
Theoretical Computer Science 641 (2016) 25–42
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A proof theoretic view of spatial and temporal dependencies

in biochemical systems

C. Olarte a, D. Chiarugi b, M. Falaschi c,∗, D. Hermith c

a ECT, Universidade Federal do Rio Grande do Norte, Brazil
b Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, Germany
c Dept. of Information Engineering and Mathematics, Via Roma 56, Siena, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 November 2015
Received in revised form 17 March 2016
Accepted 28 March 2016
Available online 4 April 2016
Communicated by I. Petre

Keywords:
Biochemical systems
Linear logic
Spatial and temporal modalities
Verification of P systems

The behavior of biochemical systems such as metabolic and signaling pathways may
depend on either the location of the reactants or on the time needed for a reaction to
occur. In this paper we propose a formalism for specifying and verifying properties of
biochemical systems that combines, coherently, temporal and spatial modalities. To this
aim, we consider a fragment of intuitionistic linear logic with subexponentials (SELL). The
subexponential signature allows us to capture the spatial relations among the different
components of the system and the timed constraints. We illustrate our approach by
specifying some well-known biological systems and verifying properties of them. Moreover,
we show that our framework is general enough to give a logic-based semantics to P
systems. We show that the proposed logical characterizations have a strong level of
adequacy. Hence, derivations in SELL follow exactly the behavior of the modeled system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, the impressive enhancement of experimental techniques in biology has made available a huge amount
of information concerning living organisms. In this way, the knowledge about the components of biological systems is
becoming increasingly detailed and accurate. Nevertheless, determining how these components interact in living entities is
a task that is still beyond the reach of the current laboratory methodologies. Understanding these interactions in the context
of biological networks such as, e.g., cellular signaling pathways, is a relevant problem in biology.

Various approaches based on computer science have proven to be useful for addressing these issues. Formal models, for
instance, allow us to make precise statements about the properties of biological systems, classifying them and, possibly,
deducing other properties which are hard to discover by intuition or experimentally. It is worth noticing that, in general,
the features of biochemical systems are often expressed informally, thus making it difficult or impossible to reason about
them.

Several frameworks have been used for modeling various aspects of biological systems (see e.g., [1–5]). The characteristics
of each model are mainly shaped by the features of the formalism it relies upon. Indeed, for a given model, some properties
can be straightforwardly expressed while others must be abstracted away, due to the inherent limitations of the used
language.

* Corresponding author.
E-mail addresses: carlos.olarte@gmail.com (C. Olarte), davide.chiarugi@gmail.com (D. Chiarugi), moreno.falaschi@unisi.it (M. Falaschi),

dhermith@gmail.com (D. Hermith).
http://dx.doi.org/10.1016/j.tcs.2016.03.029
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.03.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:carlos.olarte@gmail.com
mailto:davide.chiarugi@gmail.com
mailto:moreno.falaschi@unisi.it
mailto:dhermith@gmail.com
http://dx.doi.org/10.1016/j.tcs.2016.03.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.03.029&domain=pdf

26 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
In this paper we focus on biological networks whose interactions depend on both time and spatial locations. We study
how to give a declarative meaning to those interactions by providing encodings of them into intuitionistic linear logic
(ILL) [6] with subexponentials [7–9] (SELL). ILL is a substructural logic where formulas are seen as resources and then,
its proof system(s) controls the number of times a formula can be used during a proof. In SELL, such control is much
richer and it allows us to define different modalities (e.g., locations) where formulas can be stored. Hence, the role of the
subexponentials, as clarified later, is to specify the two biologically relevant main dimensions in our study, namely time and
space. We show that our method is general enough to encode P systems [10,11], a general model of computation inspired
by cells structures. We show that different semantics for P systems, such as minimal [12] and maximal parallelism [10]
semantics, can be logically characterized in the same framework.

The encodings we propose are shown to have a strong level of adequacy. More precisely, biological steps correspond
one-to-one to (focused [13]) derivations in the SELL system. Hence, a proof of a given property can be directly traced
to steps in the biological system. Our proof-theoretic characterization of spatial and timed dependencies in biochemical
systems thus has at least two main benefits:

– From the biological point of view, our encodings open the possibility to use all the meta theory and tools developed
for linear logic to specify and verify biochemical systems featuring spatial and temporal modalities. One salient char-
acteristic of our approach is that both, the system and its properties, are specified in the same logical framework. This
is particularly relevant since in many works related to ours (see Sections 5 and 6 for details), usually one formalism is
used for specifying the model while at least one different formalism is used for expressing the properties of interest
(e.g., a temporal logic) and for proving them (e.g., by using a model checker).

– From the computational point of view, we give a further step in showing that linear logic (with subexponentials) is a
general framework to specify and verify concurrent systems. Other studies relating concurrent formalisms and linear
logic can be found, e.g., in [14–17,8].

A preliminary short version of this paper appeared in [18]. Here, we significantly review, enhance and refine our previous
work. In particular, we present the full set of proofs, we clarify crucial technical details and we introduce many more
explanations and examples, including an application of our framework in the context of the TWEAK-Fn14 cell signaling
pathway [19].

The rest of the paper is structured as follows. In Section 2 we recall some concepts about subexponentials in linear logic.
Section 3 defines an encoding of biochemical reactions that considers spatial and temporal modalities. We also show how
to exploit the underlying logic for expressing some properties of the system. Section 4 provides a logical characterization of
P systems as SELL formulas. Section 5 highlights how the proof theory of SELL may be used to draw conclusions about the
studied biochemical systems. Section 6 discusses related work and concludes the paper.

2. Linear logic with subexponentials

In this section we recall the proof theory of intuitionistic linear logic (ILL) [6] with subexponentials [7,8]. Although this
review should suffice to understand the developments in the forthcoming sections, we assume that the reader is familiar
with logic and proof theory (see e.g., [20]).

Linear logic [6] is a substructural logic where formulas can be seen as resources. Hence, there is an explicit control over
the number of times a formula can be used in a proof. More precisely, formulas can be split into two sets: classical (those
that can be used as many times as needed) or linear (those that are consumed after being used). Classical formulas are
marked with the modal operators !, ?, called exponentials. For instance, the formula !F allows F to be used arbitrarily many
times.

Intuitionistic linear logic with subexponentials [7] (SELL) shares with linear logic all its connectives except the expo-
nentials. The subexponentials (!a , ?a) add an index to the exponentials, thus allowing for splitting the formulas into many
sets, each of which can then be specified to be classical (i.e., unbounded) or linear. In this case, the formula !a F can be
interpreted as F holding in a given modality a, e.g., in the space location a.

As we shall see, the subexponentials provide a finer control on proofs and they allow for the specification of different
modalities such as time-units or spatial locations. In this paper we shall use the system SELL� proposed in [8,9] that enjoys
good proof theoretic properties: it admits cut-elimination and a sound and complete focused proof system [8,9]. Focusing
[13] is a discipline on proofs to reduce the non-determinism during proof search. Hence, focused proofs can be interpreted
as the normal form proofs for proof search. Although the proof rules of the focused system may look more involved at
first glance, we shall rely on them to prove the adequacy results in Section 3. We thus introduce here the focused system
and, for the sake of readability, we simplify a bit the notation. We also confine ourselves to the proof rules needed in the
forthcoming sections, for instance, we do not introduce the rules for ?a , a connective not used in our encodings. The reader
may refer to [8,9] for deeper technical details.

Connectives are separated into negative �, &, �, ∀, �, � and positive ⊗, ⊕, ∃, �, !s . The polarity of non-atomic formulas
is inherited from its outermost connective (e.g., F −◦ G is a negative formula while F ⊗ G is a positive one). Although the
bias assigned to atoms does not interfere with provability [21], it changes considerably the shape of proofs. Here we require
atoms to have a positive behavior.

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 27
The proof rules of SELL� introduced here consider three kind of sequents1:

(i) [K : �], � −→ R is an unfocused sequent.
(ii) [K : �]−F→ is a sequent focused on the right.

(iii) [K : �] F−→ G is a sequent focused on the left.

The meaning of the context [K : �] will be clear soon. We start with the proof rules for multiplicative (⊗) and ad-
ditive (&) conjunction, linear implication (−◦), additive disjunction (⊕), the first-order quantifiers (∀, ∃) and the additive
version of truth (�).

Negative Phase

[K : �],�, F , G −→ R

[K : �],�, F ⊗ G −→ R
⊗L

[K : �],�, F −→ G
[K : �],� −→ F � G

�R

[K : �],� −→ G[xe/x]
[K : �],� −→ ∀x.G

∀R
[K : �],� −→ F [K : �],� −→ G

[K : �],� −→ F &G
&R

[K : �],� −→ � �R
[K : �],�, F −→ R [K : �],�, H −→ R

[K : �],�, F ⊕ H −→ R
⊕L

The proof rule ∃R is similar to ∀L and xe is assumed to be fresh.
First notice that the negative connectives have invertible right rules, while the positive connectives have invertible left

rules. As an example, consider the rule ∀R : the choice of the name used for the eigenvariable xe is not important for
provability, as long as it is fresh. Hence, in a negative phase of the proof, no backtracking on the selection of inference rules
is necessary. Moreover, without loosing provability, we can eagerly introduce all the negative non-atomic formulas on the
right and all the positive non-atomic formulas on the left. Such part of the proof is represented by sequents of the shape (i)
above.

The change of phase’s polarity and the manipulation of the context [K : �] are governed by the following structural
rules:

Structural Rules

[K : �], F −→ G

[K : �] F−→ G
R L [K : �] −→ F

[K : �]−F→ R R
[K : �]−G→
[K : �] −→ G

D R

[K , F : �] F−→ G
[K , F : �] −→ G

D L1
[K : �] F−→ G

[K : �, F] −→ G
D L2

[K : �, Na],� −→ G
[K : �],�, Na −→ G

StL

Rules R L and R R mark the end of the positive phase. In R L (resp. R R), F is a positive (resp. negative) formula and then,
the positive phase must finish. A positive phase begins by choosing a formula on which to focus enabling sequents of the
forms (ii) or (iii). Note that in such sequents, the multiset of formulas � must be empty. Rule D R is used to decide to
focus on the formula G (on the right). Rule D L1 (resp. D L2) focuses on the formula F in the unbounded K (resp. linear �)
context explained below. Finally, in rule StL , Na is a negative or atomic formula. Then, during the negative phase, this rule
stores in the context � the formulas that cannot be introduced (on the left) during the negative phase (e.g., F −◦ G).

