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The behavior of biochemical systems such as metabolic and signaling pathways may 
depend on either the location of the reactants or on the time needed for a reaction to 
occur. In this paper we propose a formalism for specifying and verifying properties of 
biochemical systems that combines, coherently, temporal and spatial modalities. To this 
aim, we consider a fragment of intuitionistic linear logic with subexponentials (SELL). The 
subexponential signature allows us to capture the spatial relations among the different 
components of the system and the timed constraints. We illustrate our approach by 
specifying some well-known biological systems and verifying properties of them. Moreover, 
we show that our framework is general enough to give a logic-based semantics to P 
systems. We show that the proposed logical characterizations have a strong level of 
adequacy. Hence, derivations in SELL follow exactly the behavior of the modeled system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, the impressive enhancement of experimental techniques in biology has made available a huge amount 
of information concerning living organisms. In this way, the knowledge about the components of biological systems is 
becoming increasingly detailed and accurate. Nevertheless, determining how these components interact in living entities is 
a task that is still beyond the reach of the current laboratory methodologies. Understanding these interactions in the context 
of biological networks such as, e.g., cellular signaling pathways, is a relevant problem in biology.

Various approaches based on computer science have proven to be useful for addressing these issues. Formal models, for 
instance, allow us to make precise statements about the properties of biological systems, classifying them and, possibly, 
deducing other properties which are hard to discover by intuition or experimentally. It is worth noticing that, in general, 
the features of biochemical systems are often expressed informally, thus making it difficult or impossible to reason about 
them.

Several frameworks have been used for modeling various aspects of biological systems (see e.g., [1–5]). The characteristics 
of each model are mainly shaped by the features of the formalism it relies upon. Indeed, for a given model, some properties 
can be straightforwardly expressed while others must be abstracted away, due to the inherent limitations of the used 
language.
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In this paper we focus on biological networks whose interactions depend on both time and spatial locations. We study 
how to give a declarative meaning to those interactions by providing encodings of them into intuitionistic linear logic 
(ILL) [6] with subexponentials [7–9] (SELL). ILL is a substructural logic where formulas are seen as resources and then, 
its proof system(s) controls the number of times a formula can be used during a proof. In SELL, such control is much 
richer and it allows us to define different modalities (e.g., locations) where formulas can be stored. Hence, the role of the 
subexponentials, as clarified later, is to specify the two biologically relevant main dimensions in our study, namely time and 
space. We show that our method is general enough to encode P systems [10,11], a general model of computation inspired 
by cells structures. We show that different semantics for P systems, such as minimal [12] and maximal parallelism [10]
semantics, can be logically characterized in the same framework.

The encodings we propose are shown to have a strong level of adequacy. More precisely, biological steps correspond 
one-to-one to (focused [13]) derivations in the SELL system. Hence, a proof of a given property can be directly traced 
to steps in the biological system. Our proof-theoretic characterization of spatial and timed dependencies in biochemical 
systems thus has at least two main benefits:

– From the biological point of view, our encodings open the possibility to use all the meta theory and tools developed 
for linear logic to specify and verify biochemical systems featuring spatial and temporal modalities. One salient char-
acteristic of our approach is that both, the system and its properties, are specified in the same logical framework. This 
is particularly relevant since in many works related to ours (see Sections 5 and 6 for details), usually one formalism is 
used for specifying the model while at least one different formalism is used for expressing the properties of interest 
(e.g., a temporal logic) and for proving them (e.g., by using a model checker).

– From the computational point of view, we give a further step in showing that linear logic (with subexponentials) is a 
general framework to specify and verify concurrent systems. Other studies relating concurrent formalisms and linear 
logic can be found, e.g., in [14–17,8].

A preliminary short version of this paper appeared in [18]. Here, we significantly review, enhance and refine our previous 
work. In particular, we present the full set of proofs, we clarify crucial technical details and we introduce many more 
explanations and examples, including an application of our framework in the context of the TWEAK-Fn14 cell signaling 
pathway [19].

The rest of the paper is structured as follows. In Section 2 we recall some concepts about subexponentials in linear logic. 
Section 3 defines an encoding of biochemical reactions that considers spatial and temporal modalities. We also show how 
to exploit the underlying logic for expressing some properties of the system. Section 4 provides a logical characterization of 
P systems as SELL formulas. Section 5 highlights how the proof theory of SELL may be used to draw conclusions about the 
studied biochemical systems. Section 6 discusses related work and concludes the paper.

2. Linear logic with subexponentials

In this section we recall the proof theory of intuitionistic linear logic (ILL) [6] with subexponentials [7,8]. Although this 
review should suffice to understand the developments in the forthcoming sections, we assume that the reader is familiar 
with logic and proof theory (see e.g., [20]).

