with
objects, and, in time, to extend the lexicon we use to create our experience in the
forthcoming environments.

Acknowledgments. We thankfully acknowledge the support of the European Union
H2020 program through the AXIOM project (grant ICT01-2014 GA 645496). We are
also grateful to two anonymous reviewers and to the editors of the special issue for
their constructive comments, which helped us to improve the manuscript.

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

References

1. Yeo K.S., Chian M.C., Ng T.C.W., others: Internet of Things: Trends, challenges and
applications 2014 International Symposium on Integrated Circuits (ISIC). pp. 568–571.
IEEE (2014)

2. Steegen A.: Technology innovation in an IoT Era VLSI Technology (VLSI Technology),
2015 Symposium on. pp. C170–C171. IEEE (2015)

3. Jenkins T.: Designing the Things of the IoT Proceedings of the Ninth International
Conference on Tangible, Embedded, and Embodied Interaction. pp. 449–452. ACM
(2015)

4. Google 2015 Images of Computer Science: Perceptions Among Students, Parents and
Educators in the U.S. https://services.google.com/fh/files/misc/images-of-computer-
science-report.pdf

5. The Internet of Things: An Overview,
https://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151014_0.pdf

6. Rowland C., Goodman E., Charlier M., Light A., Lui A.: Designing Connected Products:
UX for the Consumer Internet of Things, O’Reilly Media, Inc., (2015)

7. McEwen A., Cassimally H.: Designing the internet of things, John Wiley & Sons, (2013)
8. The Internet of Things: Manage the Complexity, Seize the Opportunity,

http://www.oracle.com/us/solutions/internetofthings/iot-manage-complexity-wp-
2193756.pdf

9. Mikhaylov K., Plevritakis N., Tervonen J.: Performance analysis and comparison of
Bluetooth Low Energy with IEEE 802.15. 4 and SimpliciTI Journal of Sensor and
Actuator Networks, 2, pp. 589–613 (2013)

10. Raza S., Misra P., He Z., Voigt T.: Bluetooth smart: An enabling technology for the
Internet of Things Wireless and Mobile Computing, Networking and Communications
(WiMob), 2015 IEEE 11th International Conference on. pp. 155–162. IEEE (2015)

11. Texas Instruments CC26xx, https://github.com/contiki-os/contiki/pull/974
12. Abelson H.: App Inventor for Android, https://research.googleblog.com/2009/07/app-

inventor-for-android.html (2009)
13. Schiller J., Turbak F., Abelson H., Dominguez J., McKinney A., Okerlund J., Friedman

M.: Live programming of mobile apps in App Inventor Proceedings of the 2nd Workshop
on Programming for Mobile & Touch. pp. 1–8. ACM (2014)

14. Wolber D.: App inventor and real-world motivation Proceedings of the 42nd ACM
technical symposium on Computer science education. pp. 601–606. ACM (2011)

15. Squeak/Smalltalk, http://squeak.org
16. Khan Academy, https://www.khanacademy.org
17. Tanimoto S.L.: A perspective on the evolution of live programming Live Programming

(LIVE), 2013 1st International Workshop on. pp. 31–34. IEEE (2013)
18. Philip G.C.: Software design guidelines for event-driven programming Journal of Systems

and Software, 41, pp. 79–91 (1998)
19. Lee K.D.: Event-Driven Programming Python Programming Fundamentals. pp. 149–165.

Springer (2011)
20. Rizzo A., Montefoschi F., Ermini S., Burresi G.: UDOO App Inventor: Introducing

Novices to the Internet of Things International Journal of People-Oriented Programming
(IJPOP), 4, pp. 33–49 (2015)

21. Zimmerman J., Forlizzi J.: Research through design in HCI Ways of Knowing in HCI. pp.
167–189. Springer (2014)

22. Stolterman E.: The nature of design practice and implications for interaction design
research International Journal of Design, 2, (2008)

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

23. Zimmerman J., Forlizzi J., Evenson S.: Research through design as a method for
interaction design research in HCI Proceedings of the SIGCHI conference on Human
factors in computing systems. pp. 493–502. ACM (2007)

24. Other Resources - UDOO, http://www.udoo.org/other-resources/
25. fmntf/appinventor-sources MIT App Inventor Public Open Source,

https://github.com/fmntf/appinventor-sources
26. Carroll J.M.: Scenario-based design Handbook of human-computer interaction, 2, (1997)
27. Plattner H.: An Introduction to Design Thinking Process Guide. The Institute of Design at

Stanford. Stanford (2010)
28. Buonconvento - Museo della Mezzadria senese,

http://www.museisenesi.org/musei/museo-della-mezzadria-senese.html
29. UAPPI - UDOO App Inventor for IoT - YouTube,

https://www.youtube.com/watch?v=ZV2tKr7x39g
30. Schön DA.: The reflective practitioner: How professionals think in action (Vol. 5126).

Basic books (1983).
31. Schön DA.: Designing: Rules, types and words. Design studies. Jul 31;9(3):181-90. (1988)
32. Rosenbaum E.E.R.: Explorations in musical tinkering (Doctoral dissertation,

Massachusetts Institute of Technology). (2015).

Interaction Design and Architecture(s) Journal - IxD&A, N.30, 2016, pp. 95-112