Now we introduce some of the proof rules that belong to the positive phase:

Positive Phase

[K : �]−Gi→
[K : �]−G1⊕G2→

⊕Ri

[K : �] Fi−→ G

[K : �] F1&F2−−−−→ G

&Li
[K : �] F [t/x]−−−→ G

[K : �] ∀x.F−−−→ G
∀L

The above rules are introduced in the positive phase since they require a decision to continue the proof and then, backtrack-
ing may be needed. Rule ⊕R , for instance, needs to chose a formula Gi (i ∈ {1, 2}) to continue the proof. Similarly, rule ∀L
decides on the term t . Note also that in the above rules, the focusing is not lost and the proof must continue decomposing
the selected formula (for instance, in ⊕R , the focusing persists on Gi). This procedure continues until one is focused either
on a negative formula on the right or a positive formula on the left (see structural rules R L and R R). This point marks the
end of the positive phase.

1 The SELL� system in fact considers also a fourth kind of sequent of the shape [K : �], � −→ [F] to represent the end of the negative phase. In our
presentation, we shall omit this kind of sequent and also the notation of bracket formulas [F].

28 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
A SELL� system is specified by a subexponential signature � = 〈I, �, U 〉, where I is a set of labels, U ⊆ I specifies which
subexponentials are unbounded and � is a pre-order among the elements of I . We shall use the letters a, b, l and s to
denote elements in I . Intuitively, !a F means that F is marked with a given modality a. As shown in [8], the formula !a F
can be interpreted in several ways, for instance, it may represent the fact that F holds in the space location a or that F
holds in the time-unit a. Moreover, if a is unbounded (or classical), then F can be used as many times as needed.

Let us now introduce some other proof rules and clarify the meaning of the context [K : �] and the subexponential !a .

Negative Phase

[K +s F : �],� −→ R

[K : �],�, !s F −→ R
!sL [K : �],� −→ G[le/lx]

[K : �],� −→ �lx : a.G
�R

Positive Phase

[K1 : �1]−F→ [K2 : �2]−G→
[K1 ⊗ K2 : �1,�2]−F⊗G→ ⊗R �1

[K1 : �1]−F→ [K2 : �2] H−→ G

[K1 ⊗ K2 : �1,�2] F�H−−−−→ G
�L �1

[K : �]−A→ I R �2
[K ≤s: ·] −→ F
[K : ·]−!s F→ !sR

[K : �] P [l/lx]−−−−→ G

[K : �] �lx:a.P−−−−→ G
�L

In the context [K : �], � contains only atomic or negative formulas that must be introduced in the positive phase of
the proof (see Rule StL). K is used to map a subexponential index to a multiset of formulas, notation s �→ {F1, . . . , Fn}.
The multiset K [s] = {F1, . . . , Fn} (the image of K in s) represents all the formulas marked with !s . That is, K [s] should
be interpreted as the multiset of formulas !s F1, . . . , !s Fn . This explains the rule !sL which belongs to the negative phase and
it simply stores F into the context K [s] (notation, K +s F).

Since formulas in linear logic are resources, rules ⊗R and −◦L split the context. For instance, in a proof of F ⊗ G , some
resources must be used to prove F and the remaining ones must be used to prove G . However, the unbounded resources,
i.e., those formulas of the shape !a F where a ∈ U , can be used as many times as needed. Hence, side condition �1 says that
the contexts K1 and K2 must agree on those formulas, i.e., K1[a] = K2[a] for any a ∈ U . Notation K1 ⊗ K1 represents
the fact that the context on the conclusion of rules ⊗R and −◦L can be decomposed into K1 and K2. More precisely,
K1 ⊗ K2[s] is the multiset union (resp. set union) of K1[s] and K2[s] if s /∈ U (resp. s ∈ U).

The implication F −◦ H can be read as “consume F to produce H”. Then, rule −◦L consumes some resources to prove F
and then, focusing persists on H .

The initial rule I R says that a proof for an atom A (a positive formula) can finish if A is already in the context. Side
condition �2 says that either 1) the linear context (formulas in � and those in K marked with subexponentials not in U)
is empty and A belongs to the unbounded context, i.e., A ∈ K [a] and a ∈ U ; or 2) the linear context is {A}. This guarantees
that either A is an unbounded resource (and then, we can prove A) or the only linear formula in the context is A (i.e., there
is only one copy of A).

Rule !sR says that, in order to introduce the formula !s F , the linear context � must be empty (notation [K : ·]). Moreover,
for all a ∈ I , if s �� a then K ′[a] = ∅, i.e., all the formulas marked with an unrelated or smaller subexponential a, must be
weakened (notation [K ≤s: ·]). This can be done, of course, if a is an unbounded subexponential. Roughly, if the formula !s F
needs to be proved, one can only keep the resources (formulas) marked with a higher subexponential. The other resources
must be dropped (weakened) from the context.

Two other observations on rule !sR are in order: (1) provability is preserved downwards, i.e., if [K : �], � −→ !a F is
provable then so is the sequent [K : �], � −→ !b F for all b � a; and (2), the focusing does not persist on F .

In [8,9], universal (�) and existential (�) quantification on subexponentials are introduced for the specification of modal-
ities in distributed systems. Similar to the first-order quantifiers, the rule �R belongs to the negative phase and it simply
introduces a fresh subexponential variable. The generic variable lx : a, where a ∈ I , plays the role of the type of lx represent-
ing any subexponential constant lc in the ideal of a, i.e., lc � a. Rule �L belongs to the positive phase since a subexponential
l � a must be chosen. Rules for the existential quantifier � are similar.

Let us introduce two simple examples showing how focusing and the subexponentials allow us to control the proofs in
SELL� . This may help to understand the level of adequacy we achieve in Section 3.

Example 1 (Focusing). Consider the derivations in Fig. 1 where F , G, H are atoms. The proof on the left corresponds to a
focused proof. First, in the negative phase, we introduce all the ⊗ on the left and we use the rule StL to store the atom F
and the negative formulas (F −◦ G and G −◦ H) into the context. Then we decide to focus on the formula F −◦ G (rule D L2).
According to rule −◦L , the focusing persists on the atom F and then, the proof must finish with the initial rule I R . Since G
is an atom, focusing is lost (rule R L) and such atom is added later into the context (rule StL). In a new positive phase, we

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 29
Focused derivation

[· : F]−F→ I R

[· : G]−G→ I R

[· : H]−H→ I R

[· : ·], H −→ H
StL , D R

[· : ·] H−→ H
R L

[· : G] G−◦H−−−→ H
−◦L

[· : G −◦ H], G −→ H
StL , D L2

[· : G −◦ H] G−→ H
RL

[· : F , G −◦ H] F−◦G−−−→ H
−◦L

[· : F , F −◦ G, G −◦ H] −→ H
D L2

[· : ·], F ⊗ (F −◦ G) ⊗ (G −◦ H) −→ H
⊗L , StL

Rules for the unfocused system

F −→ F
IU

�1 −→ F �2, G −→ H

�1,�2, F −◦ G −→ H
−◦LU

(Unfocused) derivation

H −→ H
IU

G −→ G
IU

F −→ F
IU

F , F −◦ G −→ G
−◦LU

F , F −◦ G, G −◦ H −→ H
−◦LU

Fig. 1. Examples of focused and unfocused derivations (see Example 1).

[σ ;a �→ F : ·]−F→ I R

[σ ;a �→ F : ·] −→ F
D R

[σ ;a �→ F : ·]−!a F→
!sR

�
[σ ;a �→ G;b �→ {G, H} : ·] −→ δ

[σ ;a �→ G;b �→ {F , H} : ·] −→ δ
∗

[σ ;b �→ {F , H} : ·], !a G −→ δ
!sL

[σ ;b �→ {F , H} : ·] !a G−−→ δ

RL

[σ ;a �→ F ;b �→ {F , H} : ·] !a F−◦!a G−−−−−→ δ

−◦L

[σ ;a �→ F ;b �→ {F , H} : ·]
�l:ω.

(
!l F−◦!l G

)
−−−−−−−−−−→ δ

�L

[σ ;a �→ F ;b �→ {F , H} : ·] −→ δ
D L1

[· : ·],system−→ δ
⊗L , !sL

Fig. 2. Derivation in Example 2. σ is the context ω �→ �l : ω.
(
!l F −◦ !l G

)
and δ is the formula !a G ⊗ !b G ⊗ !b H .

focus on G −◦ H (rule D L2) and rules −◦L , I R and R L are applied as before until they produce the sequent [· : ·], H −→ H .
At this point, we store H into the context and decide to focus on H (on the right, D R) and the derivation ends with I R .

Derivation on the right corresponds to an unfocused proof using the standard rules of linear logic (IU and LU in the
figure). Note that we “use” the implication G −◦ H but the proof of G was delayed until G was later “produced” by F −◦ G .
The behavior of this proof, in the context of biochemical reactions, does not correspond to what we expect: we are allowed
to use a reaction whose reactants are not yet available but they will be later produced. We observe that this cannot happen
in the focused system: it is not possible to focus on G −◦ H in the beginning of the derivation because G is not in the
context.

Example 2 (Subexponentials). Consider an unbounded subexponential ω (i.e., ω ∈ U) and two linear subexponentials a, b s.t.
a, b � ω and a �� b. Let F , G, H be atoms and system def= !ω �l : ω.

(
!l F −◦ !l G

)
⊗ !a F ⊗ !b F ⊗ !b H . The subexponentials a

and b can be interpreted as two different locations (or spatial domains) in a cell. Hence, !a F (resp. !b F , !b H) represents
that in a (resp. b) we can find a copy of some given reactant F (resp. F ,H). The formula �l : ω.

(
!l F −◦ !l G

)
represents a

reaction that, in a given location l � ω, consumes F to produce G . Note that this formula is marked with !ω , thus allowing
us to use the reaction as many times as needed in the space domains a and b. Hence, the system may evolve to a state
where the location a contains one copy of G and the location b stores one copy of G and H as proved in Fig. 2.

The first step in the derivation corresponds to the negative phase introducing the connectives !s and ⊗ on the left. Then
we decide to focus on the formula representing the reaction (D L1). Note that focusing persists and then, a subexponential
l in �l : ω must be chosen (in this case, [a/l]) to later decompose the formula !a F −◦ !a G . It is also interesting to note that
rule !sR forces the derivation to consider only the contexts ω and a to prove F since a �� b (see rule !sR). This intuitively
means that information on the location b cannot be used to finish the proof of F in location a.

The steps in ∗ correspond to the proof of G in the context b by consuming F , similarly as we did in the context a.
Derivation � uses ⊗R , !s R and I R to prove G in the context a and G and H in the context b.