Linear logic [6] is a substructural logic where formulas can be seen as resources. Hence, there is an explicit control over 
the number of times a formula can be used in a proof. More precisely, formulas can be split into two sets: classical (those 
that can be used as many times as needed) or linear (those that are consumed after being used). Classical formulas are 
marked with the modal operators !, ?, called exponentials. For instance, the formula !F allows F to be used arbitrarily many 
times.

Intuitionistic linear logic with subexponentials [7] (SELL) shares with linear logic all its connectives except the expo-
nentials. The subexponentials (!a , ?a) add an index to the exponentials, thus allowing for splitting the formulas into many 
sets, each of which can then be specified to be classical (i.e., unbounded) or linear. In this case, the formula !a F can be 
interpreted as F holding in a given modality a, e.g., in the space location a.

As we shall see, the subexponentials provide a finer control on proofs and they allow for the specification of different 
modalities such as time-units or spatial locations. In this paper we shall use the system SELL� proposed in [8,9] that enjoys 
good proof theoretic properties: it admits cut-elimination and a sound and complete focused proof system [8,9]. Focusing 
[13] is a discipline on proofs to reduce the non-determinism during proof search. Hence, focused proofs can be interpreted 
as the normal form proofs for proof search. Although the proof rules of the focused system may look more involved at 
first glance, we shall rely on them to prove the adequacy results in Section 3. We thus introduce here the focused system 
and, for the sake of readability, we simplify a bit the notation. We also confine ourselves to the proof rules needed in the 
forthcoming sections, for instance, we do not introduce the rules for ?a , a connective not used in our encodings. The reader 
may refer to [8,9] for deeper technical details.

Connectives are separated into negative �, &, �, ∀, �, � and positive ⊗, ⊕, ∃, �, !s . The polarity of non-atomic formulas 
is inherited from its outermost connective (e.g., F −◦ G is a negative formula while F ⊗ G is a positive one). Although the 
bias assigned to atoms does not interfere with provability [21], it changes considerably the shape of proofs. Here we require 
atoms to have a positive behavior.
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The proof rules of SELL� introduced here consider three kind of sequents1:

(i) [K : �], � −→ R is an unfocused sequent.
(ii) [K : �]−F→ is a sequent focused on the right.

(iii) [K : �] F−→ G is a sequent focused on the left.

The meaning of the context [K : �] will be clear soon. We start with the proof rules for multiplicative (⊗) and ad-
ditive (&) conjunction, linear implication (−◦), additive disjunction (⊕), the first-order quantifiers (∀, ∃) and the additive 
version of truth (�).

Negative Phase

[K : �],�, F , G −→ R

[K : �],�, F ⊗ G −→ R
⊗L

[K : �],�, F −→ G
[K : �],� −→ F � G

�R

[K : �],� −→ G[xe/x]
[K : �],� −→ ∀x.G

∀R
[K : �],� −→ F [K : �],� −→ G

[K : �],� −→ F &G
&R

[K : �],� −→ � �R
[K : �],�, F −→ R [K : �],�, H −→ R

[K : �],�, F ⊕ H −→ R
⊕L

The proof rule ∃R is similar to ∀L and xe is assumed to be fresh.
First notice that the negative connectives have invertible right rules, while the positive connectives have invertible left

rules. As an example, consider the rule ∀R : the choice of the name used for the eigenvariable xe is not important for 
provability, as long as it is fresh. Hence, in a negative phase of the proof, no backtracking on the selection of inference rules 
is necessary. Moreover, without loosing provability, we can eagerly introduce all the negative non-atomic formulas on the 
right and all the positive non-atomic formulas on the left. Such part of the proof is represented by sequents of the shape (i)
above.

The change of phase’s polarity and the manipulation of the context [K : �] are governed by the following structural 
rules:

Structural Rules

[K : �], F −→ G

[K : �] F−→ G
R L [K : �] −→ F

[K : �]−F→ R R
[K : �]−G→
[K : �] −→ G

D R

[K , F : �] F−→ G
[K , F : �] −→ G

D L1
[K : �] F−→ G

[K : �, F ] −→ G
D L2

[K : �, Na],� −→ G
[K : �],�, Na −→ G

StL

Rules R L and R R mark the end of the positive phase. In R L (resp. R R ), F is a positive (resp. negative) formula and then, 
the positive phase must finish. A positive phase begins by choosing a formula on which to focus enabling sequents of the 
forms (ii) or (iii). Note that in such sequents, the multiset of formulas � must be empty. Rule D R is used to decide to 
focus on the formula G (on the right). Rule D L1 (resp. D L2) focuses on the formula F in the unbounded K (resp. linear �) 
context explained below. Finally, in rule StL , Na is a negative or atomic formula. Then, during the negative phase, this rule 
stores in the context � the formulas that cannot be introduced (on the left) during the negative phase (e.g., F −◦ G).

Now we introduce some of the proof rules that belong to the positive phase:

Positive Phase

[K : �]−Gi→
[K : �]−G1⊕G2→

⊕Ri

[K : �] Fi−→ G

[K : �] F1&F2−−−−→ G

&Li
[K : �] F [t/x]−−−→ G

[K : �] ∀x.F−−−→ G
∀L

The above rules are introduced in the positive phase since they require a decision to continue the proof and then, backtrack-
ing may be needed. Rule ⊕R , for instance, needs to chose a formula Gi (i ∈ {1, 2}) to continue the proof. Similarly, rule ∀L
decides on the term t . Note also that in the above rules, the focusing is not lost and the proof must continue decomposing 
the selected formula (for instance, in ⊕R , the focusing persists on Gi ). This procedure continues until one is focused either 
on a negative formula on the right or a positive formula on the left (see structural rules R L and R R ). This point marks the 
end of the positive phase.

1 The SELL� system in fact considers also a fourth kind of sequent of the shape [K : �], � −→ [F ] to represent the end of the negative phase. In our 
presentation, we shall omit this kind of sequent and also the notation of bracket formulas [F ].
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A SELL� system is specified by a subexponential signature � = 〈I, �, U 〉, where I is a set of labels, U ⊆ I specifies which 
subexponentials are unbounded and � is a pre-order among the elements of I . We shall use the letters a, b, l and s to 
denote elements in I . Intuitively, !a F means that F is marked with a given modality a. As shown in [8], the formula !a F
can be interpreted in several ways, for instance, it may represent the fact that F holds in the space location a or that F
holds in the time-unit a. Moreover, if a is unbounded (or classical), then F can be used as many times as needed.

Let us now introduce some other proof rules and clarify the meaning of the context [K : �] and the subexponential !a .

Negative Phase

[K +s F : �],� −→ R

[K : �],�, !s F −→ R
!sL [K : �],� −→ G[le/lx]

[K : �],� −→ �lx : a.G
�R

Positive Phase

[K1 : �1]−F→ [K2 : �2]−G→
[K1 ⊗ K2 : �1,�2]−F⊗G→ ⊗R �1

[K1 : �1]−F→ [K2 : �2] H−→ G

[K1 ⊗ K2 : �1,�2] F�H−−−−→ G
�L �1

[K : �]−A→ I R �2
[K ≤s: ·] −→ F
[K : ·]−!s F→ !sR

[K : �] P [l/lx]−−−−→ G

[K : �] �lx:a.P−−−−→ G
�L

In the context [K : �], � contains only atomic or negative formulas that must be introduced in the positive phase of 
the proof (see Rule StL ). K is used to map a subexponential index to a multiset of formulas, notation s �→ {F1, . . . , Fn}. 
The multiset K [s] = {F1, . . . , Fn} (the image of K in s) represents all the formulas marked with !s . That is, K [s] should 
be interpreted as the multiset of formulas !s F1, . . . , !s Fn . This explains the rule !sL which belongs to the negative phase and 
it simply stores F into the context K [s] (notation, K +s F ).

Since formulas in linear logic are resources, rules ⊗R and −◦L split the context. For instance, in a proof of F ⊗ G , some 
resources must be used to prove F and the remaining ones must be used to prove G . However, the unbounded resources, 
i.e., those formulas of the shape !a F where a ∈ U , can be used as many times as needed. Hence, side condition �1 says that 
the contexts K1 and K2 must agree on those formulas, i.e., K1[a] = K2[a] for any a ∈ U . Notation K1 ⊗ K1 represents 
the fact that the context on the conclusion of rules ⊗R and −◦L can be decomposed into K1 and K2. More precisely, 
K1 ⊗ K2[s] is the multiset union (resp. set union) of K1[s] and K2[s] if s /∈ U (resp. s ∈ U ).

The implication F −◦ H can be read as “consume F to produce H”. Then, rule −◦L consumes some resources to prove F
and then, focusing persists on H .

The initial rule I R says that a proof for an atom A (a positive formula) can finish if A is already in the context. Side 
condition �2 says that either 1) the linear context (formulas in � and those in K marked with subexponentials not in U ) 
is empty and A belongs to the unbounded context, i.e., A ∈ K [a] and a ∈ U ; or 2) the linear context is {A}. This guarantees 
that either A is an unbounded resource (and then, we can prove A) or the only linear formula in the context is A (i.e., there 
is only one copy of A).

Rule !sR says that, in order to introduce the formula !s F , the linear context � must be empty (notation [K : ·]). Moreover, 
for all a ∈ I , if s �� a then K ′[a] = ∅, i.e., all the formulas marked with an unrelated or smaller subexponential a, must be 
weakened (notation [K ≤s: ·]). This can be done, of course, if a is an unbounded subexponential. Roughly, if the formula !s F
needs to be proved, one can only keep the resources (formulas) marked with a higher subexponential. The other resources 
must be dropped (weakened) from the context.

Two other observations on rule !sR are in order: (1) provability is preserved downwards, i.e., if [K : �], � −→ !a F is 
provable then so is the sequent [K : �], � −→ !b F for all b � a; and (2), the focusing does not persist on F .