3. Spatial and temporal dependencies as SELL� formulas

In this section we show how spatial and temporal dependencies in biochemical systems can be declaratively character-
ized as formulas in SELL� . We prove that the proposed encoding exhibits the highest level of adequacy: each step in the
evolution of the system corresponds, one-to-one, to a change of polarity in a focused derivation. We shall exemplify our
framework by verifying some basic properties of the TWEAK-Fn14 cell signaling pathway [19].

We start by describing the kind of reactions we shall consider. We assume a set of reactions of the shape:

30 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
r j : [c1.A1]a1 + · · · + [cn.An]an −→k [d1.B1]b1 + · · · + [dm.Bn]bm (1)

meaning that ci units of Ai located in the space domain ai are consumed in k time-units to produce d j units of B j in the
space domain b j .

In order to combine spatial and temporal modalities in SELL� , we need first to define a subexponential signature as the
one depicted in Fig. 3. The only unbounded subexponentials are tω and i+ . The former is used to mark the set of reactions
that can be used as many times as needed. The subexponential i+ represents the time-units starting from i and it will be
used to specify system’s properties as we explain later. For instance, a subexponential variable lx : 4+ can be instantiated
with any time-unit (in the future) starting from 4. The linear subexponentials 0, 1, 2, · · · (resp. sa.i, sb.i, · · ·) represent
time-units (resp. the space domain sx in the time-unit i). An alternative way of defining the spatial locations is to consider
the use of families [8], roughly, functions from elements in the subexponential signature to subexponential indexes. Hence,
given a family of the shape sx , sx(t) would be the subexponential representing the space x in time-unit t .

For each reactant A in the system, we assume to have a constant symbol A in the logic. We also assume to have an
uninterpreted binary predicate ct(·, ·). Intuitively, the formula !sb .2 ct(A, c) means that the concentration of A in the space
domain sb is c during the second time-unit. As usual, c is defined as the n-th application of the successor function suc to
the constant 0. We shall use sucn(x) to denote the n-th application of suc to x.

We model the state of the system at time-unit t as the formula

state(t)
def=

⊗
s∈S

⊗
Ai∈A

!s.t [ct(Ai, ci)]

where A denotes the set of reactants and S the set of domain spaces. If there are no species of kind A j in the space sk ,
then c j = 0.

We model the set of reactions of the system as

eqs
def= !tω [

�lx : 0+. [eq1(lx)& · · · &eqk(lx)]
]

The unbounded subexponential !tω allows us to use the set of reactions as many times as needed. The universal quantifi-
cation �lx : 0+ says that, at any time-unit, the reactions are available (see Example 2). The connective & allows us to choose
(non-deterministically) one of the reactions and discard the others.

The model of a reaction (see Equation (1) above) is a formula that first checks if the needed reactants are available in
the specific space domains. Then, the reactants are consumed and the products are added k time-units later:

eq(t)
def= ∀�x. (consume(t) −◦ produce(t + k))

consume(t)
def= ⊗

s∈S

⊗
Ai∈A

!s.t (ct(Ai, Ni))

where �x = x1, . . . , xn and

Ni =
{

xi, if [ci .Ai]s does not occur in the left-hand side of the reaction
succi (xi), if [ci .Ai]s occurs in the left-hand side of the reaction

The formula produce(t) is the same as consume(t) but, in this case,

Ni =
{

xi, if [di .Ai]s does not occur in the right-hand side of the reaction
sucdi (xi), if [di .Ai]s occurs in the right-hand side of the reaction

The quantifier ∀�x allows us to bind the current number of reactants in the system. The formula consume consumes the
needed reactants and produce adds such reactants k time-units later. We note that, due to the first cases of Ni above, the
concentrations of the reactants that do not occur in the reaction are simply copied (without changes) to the time-unit t +k.

Finally, the model of the system at a given time-unit t is:

system(t)
def= eqs⊗ state(t)

3.1. Behavior and correspondence

In this section we show that our model enjoys interesting properties. In particular, we shall show that one step in a
focused derivation corresponds exactly to one step in the evolution of the system. Hence, proofs in SELL� can be directly
mapped to traces of the system. Before stating the result, we introduce some needed notation.

Notation 1 (States). We use s1 : [A1 : c1
1, . . . , An : c1

n], · · · , sm : [A1 : cm
1 , . . . , An : cm

n] to denote a state s where there are ci
j

species of the reactant j in the space domain i. We shall write s1
(r,k)−→ s2 when reaction r can be applied on state s1

producing the state s2 after k time-units. Given a state s and a time-unit t , we shall denote with [[s]]t the SELL� formula
system(t).

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 31
Fig. 3. Subexponential structure for spatial and temporal domains. b → a means a � b. The only unbounded subexponentials are i+ and tω .

Theorem 1 (Adequacy). Let s1 and s2 be states, r a reaction and t ≥ 0. Then, s1
(r,k)−→ s2 iff [[s1]]t −→ [[s2]]t+k. Moreover, such

adequacy is at the level of derivations, that is, one focused logical phase corresponds exactly to the move from state s1 to state s2 .

Proof. We show that the introduction of any formula, following the focused discipline, corresponds exactly to the occur-
rence of one reaction in the biochemical system. More precisely, if we focus on the left of the sequent [[s1]]t −→ G , one flip
of the polarity of the proof corresponds to the operational step s1

(r,k)−→ s2.
In [[s1]]t we have a conjunction (⊗) of formulas of the shape !s F . Then, in a negative phase, what we observe is the

following:

[K +tω (eqs′) + ∑
si .t

{ct(A1, c1), . . . ,ct(An, cn)} : ·] −→ G

[K : ·], [[s1]]t −→ G
!sL,⊗L

i.e., the context tω stores the formula eqs′ def= �lx : 0+. [eq1(lx)& · · ·&eqk(lx)] and each si .t context stores the formulas of
the shape ct(A1, c1), . . . , ct(An, cn).

We note that the negative phase ends here (the multiset � is empty). At this point, we have three choices: focus on the
right, focus on the formula stored in one of the contexts si .t or focus on the formula stored in the context tω . Focus on the
right ([[s2]]t+k) will fail since the atoms in the subexponential si .(t +k) are not already in the context. Since formulas stored
in the context si .t are atoms, focus will be lost immediately, thus leading to a useless detour. Hence, the only choice is to
focus on eqs′ and we get a derivation of the following shape:

	
...

�1− ⊗
s∈S

⊗
Ai∈A

!s.t′ [ct(Ai ,Ni)]
→

�
...

�2
producei(t

′+k)−−−−−−−−−−→ G

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] consumei(t
′)−◦ producei(t

′)−−−−−−−−−−−−−−−−−−→ G

−◦L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] ∀�x.consumei(t
′)−◦ producei(t

′)−−−−−−−−−−−−−−−−−−−→ G
∀L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] eq1(t′)&...&eqn(t′)−−−−−−−−−−−→ G
&L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] eqs′−−−→ G

�L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] −→ G
D L1

Here �1 and �2 correspond to the splitting of the context due to the rule −◦L . Since ⊗R must be introduced in a positive
phase, the focusing persists on consumei(t′) and the derivation 	 must be of the shape:

	i
...

ϒ i
1 −→ ct(Ai, Ni)

�i
1−!si .t

′
ct(Ai ,ni)

→ !sR
	′
...

�′
1−C ′→

�1− ⊗
s∈S

⊗
A ∈A

!s.t′ [ct(Ai ,Ni)]
→ ⊗R
i

32 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
Since si .t′ is related neither to tω nor to any subexponential s j .t′ , the context ϒ i
1 can only be of the shape [si .t′ �→ {F } : ·]

and then, the derivation 	i corresponds to the application of the initial rule I R (see Example 2). A similar analysis can be
done for 	′ that corresponds to the proof of the other conjuncts in the formula

⊗
s∈S

⊗
Ai∈A

!s.t′ [ct(Ai, Ni)].

Since consumei(t′) was defined to “consume” all the formulas of the shape ct(Ai, ni) in all the spaces, it must be the
case that �2 = [tω �→ eqs′ : ·].

Now, let’s analyze the formula produce(t′ + k). The main connective of this formula is ⊗ and then, focus is lost in the
derivation � . In a negative phase, we have

[tω �→ eqs′; {si .(t′ + k) �→ {ct(A1, c′
1), · · · ,ct(An, c′

n)}}i : ·] −→ G

[tω �→ eqs′ : ·],produce(t′ + k) −→ G
!sL,⊗L

where the resulting context encodes the state s2.
It is worth noticing that the focusing discipline forces the rule �L to choose t′ = t , in other case, the formula

!si .t
′
ct(Ai, ci) would not be provable in 	i . Moreover, the focusing discipline also forces the rule &L to choose the en-

coding of a reaction whose reactants are already in the context (see Example 1). Hence, what we observe in the derivation
is exactly that some reaction is applied and the products are produced in the time-unit t + k, i.e., focusing on the left
corresponds exactly to the system’s evolution s1

(r,k)−→ s2. �
3.2. Properties of interest

In this section we present some applications of our framework. For the sake of readability, we shall introduce simple
reaction schemes to show how to verify a given property. Then, we will relate such reaction schemes to our case study,
namely, system(0) −→ �t : 0+. !t stable.

The types of intercommunications occurring in a signaling pathway can be broadly classified into physical interactions,
enzyme catalysis interactions, activation/inhibition interactions and transport interactions (translocations). These reactions,
most of the time, take place in cellular domains such as the extracellular, the plasma membrane, the cytoplasm or the
nucleus among others.

Let us start with a small biochemical system composed of two unimolecular reactions of the form:

r1 : [1.A]x −→1 [1.B]x

r2 : [1.B]x −→2 [1.B]y
(2)

Reaction r1 models the situation where one unit of A, located in the space domain x, is consumed in one time-unit to
produce one unit of B in the same space domain. Reaction r2 takes two time-units to translocate one unit of B from space x
to space y.

Roughly speaking, signaling pathways are networks of biochemical reactions that allow cells to read environmental cues,
translate them into intracellular commands, and react with an appropriate response. The small set of reactions in Equa-
tion (2) could be a good example to represent an interaction of enzyme catalysis (cat) in a cellular domain followed by a
transport interaction or translocation (trans) between two arbitrary interaction domains. Such reactions can be related to
(a fragment of) the TWEAK-Fn14 cell signaling pathway [19]. This pathway is expressed in several different tissue types and
has implications with several diseases including autoimmune disorders, cancer and cardiovascular abnormalities. Generally,
translocations and catalysis are common in this network. For instance, in the shaded box in Fig. 4, we highlight the reaction
of phosphorylation of the transcription factor RELA (kappa light chain gene enhancer in B cells 3) that takes place in the
interaction domain of the cytoplasm (CY) to produce [RELA-P]CY . Next, the phosphorylated form [RELA-P]CY is translocated
to the interaction domain of the nucleus (NU) [RELA-P]NU . Consequently, due to this transport interaction, the molecule
[RELA-P]NU can be again catalyzed to its original form and placed in its original location to form [RELA]CY .