In [8,9], universal (�) and existential (�) quantification on subexponentials are introduced for the specification of modal-
ities in distributed systems. Similar to the first-order quantifiers, the rule �R belongs to the negative phase and it simply 
introduces a fresh subexponential variable. The generic variable lx : a, where a ∈ I , plays the role of the type of lx represent-
ing any subexponential constant lc in the ideal of a, i.e., lc � a. Rule �L belongs to the positive phase since a subexponential 
l � a must be chosen. Rules for the existential quantifier � are similar.

Let us introduce two simple examples showing how focusing and the subexponentials allow us to control the proofs in 
SELL� . This may help to understand the level of adequacy we achieve in Section 3.

Example 1 (Focusing). Consider the derivations in Fig. 1 where F , G, H are atoms. The proof on the left corresponds to a 
focused proof. First, in the negative phase, we introduce all the ⊗ on the left and we use the rule StL to store the atom F
and the negative formulas (F −◦ G and G −◦ H) into the context. Then we decide to focus on the formula F −◦ G (rule D L2). 
According to rule −◦L , the focusing persists on the atom F and then, the proof must finish with the initial rule I R . Since G
is an atom, focusing is lost (rule R L ) and such atom is added later into the context (rule StL ). In a new positive phase, we 
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Focused derivation

[· : F ]−F→ I R

[· : G]−G→ I R

[· : H]−H→ I R

[· : ·], H −→ H
StL , D R

[· : ·] H−→ H
R L

[· : G] G−◦H−−−→ H
−◦L

[· : G −◦ H], G −→ H
StL , D L2

[· : G −◦ H] G−→ H
RL

[· : F , G −◦ H] F−◦G−−−→ H
−◦L

[· : F , F −◦ G, G −◦ H] −→ H
D L2

[· : ·], F ⊗ (F −◦ G) ⊗ (G −◦ H) −→ H
⊗L , StL

Rules for the unfocused system

F −→ F
IU

�1 −→ F �2, G −→ H

�1,�2, F −◦ G −→ H
−◦LU

(Unfocused) derivation

H −→ H
IU

G −→ G
IU

F −→ F
IU

F , F −◦ G −→ G
−◦LU

F , F −◦ G, G −◦ H −→ H
−◦LU

Fig. 1. Examples of focused and unfocused derivations (see Example 1).

[σ ;a �→ F : ·]−F→ I R

[σ ;a �→ F : ·] −→ F
D R

[σ ;a �→ F : ·]−!a F→
!sR

�
[σ ;a �→ G;b �→ {G, H} : ·] −→ δ

[σ ;a �→ G;b �→ {F , H} : ·] −→ δ
∗

[σ ;b �→ {F , H} : ·], !a G −→ δ
!sL

[σ ;b �→ {F , H} : ·] !a G−−→ δ

RL

[σ ;a �→ F ;b �→ {F , H} : ·] !a F−◦!a G−−−−−→ δ

−◦L

[σ ;a �→ F ;b �→ {F , H} : ·]
�l:ω.

(
!l F−◦!l G

)
−−−−−−−−−−→ δ

�L

[σ ;a �→ F ;b �→ {F , H} : ·] −→ δ
D L1

[· : ·],system−→ δ
⊗L , !sL

Fig. 2. Derivation in Example 2. σ is the context ω �→ �l : ω.
(
!l F −◦ !l G

)
and δ is the formula !a G ⊗ !b G ⊗ !b H .

focus on G −◦ H (rule D L2) and rules −◦L , I R and R L are applied as before until they produce the sequent [· : ·], H −→ H . 
At this point, we store H into the context and decide to focus on H (on the right, D R ) and the derivation ends with I R .

Derivation on the right corresponds to an unfocused proof using the standard rules of linear logic (IU and LU in the 
figure). Note that we “use” the implication G −◦ H but the proof of G was delayed until G was later “produced” by F −◦ G . 
The behavior of this proof, in the context of biochemical reactions, does not correspond to what we expect: we are allowed 
to use a reaction whose reactants are not yet available but they will be later produced. We observe that this cannot happen 
in the focused system: it is not possible to focus on G −◦ H in the beginning of the derivation because G is not in the 
context.

Example 2 (Subexponentials). Consider an unbounded subexponential ω (i.e., ω ∈ U ) and two linear subexponentials a, b s.t. 
a, b � ω and a �� b. Let F , G, H be atoms and system def= !ω �l : ω. 

(
!l F −◦ !l G

)
⊗ !a F ⊗ !b F ⊗ !b H . The subexponentials a

and b can be interpreted as two different locations (or spatial domains) in a cell. Hence, !a F (resp. !b F , !b H) represents 
that in a (resp. b) we can find a copy of some given reactant F (resp. F ,H). The formula �l : ω. 

(
!l F −◦ !l G

)
represents a 

reaction that, in a given location l � ω, consumes F to produce G . Note that this formula is marked with !ω , thus allowing 
us to use the reaction as many times as needed in the space domains a and b. Hence, the system may evolve to a state 
where the location a contains one copy of G and the location b stores one copy of G and H as proved in Fig. 2.

The first step in the derivation corresponds to the negative phase introducing the connectives !s and ⊗ on the left. Then 
we decide to focus on the formula representing the reaction (D L1). Note that focusing persists and then, a subexponential 
l in �l : ω must be chosen (in this case, [a/l]) to later decompose the formula !a F −◦ !a G . It is also interesting to note that 
rule !sR forces the derivation to consider only the contexts ω and a to prove F since a �� b (see rule !sR ). This intuitively 
means that information on the location b cannot be used to finish the proof of F in location a.

The steps in ∗ correspond to the proof of G in the context b by consuming F , similarly as we did in the context a. 
Derivation � uses ⊗R , !s R and I R to prove G in the context a and G and H in the context b.

3. Spatial and temporal dependencies as SELL� formulas

In this section we show how spatial and temporal dependencies in biochemical systems can be declaratively character-
ized as formulas in SELL� . We prove that the proposed encoding exhibits the highest level of adequacy: each step in the 
evolution of the system corresponds, one-to-one, to a change of polarity in a focused derivation. We shall exemplify our 
framework by verifying some basic properties of the TWEAK-Fn14 cell signaling pathway [19].

We start by describing the kind of reactions we shall consider. We assume a set of reactions of the shape:
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r j : [c1.A1]a1 + · · · + [cn.An]an −→k [d1.B1]b1 + · · · + [dm.Bn]bm (1)

meaning that ci units of Ai located in the space domain ai are consumed in k time-units to produce d j units of B j in the 
space domain b j .

In order to combine spatial and temporal modalities in SELL� , we need first to define a subexponential signature as the 
one depicted in Fig. 3. The only unbounded subexponentials are tω and i+ . The former is used to mark the set of reactions 
that can be used as many times as needed. The subexponential i+ represents the time-units starting from i and it will be 
used to specify system’s properties as we explain later. For instance, a subexponential variable lx : 4+ can be instantiated 
with any time-unit (in the future) starting from 4. The linear subexponentials 0, 1, 2, · · · (resp. sa.i, sb.i, · · · ) represent 
time-units (resp. the space domain sx in the time-unit i). An alternative way of defining the spatial locations is to consider 
the use of families [8], roughly, functions from elements in the subexponential signature to subexponential indexes. Hence, 
given a family of the shape sx , sx(t) would be the subexponential representing the space x in time-unit t .

For each reactant A in the system, we assume to have a constant symbol A in the logic. We also assume to have an 
uninterpreted binary predicate ct(·, ·). Intuitively, the formula !sb .2 ct(A, c) means that the concentration of A in the space 
domain sb is c during the second time-unit. As usual, c is defined as the n-th application of the successor function suc to 
the constant 0. We shall use sucn(x) to denote the n-th application of suc to x.

We model the state of the system at time-unit t as the formula

state(t)
def=

⊗
s∈S

⊗
Ai∈A

!s.t [ct(Ai, ci)]

where A denotes the set of reactants and S the set of domain spaces. If there are no species of kind A j in the space sk , 
then c j = 0.

We model the set of reactions of the system as

eqs
def= !tω [

�lx : 0+. [eq1(lx)& · · · &eqk(lx)]
]

The unbounded subexponential !tω allows us to use the set of reactions as many times as needed. The universal quantifi-
cation �lx : 0+ says that, at any time-unit, the reactions are available (see Example 2). The connective & allows us to choose
(non-deterministically) one of the reactions and discard the others.

The model of a reaction (see Equation (1) above) is a formula that first checks if the needed reactants are available in 
the specific space domains. Then, the reactants are consumed and the products are added k time-units later:

eq(t)
def= ∀�x. (consume(t) −◦ produce(t + k))

consume(t)
def= ⊗

s∈S

⊗
Ai∈A

!s.t (ct(Ai, Ni))

where �x = x1, . . . , xn and

Ni =
{

xi, if [ci .Ai]s does not occur in the left-hand side of the reaction
succi (xi), if [ci .Ai]s occurs in the left-hand side of the reaction

The formula produce(t) is the same as consume(t) but, in this case,

Ni =
{

xi, if [di .Ai]s does not occur in the right-hand side of the reaction
sucdi (xi), if [di .Ai]s occurs in the right-hand side of the reaction

The quantifier ∀�x allows us to bind the current number of reactants in the system. The formula consume consumes the 
needed reactants and produce adds such reactants k time-units later. We note that, due to the first cases of Ni above, the 
concentrations of the reactants that do not occur in the reaction are simply copied (without changes) to the time-unit t +k.

Finally, the model of the system at a given time-unit t is:

system(t)
def= eqs⊗ state(t)

3.1. Behavior and correspondence

In this section we show that our model enjoys interesting properties. In particular, we shall show that one step in a 
focused derivation corresponds exactly to one step in the evolution of the system. Hence, proofs in SELL� can be directly 
mapped to traces of the system. Before stating the result, we introduce some needed notation.