3.2.1. Reachability properties
We can verify reachability properties in our system by proving sequents of the shape system(0) −→ �t : 0+.[!a.t ct(A,n)

] ⊗ �. Such a sequent can be read as “given the initial state of the system, there exists a location (time-
unit) where there are n copies of A in the space domain a”. Since we are testing the presence of a given component (and
not all of them) in a specific domain, the � connective allows us to erase the unused formulas (see rule �R).

Due to Theorem 1, a focused proof of the above sequent can be directly traced to the moves the system has to perform to
reach the state ct(A,n). As a matter of example, let us prove that the concentration of A in the space domain x eventually
falls to 0 in the system described in Equation (2). Before that, let us introduce some useful notation:

state(t : k,m,n)
def= !t.x ct(A,k) ⊗ !t.x ct(B,m) ⊗ !t.y ct(B,n)

state(t : k>0,m,n)
def= !t.x ct(A,suc(k)) ⊗ !t.x ct(B,m) ⊗ !t.y ct(B,n)

A similar notation is used for, e.g., state(t : k>0, m, n>0). These formulas represent the concentration of A in the do-
main x and the concentration of B in the domains x and y. Moreover, we shall also use the shorthand

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 33
Fig. 4. Excerpt of the TWEAK-Fn14 cell signaling pathway from [19]. The shaded box corresponds to the reaction schemes r1 : [RELA]CY cat−→ [RELA-P]CY ,
r2 : [RELA-P]CY trans−→ [RELA-P]NU and r3 : [RELA-P]NU cat/trans−→ [RELA]CY .

&
k,m,n

state(t : k,m,n)[Fk,m,n] def= (state(t : 0,0,0) −◦ F0,0,0)&

(state(t : k>0,0,0) −◦ Fsuc(k),0,0)& · · ·&
(state(t : k>0,m>0,n>0) −◦ Fsuc(k),suc(m),suc(n))

This formula will be used to specify that the property F holds regardless the values of the concentrations.
The following sequent formalizes the reachability property to be proved:

[tω �→ eqs : ·] −→ ∀k,m,n. &
k,m,n

state(t : k,m,n)[F]

where F = �l : t+.
(
!x.l ct(A,0)

)
⊗ �.

After decomposing (in a negative phase) the connectives ∀, & and −◦ on the right and then ⊗ and !s on the left we have
several cases to be proved (see rule &R). The case state(t : 0, 0, 0) is trivial since focusing on one of the reactions will fail.
Hence, the only choice we have is to focus on the formula F on the right. Since ct(A, 0) is already in the context, the proof
is easy.

In the other cases, we can apply one of the reactions and we observe a (focused) derivation of the shape (see proof of
Theorem 1):

[tω �→ eqs′;state(t′ : k′
t,m′

t,n′
t) : ·] −→ F

[tω �→ eqs′;state(t : kt,mt,nt) : ·] −→ F

Here, for the sake of presentation, we abuse of the notation and we use the formula state(t : k, m, n) to denote also the
context it represents. In the above derivation, kt may be 0 or suc(k) depending on the considered case. If kt = suc(k) and
the derivation corresponds to focusing on reaction r1, and then, it must be the case that k′

t = k. Similar observations can be
done for mt , nt and rule r2. Regardless the choice of the rule (r1 or r2), we can show that 〈k′

t , m′
t〉 ≺ 〈kt , mt〉 where “≺” is

the (well-founded) lexicographical order where the first element is the predominant component. Hence, by induction, we
can show that there will be a state where ct(A, 0) holds.

3.2.2. Stable states
Now consider the problem of verifying whether the system reaches a stable state, i.e., a state where no rule can be

applied. Detecting, in a logical system, that a given configuration cannot proceed is usually difficult. In our case, it would
require to check that none of the eqi formulas in eq1&...&eqn can be chosen. In this section, we show a possible way to
circumvent this problem. For that, let us introduce the following reaction scheme:

r1 : [2.A]x + [1.B]x −→1 [1.C]x

r2 : [1.C]x −→1 [1.A]x
(3)

34 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
We encode the set of reactions as in Section 3 but with a slight difference:

eqsd
def= !tω (

�lx : 0+. (eq1(lx)& · · · &eqk(lx)&eqd(lx))
)

eqd(t)
def= ((!x.t ct(A,0) ⊕ !x.t ct(A,suc(0)) ⊕ !x.t ct(B,0)

)
&

(!x.t ct(C,0)
))

−◦!t stable
Intuitively, eqd checks whether the reactants are not sufficient to trigger any of the rules. In that case, the atom stable

is produced. In the system described in Equation (3) this happens when: the concentration of A is below 2 or the concen-
tration of B is 0 (r1); and when the concentration of C is 0 (r2).

Consider the sequent [tω �→ eqsd; state(t : 1, 0, 0) : ·] −→ G where we assume that the concentrations are A = 1,
B = 0, C = 0. We already know that focusing on a formula representing one of the reactions in Equation (3) will fail
immediately. Hence, the only available choice is to focus on the formula eqd . Focusing on eqd implies proving the following
sequent:

[tω �→ eqsd;state(t : 1,0,0) : ·]−F1&F2
→

with F1 = [!s.t ct(A,0) ⊕ !s.t ct(A,suc(0)) ⊕ !s.t ct(B,0)
]

and F 2 = !s.t ct(C, 0). Rule &R belongs to the negative phase and
then, the focus is lost. Hence, we cannot guarantee that the proof has to finish immediately proving from the context the
atoms ct(·, ·). However, since the subexponential x.t is unrelated to all other subexponentials, we do guarantee that, for
proving such atoms, the set of reactions cannot be used again (see rule !sR). We can thus prove that the system reaches a
stable state iff the sequent system(0) −→ �t : 0+. !t stable is provable.

Now let us put in context the previous result in the setting of the TWEAK-Fn14 signaling pathway, and consider the
following reaction scheme resembling that of Equation (3):

r1 : [2.TNFSF12]PM + [1.TNFRSF25]PM −→ [1.TNFSF12-TNFRSF25]PM
r2 : [1.TNFSF12-TNFRSF25]PM −→ [1.TNFSF12]PM (4)

The TWEAK ligand, also known as [TNFSF12]PM (tumor necrosis factor ligand superfamily member 12), can bind in the
plasma membrane (PM) not only to the receptor [Fn14]PM (fibroblast growth factor inducible immediate early response
protein 14) but also to the receptor [TNFRSF25]PM (tumor necrosis factor receptor superfamily member 25) [19]. Hence, a
stable state in this scenario could demonstrate that, once a receptor has achieved his maximum occupancy, no rule can be
applied. In other words, an interaction of the type ligand–receptor is constrained by the availability of the receptor to bind
a single ligand molecule with the option of unbinding it at any time. Moreover, this property also allows us to capture the
notion of the limiting reactant (LR), a very common concept used in stoichiometry. Roughly, the LR of a chemical reaction
is the reactant which is totally consumed or transformed when the system reaches the equilibrium. As a result, the reaction
will stop when all the LR is consumed. Here, the receptor plays the role of the LR. Thus, to reach a chemical equilibrium in
Equation 4, one molecule of ligand and one molecule of receptor are needed to form a ligand–receptor interaction.

3.2.3. Oscillations
Consider the following set of equations that extends that of Equation (2) with reaction r3 below:

r1 : [1.A]x −→1 [1.B]x

r2 : [1.B]x −→2 [1.B]y

r3 : [1.B]y −→1 [1.A]x

(5)

We can prove that, for all t , if state(t : k, m, n) holds then there exists t′ > t such that state(t′ : k, m, n) is reachable,
i.e., the system can always go back to the same state. Using the notation introduced in Section 3.2.1, this can be formally
stated as:

[tω �→ eqs′′ : ·] −→ ∀k,m,n. &
k,m,n

state(t : k,m,n) −◦ Fk,m,n

where Fk,m,n = �t′ : (t + 1)+.state(t′ : k, m, n) ⊗ � and eqs′′ is as eqs but adding the dummy reaction:

eqd(t)
def= [!x.t ct(A,0) ⊗ !x.t ct(B,0) ⊗ !y.t ct(B,0)

]−◦
[!x.(t+1) ct(A,0) ⊗ !x.(t+1) ct(B,0) ⊗ !y.(t+1) ct(B,0)]

The formula eqd(t) is similar to the formula we added in the previous section to detect stable states: one can focus on
eqd(t) only when the concentrations are zero and none of the reactions (r1, r2, r3) can be fired. Then, the concentrations in
the next time-unit remain the same.

The proof of the property proceeds as the one in Section 3.2.1. The & connective (on the right) generates several cases
to be proved. The case state(t : 0, 0, 0) is immediate by first focusing on the formula eqd(t) and then, focusing on F .
In the other cases, it amounts to use some of the reactions of the system. For instance, the proof of the case state(t :
k>0, m>0, n>0) proceeds as follows:

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 35
[tω �→ eqs′′;state(t + 4 : suc(k),suc(m),suc(n)) : ·] −→ state(t + 4 : suc(k),suc(m),suc(n)) ⊗ � ⊗R , !s R , I R ,�R

[tω �→ eqs′′;state(t + 4 : suc(k),suc(m),suc(n)) : ·] −→ G
D R ,�R

[tω �→ eqs′′;state(t + 3 : k,suc(m),suc(suc(n))) : ·] −→ G
R3

[tω �→ eqs′′;state(t + 1 : k,suc(suc(m)),suc(n)) : ·] −→ G
R2

[tω �→ eqs′′;state(t : suc(k),suc(m),suc(n)) : ·] −→ G
R1

where G = �t′ : (t + 1)+.state(t′ : suc(k), suc(m), suc(n)) ⊗� and Ri represents the logical steps resulting from focusing
on the formula encoding the reaction ri . Hence, by using the sequence of reactions r1 −→ r2 −→ r3, we can discard this
case. The other cases follow similarly.