Notation 1 (States). We use s1 : [A1 : c1
1, . . . , An : c1

n], · · · , sm : [A1 : cm
1 , . . . , An : cm

n ] to denote a state s where there are ci
j

species of the reactant j in the space domain i. We shall write s1
(r,k)−→ s2 when reaction r can be applied on state s1

producing the state s2 after k time-units. Given a state s and a time-unit t , we shall denote with [ [s] ]t the SELL� formula 
system(t).
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Fig. 3. Subexponential structure for spatial and temporal domains. b → a means a � b. The only unbounded subexponentials are i+ and tω .

Theorem 1 (Adequacy). Let s1 and s2 be states, r a reaction and t ≥ 0. Then, s1
(r,k)−→ s2 iff [ [s1] ]t −→ [ [s2] ]t+k. Moreover, such 

adequacy is at the level of derivations, that is, one focused logical phase corresponds exactly to the move from state s1 to state s2 .

Proof. We show that the introduction of any formula, following the focused discipline, corresponds exactly to the occur-
rence of one reaction in the biochemical system. More precisely, if we focus on the left of the sequent [ [s1] ]t −→ G , one flip 
of the polarity of the proof corresponds to the operational step s1

(r,k)−→ s2.
In [ [s1] ]t we have a conjunction (⊗) of formulas of the shape !s F . Then, in a negative phase, what we observe is the 

following:

[K +tω (eqs′) + ∑
si .t

{ct(A1, c1), . . . ,ct(An, cn)} : ·] −→ G

[K : ·], [[s1]]t −→ G
!sL,⊗L

i.e., the context tω stores the formula eqs′ def= �lx : 0+. [eq1(lx)& · · ·&eqk(lx)] and each si .t context stores the formulas of 
the shape ct(A1, c1), . . . , ct(An, cn).

We note that the negative phase ends here (the multiset � is empty). At this point, we have three choices: focus on the 
right, focus on the formula stored in one of the contexts si .t or focus on the formula stored in the context tω . Focus on the 
right ([ [s2] ]t+k) will fail since the atoms in the subexponential si .(t +k) are not already in the context. Since formulas stored 
in the context si .t are atoms, focus will be lost immediately, thus leading to a useless detour. Hence, the only choice is to 
focus on eqs′ and we get a derivation of the following shape:

	
...

�1− ⊗
s∈S

⊗
Ai∈A

!s.t′ [ct(Ai ,Ni)]
→

�
...

�2
producei(t

′+k)−−−−−−−−−−→ G

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] consumei(t
′)−◦ producei(t

′)−−−−−−−−−−−−−−−−−−→ G

−◦L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] ∀�x.consumei(t
′)−◦ producei(t

′)−−−−−−−−−−−−−−−−−−−→ G
∀L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] eq1(t′)&...&eqn(t′)−−−−−−−−−−−→ G
&L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] eqs′−−−→ G

�L

[tω �→ eqs′; {si .t �→ {ct(A1, c1), . . . ,ct(An, cn)}}i : ·] −→ G
D L1

Here �1 and �2 correspond to the splitting of the context due to the rule −◦L . Since ⊗R must be introduced in a positive 
phase, the focusing persists on consumei(t′) and the derivation 	 must be of the shape:

	i
...

ϒ i
1 −→ ct(Ai, Ni)

�i
1−!si .t

′
ct(Ai ,ni)

→ !sR
	′
...

�′
1−C ′→

�1− ⊗
s∈S

⊗
A ∈A

!s.t′ [ct(Ai ,Ni)]
→ ⊗R
i
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Since si .t′ is related neither to tω nor to any subexponential s j .t′ , the context ϒ i
1 can only be of the shape [si .t′ �→ {F } : ·]

and then, the derivation 	i corresponds to the application of the initial rule I R (see Example 2). A similar analysis can be 
done for 	′ that corresponds to the proof of the other conjuncts in the formula 

⊗
s∈S

⊗
Ai∈A

!s.t′ [ct(Ai, Ni)].

Since consumei(t′) was defined to “consume” all the formulas of the shape ct(Ai, ni) in all the spaces, it must be the 
case that �2 = [tω �→ eqs′ : ·].