In the context of the TWEAK system, the set of reactions in Equation (5) is akin to the dephosphorylation of the
molecule [RELA-P]NU in the domain of the nucleus. As we mentioned before, this protein can be translocated between
the cytoplasm and the nucleus. We note that the reaction of dephosphorylation takes place only when the phosphory-
lated form [RELA-P]NU is already in the nucleus for subsequent catalysis and transportation to the cytoplasm to produce
[RELA]CY . Accordingly, the system oscillates between the phosphorylation and the dephosphorylation of that molecule
([RELA]CY → [RELA-P]CY/NU → [RELA]CY) between the spaces CY and NU (see Fig. 4).

4. Logical view of P systems

In this section, in order to give a more general picture of our developments, we show how P systems [10,11] can be also
characterized as SELL� formulas.

P systems are a model that interprets the processes taking place in the compartmentalized structure of a biological cell
as computations. The main abstraction is the notion of a cell-like membrane structure. Several membranes, placed in an
outermost membrane called “the skin membrane”, determine the configuration of the system. This structural shape defines
compartments where multisets of objects (components) are placed and evolve according to a set of rules. Here we shall
focus on P systems with boundary rules [11,22], a variant of P systems where the rewriting rules are not internal to a
region but, rather, they are able to see also the external environment (i.e., the boundary). More precisely,

Definition 1 (P system with boundary rules). A P system with boundary rules is a structure Π = (V , μ0, R, O) where V is
an alphabet of symbols; μ0 is the initial configuration; O is the label of the observable membrane; and R is a finite set of
rewriting rules of two kinds:

• Transformation: [i y −→ [i y′; for y, y′ ∈ V ∗ .
• Communication: xx′[i y′ y −→ xy′[i x′ y; for x, y, x′, y′ ∈ V ∗ .

Intuitively, a transformation rule consumes the objects in the multiset y to produce the multiset y′ in the membrane i.
A communication rule is similar but moves objects through membranes: the multiset x′ (resp. y′) is moved inside (resp.
outside) the membrane i.

P systems are synchronous systems in the sense that a global clock is assumed and such clock holds for all regions of
the system. In each time-unit, a configuration μn moves to μn+1 by applying, possibly several times, the rules in R . The
evolution of the system is usually defined in a non-deterministic and maximally parallel manner [10]. Roughly, occurrences
of objects in the system are assigned to rules in R until no further assignment is possible (micro steps). Then, all the chosen
rules are applied exhaustively to produce the new configurations (a macro step).

In the following, we shall encode P systems by using a restricted version of the minimal parallelism semantics defined
in [12]. In Section 4.1, we generalize the encoding in order to capture different degrees of parallelism in the semantics.

Notation 2 (Reduction relation). Given a set of rules R and two configurations (states) s1 and s2, we shall write s1 ====⇒ s2
if s1 moves to s2 by applying once (if possible) each rule in R .

The above reduction relation is akin to minimal parallelism in [12] since rules are not exhaustively applied to all the
objects of the system, as in the case of maximal parallelism [10,11]. The non-determinism of ====⇒ comes from the fact
that rules can compete for the same resource in the system. We note that, compared to the semantics in [12], ====⇒
applies each rule at most once (and not several times).

Predicate symbols. We start defining the predicate symbols used in the encoding.

• p(a1, . . . , an). Assuming a set of n different components, the current state of the system, at time-unit t in the mem-
brane si , is defined as the formula !si .t p(a1, . . . , an) (see Fig. 3 for the ordering of the subexponentials).

• f(a1, . . . , an). Rules manipulate the state of the system by consuming elements in the current time-unit and then,
producing new ones in the next time-unit. Hence, we shall use the formula !si .t f(a1, . . . , an) to specify that, in the next
time-unit, there will be ai additional units of the component Ai in the membrane si .

36 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
• oki , tk. As explained below, we shall use these atomic propositions, respectively, to detect whether one rule was
already applied (oki) and to enable the set of reactions in a given time-unit (tk).

Encoding of rules. In the encodings below, we assume a set of reactants A = {A1, . . . , An} and we use the following
notation: �x = x1, . . . , xn (similarly for �y, �z and �w). We write f(�x) to denote f(x1, . . . , xn) and f(�x + �b) to denote f(x1 +
b1, . . . , xn + bn) (similarly for p(·)).

• Transformation rule:

[[rw : [i S −→ [i S ′]]t = ∀�x �y.[!si .t(f(�x) ⊗ p(�y)) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t okw))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
Here, from the initial set of components S , ak units of Ak are consumed to produce bl units of Al in the space domain si ,
leading to the multiset S ′ .

• Communication rule:

[[rw : [j T [i S −→ [j T ′[i S ′]]t

= ∀�x �y �z �w.[(!si .t(f(�x) ⊗ p(�y)) ⊗ !s j .t(f(�z) ⊗ p(�w)))−◦
[((⊗ yi ≥ ai ⊗ ⊗

wi ≥ ci) −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !s j .t f(�z + �d) ⊗ !s j .t p(�w − �c) ⊗ !t okw))

&((
⊕

y1 < ai ⊕ ⊕
wi < ci) −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !s j .t f(�z) ⊗ !s j .t p(�w) ⊗ !t okw))]]

Here, T (resp. S) is the initial multiset of components in the space domain s j (resp. si). The rule consumes ak units of
Ak in si and ck units of Ak in s j in order to produce bl units of Al in si (resp. dl units of Al in s j).

The first implication in each rule, that we shall call available rule, is similar to the encodings studied in Section 3. We
note that the elements are consumed in the current time-unit but the products are “stored” in the predicate f(·) since they
must be available only in the next-time unit. The new part is the second implication that we call the absence rule. In this
implication we check whether there are not enough resources to fire the rule. Hence, the concentrations remain the same.
We note that either the available rule or the absence rule are fired but not both due to the & connective. Furthermore,
the choice is determined entirely by the current concentration of the components (i.e., the predicates p(·) in each space).
Finally, note that the available and absence rules add the formula ok which is needed as we explain in brief.

Remark 1. In the above encodings we use the relational symbols ≥ and <. Those symbols require a set of axioms to define
their meaning. Adding such theory in the logical context would imply that, in the following results, we have to analyze the
cases when an axiom of such theory is focused on. We note that this is not necessary since we can rewrite such formulas.
Consider for instance a transformation rule that consumes two tokens per time-unit from membrane i. Instead of encoding
such a rule as

∀x, y.[!si .t(f(x) ⊗ p(y)) −◦ (y ≥ 2 −◦ (!si .t f(x) ⊗ !si .t p(y − 2) ⊗ !t okw))]
&(y < 2 −◦ (!si .t f(x) ⊗ !si .t p(y) ⊗ !t okw))]

we can encode it as

[∀x, y. !si .t(f(x) ⊗ p(suc2(y))) −◦ (!si .t f(x) ⊗ !si .t p(y) ⊗ !t okw)]
&[∀x. !si .t(f(x) ⊗ p(0)) −◦ (!si .t f(x) ⊗ !si .t p(0) ⊗ !t okw)]
&[∀x. !si .t(f(x) ⊗ p(suc(0))) −◦ (!si .t f(x) ⊗ !si .t p(suc(0)) ⊗ !t okw)]

In the first encoding, in a positive phase, the connectives ∀ and −◦ (on the left) are introduced. Then, the focusing persists
on & choosing one of the branches (y ≥ 2 or y < 2). Finally, in a negative phase, it adds the resulting formulas into the
context. Similarly, in the second encoding, the & connective chooses one of the branches representing, respectively, y ≥ 2,
y = 0 and y = 1. Then, focusing persists on ∀ and −◦. Finally, in a negative phase, the predicates are stored into the context.

Auxiliary Formulas. Our encoding also requires the following formulas to control the execution of the rules:

next(t)
def= ∀�x �y.[!t(ok1 ⊗ · · · ⊗ okm) ⊗ ⊗

i∈O
(!si .t p(�xi) ⊗ !si .t f(�yi))

−◦ !t+1 tk⊗ ⊗
i∈O

(!si .t p(�xi + �yi) ⊗ !si .t f(0, . . . ,0))]
system(t)

def= !tω �tx : 0+. !tx tk−◦ (next(tx) ⊗ ⊗
r j∈R

[[r j]]tx)

state(t, �a1, . . . , �an)
def= !t tk⊗ ⊗

i∈O
[!si .t p(�ai) ⊗ !si .t f(0, . . . ,0)]

where �a is the current (initial) concentration of the components. Once we focus on the formula F = [[r j]]t , F is decomposed
and it adds, in the end of the negative phase, the formula ok j into the context t . Note also that, unlike the encoding of the

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 37
previous section, here the encoding of each rule is glued with the ⊗ connective (while in the previous section we used &).
This allows us to fire, at most once, all the rules during the current time-unit. Once all the rules are fired (either modifying
the state or not) the formula next can be focused on to propagate the changes to the next time-unit. When this happens,
we can say that the time-unit t ends and we start the computations of the time-unit t + 1.

In the encoding presented here, we cannot prove that one flip of the polarity in the proof corresponds exactly to a macro
step (====⇒) of the P system. The reason is simple: when a rule is fired (i.e., a micro step is performed), we have a flip
in the polarity of the proof. Hence, applying the k rules of the system at the time-unit t requires flipping k + 2 times the
polarity of the proof. The “+2” is due to the extra phases needed to consume the token tk and decompose the formula
next as shown in the proof of the following theorem.

Theorem 2 (Adequacy). Let s1 and s2 be states, [[s]]t = state(t, �a1, . . . , �an) and t ≥ 0. Then, s1 ====⇒ s2 iff the sequent
system(t), [[s1]]t −→ [[s2]]t+1 is provable.

Proof. Consider the sequent

[· : ·],system(t), [[s1]]t −→ [[s2]]t+1

We shall show that a proof of such sequent corresponds to the operational step s1 ====⇒ s2.
We start with a negative phase by decomposing the !s and ⊗ connectives on the left:

[tω �→ F ; t �→ tk; {si �→ {p(�ai),f(0, . . . ,0)}}i : ·] −→ [[s2]]t+1

[· : ·],system(t), [[s1]]t −→ [[s2]]t+1
⊗L, !sL

where F = �tx : 1+. !tx tk−◦ (next(tx) ⊗ ⊗
r j∈R

[[r j]]tx). We note that the negative phase ends here and, for each space i, the

context si stores the corresponding concentration of the components (�ai). To move up in the derivation, the only choice we
have on the left is to focus on the formula stored in the context tω (i.e., F) and we observe the following:

[t �→ tk : ·] −→ tk
D R , I R

[tω �→ F ; t �→ tk : ·]−!t tk→
!sR

�[tω �→ F ... : next(t), [[r1]]t , · · · , [[rm]]t] −→ [[s2]]t+2

[tω �→ F : ·]
next(t)⊗ ⊗

r j∈R
[[r j]]t

−−−−−−−−−−−−→ [[s2]]t+1

R L,⊗L, StL

[tω �→ F ... : ·]
!t tk−◦(next(t)⊗ ⊗

r j∈R
[[r j]]t)

−−−−−−−−−−−−−−−−−→ [[s2]]t+1

−◦L

[tω �→ F ... : ·] F−→ [[s2]]t+1

�R

[tω �→ F ... : ·] −→ [[s2]]t+1
D L1

where tk is proved (in the subexponential t) and the formula next(t) and the encoding of the reactions are stored in the
context.