Now, let’s analyze the formula produce(t′ + k). The main connective of this formula is ⊗ and then, focus is lost in the 
derivation � . In a negative phase, we have

[tω �→ eqs′; {si .(t′ + k) �→ {ct(A1, c′
1), · · · ,ct(An, c′

n)}}i : ·] −→ G

[tω �→ eqs′ : ·],produce(t′ + k) −→ G
!sL,⊗L

where the resulting context encodes the state s2.
It is worth noticing that the focusing discipline forces the rule �L to choose t′ = t , in other case, the formula 

!si .t
′
ct(Ai, ci) would not be provable in 	i . Moreover, the focusing discipline also forces the rule &L to choose the en-

coding of a reaction whose reactants are already in the context (see Example 1). Hence, what we observe in the derivation 
is exactly that some reaction is applied and the products are produced in the time-unit t + k, i.e., focusing on the left 
corresponds exactly to the system’s evolution s1

(r,k)−→ s2. �
3.2. Properties of interest

In this section we present some applications of our framework. For the sake of readability, we shall introduce simple 
reaction schemes to show how to verify a given property. Then, we will relate such reaction schemes to our case study, 
namely, system(0) −→ �t : 0+. !t stable.

The types of intercommunications occurring in a signaling pathway can be broadly classified into physical interactions, 
enzyme catalysis interactions, activation/inhibition interactions and transport interactions (translocations). These reactions, 
most of the time, take place in cellular domains such as the extracellular, the plasma membrane, the cytoplasm or the 
nucleus among others.

Let us start with a small biochemical system composed of two unimolecular reactions of the form:

r1 : [1.A]x −→1 [1.B]x

r2 : [1.B]x −→2 [1.B]y
(2)

Reaction r1 models the situation where one unit of A, located in the space domain x, is consumed in one time-unit to 
produce one unit of B in the same space domain. Reaction r2 takes two time-units to translocate one unit of B from space x
to space y.

Roughly speaking, signaling pathways are networks of biochemical reactions that allow cells to read environmental cues, 
translate them into intracellular commands, and react with an appropriate response. The small set of reactions in Equa-
tion (2) could be a good example to represent an interaction of enzyme catalysis (cat) in a cellular domain followed by a 
transport interaction or translocation (trans) between two arbitrary interaction domains. Such reactions can be related to 
(a fragment of) the TWEAK-Fn14 cell signaling pathway [19]. This pathway is expressed in several different tissue types and 
has implications with several diseases including autoimmune disorders, cancer and cardiovascular abnormalities. Generally, 
translocations and catalysis are common in this network. For instance, in the shaded box in Fig. 4, we highlight the reaction 
of phosphorylation of the transcription factor RELA (kappa light chain gene enhancer in B cells 3) that takes place in the 
interaction domain of the cytoplasm (CY) to produce [RELA-P]CY . Next, the phosphorylated form [RELA-P]CY is translocated
to the interaction domain of the nucleus (NU) [RELA-P]NU . Consequently, due to this transport interaction, the molecule 
[RELA-P]NU can be again catalyzed to its original form and placed in its original location to form [RELA]CY .

3.2.1. Reachability properties
We can verify reachability properties in our system by proving sequents of the shape system(0) −→ �t : 0+.[!a.t ct(A,n)

] ⊗ �. Such a sequent can be read as “given the initial state of the system, there exists a location (time-
unit) where there are n copies of A in the space domain a”. Since we are testing the presence of a given component (and 
not all of them) in a specific domain, the � connective allows us to erase the unused formulas (see rule �R ).

Due to Theorem 1, a focused proof of the above sequent can be directly traced to the moves the system has to perform to 
reach the state ct(A,n). As a matter of example, let us prove that the concentration of A in the space domain x eventually 
falls to 0 in the system described in Equation (2). Before that, let us introduce some useful notation:

state(t : k,m,n)
def= !t.x ct(A,k) ⊗ !t.x ct(B,m) ⊗ !t.y ct(B,n)

state(t : k>0,m,n)
def= !t.x ct(A,suc(k)) ⊗ !t.x ct(B,m) ⊗ !t.y ct(B,n)

A similar notation is used for, e.g., state(t : k>0, m, n>0). These formulas represent the concentration of A in the do-
main x and the concentration of B in the domains x and y. Moreover, we shall also use the shorthand
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Fig. 4. Excerpt of the TWEAK-Fn14 cell signaling pathway from [19]. The shaded box corresponds to the reaction schemes r1 : [RELA]CY cat−→ [RELA-P]CY , 
r2 : [RELA-P]CY trans−→ [RELA-P]NU and r3 : [RELA-P]NU cat/trans−→ [RELA]CY .

&
k,m,n

state(t : k,m,n)[Fk,m,n] def= (state(t : 0,0,0) −◦ F0,0,0)&

(state(t : k>0,0,0) −◦ Fsuc(k),0,0)& · · ·&
(state(t : k>0,m>0,n>0) −◦ Fsuc(k),suc(m),suc(n))

This formula will be used to specify that the property F holds regardless the values of the concentrations.
The following sequent formalizes the reachability property to be proved:

[tω �→ eqs : ·] −→ ∀k,m,n. &
k,m,n

state(t : k,m,n)[F ]

where F = �l : t+. 
(
!x.l ct(A,0)

)
⊗ �.