In � , we can continue by focusing again on the formula F (stored in tω). However, in that case, we cannot finish the
proof since tk is not in the context t and it cannot be produced by focusing on F (nor by focusing on next(t)). Hence, the
only choice is to focus on one of the formulas of the shape [[r j]]t . Such action will be similar to the derivations of consume
and produce in the proof of Theorem 1. We also note that we can only focus on next(t) when all the formulas of the
shape [[r j]]tx were used, thus adding the tokens oki into the context.

Hence, due to the focusing discipline, we can guarantee that: the set of reactions are copied to the location t only if the
predicate tk is in that location; then, the set of reactions are executed (each one in a change of the polarity of the proof);
when all the reactions are executed, one can focus on the formula next(t) to allocate the resources (and the formula tk)
in the next time-unit. That is, after k + 2 flips of the polarity we observe a macro step where the logical context encodes
the state s2. �

Besides reachability properties as those stated in the previous section, we can also check the periodicity of the system, i.e.,
whether the system exhibits the behavior s1 ====⇒ sx1 ====⇒ · · · ====⇒ sxn ====⇒ s1 where sxi is different from s1.
This means that, after n time-units, there is a cycle in the system going back to the state s1. This property holds iff
the sequent system(0), [[s1]]0 −→ [[s1]]n+1 is provable. More generally, we can find such periodicity by using existential
quantification on subexponentials, i.e., by looking at the final instantiation of the subexponential variable l in the proof of
the sequent system(0), [[s1]]0 −→ �l : 1+.[[s1]]l .

4.1. Maximal and minimal parallelism semantics

In this section we show how the encodings studied in the previous section can be adapted in order to deal with other
notions of parallelism in P systems. It turns out that we only need to control the way the token ok is added into the
context.

38 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
In the following, we consider a predicate rule(i) that is added into the context when the rule i can be executed. The
transformation rule [i S −→ [i S ′ is encoded as

[[[i S −→ [i S ′]]t =
!t rule(w) −◦ [
∀�x �y.[(!si .t(f(�x) ⊗ p(�y))) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t okw))

&(
⊗

yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t rule(w)))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
If there are enough resources (lines 2 and 3 above), one can decide to either add okw or rule(w) to the context after

updating the state of the system. In the first case, the rule is applied only once in the current time-unit. In the second case,
there is a chance of applying it again. The formula in the last line, as in the previous encodings, is chosen when the rule
cannot be applied in the current state. The encoding of communication rules can be adapted similarly.

Since rules can be applied several times during the same time-unit, we need to adapt also the definition of system as
follows:

system(t)
def= !tω �tx : 0+. !tx tk−◦ (next(tx) ⊗ ⊗

ri∈R
!tx rule(ri))

⊗!tω �tx : 0+.[[r j]]tx

Note that the formula system stores the encoding of the rules in the unbounded subexponential tω . Moreover, when
tk can be deduced in time-unit tx , the formula next(tx), as well as the formulas rule(ri), are added into the context.

The above encoding allows us to use the same rule zero or several times and such choice is non-deterministic (due to
the & connective). Hence, similarly to Theorem 2, we can show that in each focused step, we observe the execution of one
of the rules in a given time-unit (micro steps). However, we cannot bound the number of flipping of polarities needed to
move to the next time-unit (macro step).

The maximal parallelism semantics (where all the rules must be exhaustively applied in all the possible objects of the
system) can be characterized in SELL� by encoding the rules of the system as follows:

!t rule(w) −◦ [
∀�x �y.[(!si .t(f(�x) ⊗ p(�y))) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t rule(w)))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
In this case, the token okw is added only when there are not enough resources to apply the rule again.
Finally, if we were to consider sequential P systems, where only one rule is used in each step of a computation [23], the

resulting encoding would be closer to the one in Section 3. More precisely, the encodings of the rules must be glued with
the connective & in order to choose one of the available rules. Moreover, the predicate ok and the formula next would not
be necessary to control the change of the time-unit. In this case, one flip of the polarity of the proof corresponds exactly to
one step in the computation.

5. Logical frameworks and the verification problem

In the previous sections we have shown that SELL is able to specify and verify biochemical systems where temporal and
spatial modalities can be combined. Besides the applications shown in Sections 3 and 4, it is important to further discuss
the practical and theoretical implications of our results.

The main goal of this paper is to use theorem proving techniques for the verification of biochemical systems. For that,
we followed two design principles: (1) the foundations must be settled on a logical framework with good proof theoretical
properties. Moreover, the (meta) theory of the framework should help us drawing new conclusions of the studied systems;
(2) the language of properties must be expressive enough to declaratively specify properties constrained by temporal and
spatial modalities. Additionally, proofs in the logical framework must accurately characterize (operational) steps in the sys-
tem. Let us elaborate on how we achieved (1) and (2) and compare our developments with other proposals in the literature.

5.1. Cut elimination and focusing

Linear logic [6] is a very expressive and elegant logical framework. The distinction between multiplicative and additive
connectives offers a very precise control on the resources (formulas) during a proof. Such control is even more expressive
in the case of SELL [7] where one can split the logical context into different parts, each representing a given modality
(e.g., spatial locations or time-units). Our encodings rely extensively on such strict use of resources, and specially, on the
promotion rule (!sR) that limits the use of resources to the ones related to the goal we are proving.

Linear logic and SELL have good proof theoretical properties: the cut rule below is admissible [6] (cut elimination) and
it admits a sound and complete focused [13] proof system.

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 39
The cut rule in linear logic is as follows:

� −→ G �, G −→ F
�,� −→ F

cut

Intuitively, we prove the intermediate lemma G (using �) and then, using G , we prove the desired result F . The cut-
elimination procedure shows that any proof with cut can be transformed into a (possibly larger) proof without cut. This
result is fundamental in proof theory (see e.g., [20]). From it, we can show that the system is consistent (since we cannot
derive falsity from the empty set of premises). Moreover, the system has the subformula property (only subformulas of the
root sequent can appear in a proof).

The cut elimination procedure entails also an important result from the theoretical and practical points of view: it allows
us to use intermediate lemmas to finish a proof. As a direct consequence, we have compositionality of properties: if the
subsystem represented by � exhibits some behavior G and, assuming G we know that � exhibits F , then the whole system
exhibits F . We can thus build libraries of (formally proved) theorems about biochemical systems, as it already happens
in Mathematics (see e.g., the list of math theorems formalized in different theorems provers at http :/ /www.cs .ru .nl /~freek /
100/).

From the computational point of view, the cut rule is difficult to handle in an automatic procedure: the computer should
guess the intermediate lemma G to continue the proof. The automatization of part of the verification technique comes from
the focused system. As we already showed, focusing allows us to reduce the non-determinism during proof search (i.e.,
search for a cut-free proof). Therefore, it is possible to have semi-automatic procedures where the expert can compose
previously proved lemmas and the computer handles the automatic proof search procedure. Such integration of automatic
techniques and user-guided proofs are already available for some frameworks in the context of biological systems [24].

5.2. Theory of SELL

The meta theory of SELL brings important benefits for the verification of biochemical systems. In the following, we
highlight some of these features.

As hinted above, the focused system allows us to control the shape of the proofs and reduce the non-determinism
during the proof search procedure. This result was fundamental to show tight adequacy results relating proofs and steps in
the specified system. Controlling the shape of the derivations opens also the possibility of using other reasoning techniques
at the meta level. Take for instance the example in Section 3.2.1 where we used induction to verify a reachability property.
In this case, we could use induction only because focusing guaranteed the exact shape of the formulas (and the context) in
a step of the derivation.

Modeling spatial property propagation in Biological Systems. The subexponential structure may also play an important role
for verification at the meta level. Consider for instance that we have a proof of the sequent � −→!a F showing that the
system represented by � exhibits certain behavior on the space domain a. We know that in SELL provability is preserved
downwards, i.e., from a proof of � −→!a F we can also conclude � −→ !b F for any b � a. This corresponds, intuitively, to
show that F holds in every subordinated (w.r.t. �) location in the system. This precise control on the hierarchy (defined
by �) can be used, for instance, to specify systems where stimuli/actions are propagated into the internal spatial structure.
Take for instance the process of oncosis/necrosis [25], a pre-lethal pathway leading to cell death accompanied by cellular
swelling, organelle swelling, blebbing, and increased membrane permeability. This process is caused by physical disruption
on cellular structure and function through injury, bacterial toxins, or nutritional deprivation.

The use of subexponentials allows us to divide the logical context in order to neatly distinguish different subsystems.
We can thus derive local information from each subsystem. In order to draw more general conclusions of the whole system,
we can combine local properties using the rule cut. From the point of view of automatic procedures, the promotion rule
has also an important consequence in practice: non-related subexponentials must be dropped (weakened) from the context.
This allows us to “simplify” the context of a proof by (safely) discarding some part of it that cannot “interact” with the
formula we are proving.

Another interesting meta-theoretic result that is entailed from our approach is that, whenever we prove an existential
property from a set of (encoded) rules, the property is satisfied also for larger systems (due to weakening and the use of
subexponentials). This indeed is quite interesting since it gives some compositionality for verification which is not possible,
in general, in Model Checking.

Some other (practical and theoretical tools) in proof theory may also be useful for our verification task. For instance,
in theorem provers, it is possible to greatly simplify proofs of properties with an existential quantifier on the right (or
universal quantifiers on the left) by using unification (see, e.g., [26]). Roughly, the term to be instantiated does not need to
be determined immediately but delayed until the application of the initial rule. This meta-theoretic result may simplify the
proof of periodicity properties (as the one before Section 4.1) in our framework.

5.3. SELL and other logics

There exist other logics such as CTL (Computation tree logic), temporal logic [27], spatial logics [28], among several
others, that we may have used as foundations for our framework. We preferred SELL mainly due to its proof theoretic

http://www.cs.ru.nl/~freek/100/
http://www.cs.ru.nl/~freek/100/

40 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
elegance, in particular, its proof system with good properties. The above mentioned logics, as far as we know, do not
have cut-free nor focused proof systems. Then, devising verification procedures for those logics implies building specific
structures/procedures to use model checking (see e.g., [29]). Moreover, compositionality is not guaranteed as in the case of
SELL.

On the other side, the above mentioned logics aim only to specify properties of the system but not the system itself.
In that sense, those logics are not a logical framework as in the case of SELL: inside SELL, we can specify, verify and also
compare the behavior of different systems inside the same logical framework. We believe that this is an interesting feature
of our approach since properties (goals in the logic) can be expressed using the same language, and reachability corresponds
directly to logical entailment. The language of properties is quite rich and it includes spatial and temporal modalities (the
main feature of our framework). For instance, we can express spatial and temporal patterns like “once reaction r happens,
reaction r′ can be fired in the space domain a”. Some other properties, e.g., oscillations, can be naturally expressed as shown
in Section 3.2.3.

The representation of the system inside SELL, as shown by Theorems 1 and Theorem 2 (adequacy) is not ad-hoc. We
showed that the maximal level of adequacy can be achieved and then, a derivation in the logic corresponds exactly to a
possible trajectory/configuration of the system. By looking at such logical representation of the system, we have been able
to characterize, in a modular way, different concurrent semantics for P systems. We note that, in other frameworks, usually
different structures/procedures are needed to deal with different semantics [30].

5.4. Model checking, theorem proving and concurrency theory

In the literature, there are several tools and techniques for the verification of biochemical systems (see also the related
work section below). In particular, there exists an extensive work on using model checkers for the verification of P systems.
In the following, we highlight some of the differences between Model Checking [31] (MC) techniques and our Theorem
Proving approach (TP).

We first note that TP and MC are complementary (and rather different) techniques. MC is an automatic technique that
usually requires a finite state model of the system. TP is a semi-automatic technique where some proofs need to be “assist-
ed” by the user.

P systems, in general, may generate an infinite number of states. In fact, reachability is undecidable [30] since simple
fragments of P systems are Turing complete. Then, only an abstraction of the systems can be verified by MC techniques. TP
can deal with infinite state systems. This, of course, comes with a price: the technique cannot be fully mechanizable and an
expert is needed to find the right invariants, e.g., in proofs by induction or using cut.

MC is a useful companion for a theorem prover. A good strategy for understanding the behavior of a system is to use a
model checker to verify a (finite/abstract) representation of the system. Once the property is verified on that abstraction of
the system, we may attempt to formally prove the property in the whole system. Then, TP offers the possibility to combine
already proved results to conclude more facts.

MC explicitly requires a (symbolic) representation of the transition system. The need for symbolic/abstract representa-
tions of the system comes from the inherent state-explosion problem of this technique. In TP, we encode the system and the
desired property as a SELL formula. Hence, proving a property requires the application of logical rules and it is not required
to explicitly build the transition system.

It is worth noticing that the proof theory of SELL was also useful to understand different concurrent behaviors in P
Systems. As shown in Section 4.1, our encodings can modularly capture different degrees of parallelism in P systems in the
same logical framework. In MC techniques (see, e.g., [30]), the structures/procedures must be adjusted in order to verify P
systems with different parallel semantics.

We believe that the connections between logic (proof theory), concurrency theory and biochemical system may have
much to offer. To be more precise, we have shown in [9] that Concurrent Constraint (CCP) languages have a strong connec-
tion with SELL and then, such languages can be seen as a runnable specification of (fragments of) SELL. In [32,33] we have
shown that CCP can indeed be used as a declarative language to implement simulation tools for biochemical systems. Such
tools can be improved by the recent findings in [34], where optimizations for CCP were derived from the proof theory of
linear logic. Similarly, we hope that the results in this paper and the body of knowledge in proof theory will allow us to
build more automatic (and efficient) theorem provers to verify biochemical systems.

6. Concluding remarks

We presented a formal method to specify and verify computational biological systems grounded on proof theory. We have
dealt with the problem of representing both spatial and time-dependent information. Our proposal relies on linear logic [6]
with subexponentials (SELL�) [7–9]. We have shown examples of properties of biochemical systems that can be proven in
our framework. Moreover, we have proved that our logical characterization has a strong level of adequacy: derivations in
the logical system follow exactly the rules (reactions) of the modeled system. We have then shown that our framework is
general enough to give a logical characterization to P Systems. In other terms, the embeddings presented show that SELL� is
expressive enough to give a logical interpretation to such systems, thus opening the possibility to use all the meta theory of
linear logic to reason about the behavior of biochemical systems that exhibit temporal and spatial modalities. The next step

C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42 41
will be implementing our framework in a functional logic language (e.g., lambda Prolog) and to use an assisted theorem
prover (e.g., Coq) to have a semi-automatic process of verification (see e.g., [24]). Providing skeletons/templates to ease the
specification of properties may be also useful.

Related work. Many works in the literature (see e.g., [14–17,8]) have shown that linear logic is general enough to give a
proof-theoretic account of many concurrent systems and formalisms. In all these works, computation amounts to proofs,
thus bringing new tools and frameworks to study those systems. In the context of biochemical systems, a work closely
related to ours is [24] where the authors show that temporal properties of biochemical systems can be expressed in HyLL
(hybrid linear logic). In HyLL, a partial order structure on words is defined to model locations where the formulas hold. This
is much like the subexponential structure in SELL� . In this work, we show that time and spatial modalities can be examined
in the same framework. Moreover, the focusing discipline allowed us to show stronger adequacy results.

In [32], we proposed a tailored Concurrent Constraint Programming-based [35] formalism for dealing with spatial modal-
ities. However, in [32] we could not deal with temporal information, and we did not study thoroughly how to specify and
prove properties of our systems.

The notion of probabilities and preferences have been introduced in HyLL and SELL in [24] and [36] respectively. This
may open the possibility to enhance our encodings to consider set of rules that can be chosen according to priorities or
probabilities. In fact, we can encode P systems with priorities (as defined in [10]) straightforwardly. In this semantics, if r1
has higher priority than r2, then r2 can be applied only if there are not more resources to apply r1. This would correspond
to guard the encoding of r2 with a token added by the encoding of r1 in its absence rule.

There are also other formalisms for specifying time modalities. For instance, in Pathway Logic (PL) [4], each rule
(biochemical reaction) is associated with a scalar value called affinity. Such value can be bounded by a time-dependent
interpretation either by using exponential random or deterministic amortized variables. In [37] a timed-π -calculus is used
to deal with time-stamps and clocks. These are handled as other names and transmitted through channels.

For dealing with spatial information, formalisms such as Bio-Pepa [2], BioNetGen [38], BioAmbients [39], and Brane
Calculi [40] embed a tree representation of the hierarchical structure of cellular compartments. Alternatively, in Biocham
[41], PL [4], and Beta-Binders [42], cellular compartments can be abstracted as symbolic locations by assigning labels to
molecular compounds. In the π@-calculus [43], restricted names are exploited to model compartments.

Other frameworks allow reasoning about biological properties by using different types of logics and techniques (usually
the formalisms for modeling and that for proving properties are different). Properties of Biocham models [1], for instance,
can be formalized within the boolean, differential and stochastic semantics by using (probabilistic) temporal logics. Bio-
Pepa’s models [2] can be translated into PRISM [44], a probabilistic model checker. Processes in PL [4] can be analyzed
by using the Maude system. Bounded Linear Temporal Logic [45] and statistical model checking are used in BioNetGen
to express and to verify system properties. Temporal properties for BioAmbients processes can be analyzed by using state
formulas [46] or modal logics to express spatial and temporal modalities [47]. Similarly, modal logic can be used to ex-
press spatial and temporal properties over membranes and systems, which is known as Brane Logic [48]. In the case of
Beta-Binders models, causality properties [42] as well as flow control analyses [49] can be performed.

Acknowledgements

We thank the anonymous reviewers for their detailed comments and suggestions which helped us to improve our paper.
We also thank Joëlle Despeyroux for her helpful suggestions, specially for her contributions on Section 5. The work of Olarte
was funded by CNPq (Brazil).

References

[1] F. Fages, S. Soliman, Formal cell biology in Biocham, in: M. Bernardo, P. Degano, G. Zavattaro (Eds.), SFM 2008, in: LNCS, vol. 5016, Springer, 2008,
pp. 54–80.

[2] F. Ciocchetta, M.L. Guerriero, Modelling biological compartments in Bio-PEPA, Electron. Notes Theor. Comput. Sci. 227 (2009) 77–95.
[3] L. Dematté, C. Priami, A. Romanel, The BlenX language: a tutorial, in: M. Bernardo, P. Degano, G. Zavattaro (Eds.), SFM 2008, in: LNCS, vol. 5016,

Springer, 2008, pp. 313–365.
[4] A. Abate, Y. Bai, N. Sznajder, C.L. Talcott, A. Tiwari, Quantitative and probabilistic modeling in pathway logic, in: BIBE 2007, IEEE CS, 2007, pp. 922–929.
[5] J. Fisher, T.A. Henzinger, Executable biology, in: L.F. Perrone, B. Lawson, J. Liu, F.P. Wieland (Eds.), WSC, 2006, pp. 1675–1682.
[6] J. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) 1–102.
[7] V. Danos, J. Joinet, H. Schellinx, The structure of exponentials: uncovering the dynamics of linear logic proofs, in: G. Gottlob, A. Leitsch, D. Mundici

(Eds.), KGC’93, in: LNCS, vol. 713, Springer, 1993, pp. 159–171.
[8] V. Nigam, C. Olarte, E. Pimentel, A general proof system for modalities in concurrent constraint programming, in: P.R. D’Argenio, H.C. Melgratti (Eds.),

CONCUR 2013, in: LNCS, vol. 8052, Springer, 2013, pp. 410–424.
[9] C. Olarte, E. Pimentel, V. Nigam, Subexponential concurrent constraint programming, Theoret. Comput. Sci. 606 (2015) 98–120.

[10] G. Păun, G. Rozenberg, A guide to membrane computing, Theoret. Comput. Sci. 287 (1) (2002) 73–100.
[11] F. Bernardini, V. Manca, Dynamical aspects of P systems, Biosystems 70 (2) (2003) 85–93.
[12] G. Ciobanu, L. Pan, G. Păun, M.J. Pérez-Jiménez, P systems with minimal parallelism, Theoret. Comput. Sci. 378 (1) (2007) 117–130.
[13] J.-M. Andreoli, Logic programming with focusing proofs in linear logic, J. Logic Comput. 2 (3) (1992) 297–347.
[14] F. Fages, P. Ruet, S. Soliman, Linear concurrent constraint programming: operational and phase semantics, Inform. and Comput. 165 (1) (2001) 14–41.
[15] K. Watkins, I. Cervesato, F. Pfenning, D. Walker, A concurrent logical framework: the propositional fragment, in: S. Berardi, M. Coppo, F. Damiani (Eds.),

TYPES 2003, in: LNCS, vol. 3085, Springer, 2003, pp. 355–377.

http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4661676573533038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4661676573533038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib43696F636368657474613039s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib507269616D693038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib507269616D693038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4162617465425354543037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F7773632F466973686572483036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib6769726172643837746373s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib64616E6F7339336B6763s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib64616E6F7339336B6763s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F636F6E6375722F4E6967616D4F503133s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F636F6E6375722F4E6967616D4F503133s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4F6C6172746532303135s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F7463732F5061756E523032s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4265726E617264696E693033s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F7463732F43696F62616E755050503037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib616E6472656F6C6939326A6C63s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F69616E64632F466167657352533031s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F74797065732F5761746B696E734350573033s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F74797065732F5761746B696E734350573033s1

42 C. Olarte et al. / Theoretical Computer Science 641 (2016) 25–42
[16] A.F. Tiu, D. Miller, A proof search specification of the pi-calculus, Electron. Notes Theor. Comput. Sci. 138 (1) (2005) 79–101.
[17] I. Cervesato, A. Scedrov, Relating state-based and process-based concurrency through linear logic (full-version), Inform. and Comput. 207 (10) (2009)

1044–1077.
[18] D. Chiarugi, M. Falaschi, D. Hermith, C. Olarte, Verification of spatial and temporal modalities in biochemical systems, Electron. Notes Theor. Comput.

Sci. 316 (2015) 29–44.
[19] M. Bhattacharjee, R. Raju, A. Radhakrishnan, et al., A bioinformatics resource for TWEAK-Fn14 signaling pathway, J. Signal Transduct. (2012).
[20] S. Negri, J. von Plato, Structural Proof Theory, Cambridge University Press, 2001.
[21] D. Miller, A. Saurin, From proofs to focused proofs: a modular proof of focalization in linear logic, in: J. Duparc, T.A. Henzinger (Eds.), CSL 2007, in:

LNCS, vol. 4646, Springer, 2007, pp. 405–419.
[22] F. Bernardini, M. Gheorghe, V. Manca, On P systems and almost periodicity, Fund. Inform. 64 (1–4) (2005) 29–42.
[23] R. Freund, Asynchronous P systems and P systems working in the sequential mode, in: G. Mauri, G. Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa

(Eds.), WMC 2004, in: LNCS, vol. 3365, Springer, 2004, pp. 36–62.
[24] E.D. Maria, J. Despeyroux, A.P. Felty, A logical framework for systems biology, in: Formal Methods in Macro-Biology – First International Conference,

FMMB 2014, 2014, pp. 136–155.
[25] S.L. Fink, B.T. Cookson, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect. Immun. 84 (4) (2005)

1907–1916.
[26] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform proofs as a foundation for logic programming, Ann. Pure Appl. Logic 51 (1–2) (1991) 125–157.
[27] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems – Specification, Springer, 1992.
[28] L. Caires, L. Cardelli, A spatial logic for concurrency – II, Theoret. Comput. Sci. 322 (3) (2004) 517–565.
[29] R. Mardare, C. Priami, P. Quaglia, O. Vagin, Model checking biological systems described using ambient calculus, in: V. Danos, V. Schächter (Eds.), CMSB

2004, in: LNCS, vol. 3082, Springer, 2005, pp. 85–103.
[30] Z. Dang, O.H. Ibarra, C. Li, G. Xie, On the decidability of model-checking for P systems, J. Autom. Lang. Comb. 11 (3) (2006) 279–298.
[31] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, 2001.
[32] D. Chiarugi, M. Falaschi, D. Hermith, C. Olarte, A framework for modelling spatially dependent interactions of biological systems in CCP, in: I. Rojas,

F.M.O. Guzman (Eds.), IWBBIO 2014, Copicentro Editorial, 2014, pp. 912–923.
[33] D. Chiarugi, M. Falaschi, C. Olarte, C. Palamidessi, A declarative view of signaling pathways, in: C. Bodei, G.L. Ferrari, C. Priami (Eds.), Programming

Languages with Applications to Biology and Security, in: Lecture Notes in Computer Science, vol. 9465, Springer, 2015, pp. 183–201.
[34] C. Olarte, E. Pimentel, Proving concurrent constraint programming correct, revisited, Electron. Notes Theor. Comput. Sci. 312 (2015) 179–195.
[35] V.A. Saraswat, M.C. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming, in: D.S. Wise (Ed.), POPL 1991, ACM Press,

1991, pp. 333–352.
[36] E. Pimentel, C. Olarte, V. Nigam, A proof theoretic study of soft concurrent constraint programming, Theory Pract. Log. Program. 14 (4–5) (2014)

649–663.
[37] N. Saeedloei, G. Gupta, Timed π -calculus, in: M. Abadi, A. Lluch-Lafuente (Eds.), TGC 2013, in: LNCS, vol. 8358, Springer, 2013, pp. 119–135.
[38] L.A. Harris, J.S. Hogg, J.R. Faeder, Compartmental rule-based modeling of biochemical systems, in: A. Dunkin, R.G. Ingalls, E. Yücesan, M.D. Rossetti,

R. Hill, B. Johansson (Eds.), WSC, 2009, pp. 908–919.
[39] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E.Y. Shapiro, Bioambients: an abstraction for biological compartments, Theoret. Comput. Sci. 325 (1)

(2004) 141–167.
[40] L. Cardelli, Brane calculi, in: V. Danos, V. Schächter (Eds.), CMSB 2004, in: LNCS, vol. 3082, Springer, 2005, pp. 257–278.
[41] N. Chabrier-Rivier, F. Fages, S. Soliman, The biochemical abstract machine BIOCHAM, in: V. Danos, V. Schächter (Eds.), CMSB 2004, in: LNCS, vol. 3082,

Springer, 2005, pp. 172–191.
[42] M.L. Guerriero, C. Priami, A. Romanel, Modeling static biological compartments with beta-binders, in: H. Anai, K. Horimoto, T. Kutsia (Eds.), AB 2007,

in: LNCS, vol. 4545, Springer, 2007, pp. 247–261.
[43] C. Versari, R. Gorrieri, pi @: a pi-based process calculus for the implementation of compartmentalised bio-inspired calculi, in: M. Bernardo, P. Degano,

G. Zavattaro (Eds.), SFM 2008, in: LNCS, vol. 5016, Springer, 2008, pp. 449–506.
[44] A. Hinton, M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: a tool for automatic verification of probabilistic systems, in: H. Hermanns, J. Palsberg (Eds.),

TACAS 2006, in: LNCS, vol. 3920, Springer, 2006, pp. 441–444.
[45] H. Gong, P. Zuliani, A. Komuravelli, J.R. Faeder, E.M. Clarke, Computational modeling and verification of signaling pathways in cancer, in: K. Horimoto,

M. Nakatsui, N. Popov (Eds.), ANB 2010, in: LNCS, vol. 6479, Springer, 2010, pp. 117–135.
[46] R. Gori, F. Levi, An analysis for proving temporal properties of biological systems, in: N. Kobayashi (Ed.), APLAS 2006, in: LNCS, vol. 4279, Springer,

2006, pp. 234–252.
[47] L. Caires, L. Cardelli, A spatial logic for concurrency (part I), Inform. and Comput. 186 (2) (2003) 194–235.
[48] M. Miculan, G. Bacci, Modal logics for brane calculus, in: C. Priami (Ed.), CMSB 2006, in: LNCS, vol. 4210, Springer, 2006, pp. 1–16.
[49] C. Bodei, A control flow analysis for beta-binders with and without static compartments, Theoret. Comput. Sci. 410 (33–34) (2009) 3110–3127.

http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F656E7463732F5469754D3035s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F69616E64632F43657276657361746F533039s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F69616E64632F43657276657361746F533039s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib736173625F6F6C61727465s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib736173625F6F6C61727465s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib426861747461636861726A65652D6574616Cs1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A626F6F6B732F6461676C69622F30303035303732s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4D696C6C6572533037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4D696C6C6572533037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4265726E617264696E693034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F6D656D6272616E652F467265756E643034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F6D656D6272616E652F467265756E643034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F666D6D622F4D6172696144463134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F666D6D622F4D6172696144463134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib41706F70746F736973s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib41706F70746F736973s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F6170616C2F4D696C6C65724E50533931s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A626F6F6B732F6461676C69622F30303737303333s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F7463732F436169726573433034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F636D73622F4D6172646172655051563034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F636D73622F4D6172646172655051563034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F6A616C632F44616E67494C583036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A626F6F6B732F6461676C69622F30303037343033s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4346484F3134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4346484F3134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F62697274686461792F4368696172756769464F503135s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F62697274686461792F4368696172756769464F503135s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F656E7463732F4F6C61727465503135s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F706F706C2F536172617377617452503931s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A636F6E662F706F706C2F536172617377617452503931s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F74706C702F50696D656E74656C4F4E3134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F74706C702F50696D656E74656C4F4E3134s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib53616565646C6F6569473133s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4861727269733039s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4861727269733039s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib526567657632303034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib526567657632303034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib43617264656C6C693035s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib43686162726965722D52697669657246533034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib43686162726965722D52697669657246533034s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib47756572726965726F3037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib47756572726965726F3037s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib566572736172693038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib566572736172693038s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib48696E746F6E3036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib48696E746F6E3036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib476F6E675A4B46433130s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib476F6E675A4B46433130s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib476F726932303036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib476F726932303036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib44424C503A6A6F75726E616C732F69616E64632F436169726573433033s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib4D6963756C616E3036s1
http://refhub.elsevier.com/S0304-3975(16)30018-4/bib426F64656932303039s1

	A proof theoretic view of spatial and temporal dependencies in biochemical systems
	1 Introduction
	2 Linear logic with subexponentials
	3 Spatial and temporal dependencies as SELL formulas
	3.1 Behavior and correspondence
	3.2 Properties of interest
	3.2.1 Reachability properties
	3.2.2 Stable states
	3.2.3 Oscillations

	4 Logical view of P systems
	4.1 Maximal and minimal parallelism semantics

	5 Logical frameworks and the veriﬁcation problem
	5.1 Cut elimination and focusing
	5.2 Theory of SELL
	5.3 SELL and other logics
	5.4 Model checking, theorem proving and concurrency theory

	6 Concluding remarks
	Acknowledgements
	References