After decomposing (in a negative phase) the connectives ∀, & and −◦ on the right and then ⊗ and !s on the left we have 
several cases to be proved (see rule &R ). The case state(t : 0, 0, 0) is trivial since focusing on one of the reactions will fail. 
Hence, the only choice we have is to focus on the formula F on the right. Since ct(A, 0) is already in the context, the proof 
is easy.

In the other cases, we can apply one of the reactions and we observe a (focused) derivation of the shape (see proof of 
Theorem 1):

[tω �→ eqs′;state(t′ : k′
t,m′

t,n′
t) : ·] −→ F

[tω �→ eqs′;state(t : kt,mt,nt) : ·] −→ F

Here, for the sake of presentation, we abuse of the notation and we use the formula state(t : k, m, n) to denote also the 
context it represents. In the above derivation, kt may be 0 or suc(k) depending on the considered case. If kt = suc(k) and 
the derivation corresponds to focusing on reaction r1, and then, it must be the case that k′

t = k. Similar observations can be 
done for mt , nt and rule r2. Regardless the choice of the rule (r1 or r2), we can show that 〈k′

t , m′
t〉 ≺ 〈kt , mt〉 where “≺” is 

the (well-founded) lexicographical order where the first element is the predominant component. Hence, by induction, we 
can show that there will be a state where ct(A, 0) holds.

3.2.2. Stable states
Now consider the problem of verifying whether the system reaches a stable state, i.e., a state where no rule can be 

applied. Detecting, in a logical system, that a given configuration cannot proceed is usually difficult. In our case, it would 
require to check that none of the eqi formulas in eq1&...&eqn can be chosen. In this section, we show a possible way to 
circumvent this problem. For that, let us introduce the following reaction scheme:

r1 : [2.A]x + [1.B]x −→1 [1.C]x

r2 : [1.C]x −→1 [1.A]x
(3)
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We encode the set of reactions as in Section 3 but with a slight difference:

eqsd
def= !tω (

�lx : 0+. (eq1(lx)& · · · &eqk(lx)&eqd(lx))
)

eqd(t)
def= ((!x.t ct(A,0) ⊕ !x.t ct(A,suc(0)) ⊕ !x.t ct(B,0)

)
&

(!x.t ct(C,0)
))

−◦!t stable
Intuitively, eqd checks whether the reactants are not sufficient to trigger any of the rules. In that case, the atom stable

is produced. In the system described in Equation (3) this happens when: the concentration of A is below 2 or the concen-
tration of B is 0 (r1); and when the concentration of C is 0 (r2).

Consider the sequent [tω �→ eqsd; state(t : 1, 0, 0) : ·] −→ G where we assume that the concentrations are A = 1, 
B = 0, C = 0. We already know that focusing on a formula representing one of the reactions in Equation (3) will fail 
immediately. Hence, the only available choice is to focus on the formula eqd . Focusing on eqd implies proving the following 
sequent:

[tω �→ eqsd;state(t : 1,0,0) : ·]−F1&F2
→

with F1 = [!s.t ct(A,0) ⊕ !s.t ct(A,suc(0)) ⊕ !s.t ct(B,0)
]

and F 2 = !s.t ct(C, 0). Rule &R belongs to the negative phase and 
then, the focus is lost. Hence, we cannot guarantee that the proof has to finish immediately proving from the context the 
atoms ct(·, ·). However, since the subexponential x.t is unrelated to all other subexponentials, we do guarantee that, for 
proving such atoms, the set of reactions cannot be used again (see rule !sR ). We can thus prove that the system reaches a 
stable state iff the sequent system(0) −→ �t : 0+. !t stable is provable.

Now let us put in context the previous result in the setting of the TWEAK-Fn14 signaling pathway, and consider the 
following reaction scheme resembling that of Equation (3):

r1 : [2.TNFSF12]PM + [1.TNFRSF25]PM −→ [1.TNFSF12-TNFRSF25]PM
r2 : [1.TNFSF12-TNFRSF25]PM −→ [1.TNFSF12]PM (4)

The TWEAK ligand, also known as [TNFSF12]PM (tumor necrosis factor ligand superfamily member 12), can bind in the 
plasma membrane (PM) not only to the receptor [Fn14]PM (fibroblast growth factor inducible immediate early response 
protein 14) but also to the receptor [TNFRSF25]PM (tumor necrosis factor receptor superfamily member 25) [19]. Hence, a 
stable state in this scenario could demonstrate that, once a receptor has achieved his maximum occupancy, no rule can be 
applied. In other words, an interaction of the type ligand–receptor is constrained by the availability of the receptor to bind 
a single ligand molecule with the option of unbinding it at any time. Moreover, this property also allows us to capture the 
notion of the limiting reactant (LR), a very common concept used in stoichiometry. Roughly, the LR of a chemical reaction 
is the reactant which is totally consumed or transformed when the system reaches the equilibrium. As a result, the reaction 
will stop when all the LR is consumed. Here, the receptor plays the role of the LR. Thus, to reach a chemical equilibrium in 
Equation 4, one molecule of ligand and one molecule of receptor are needed to form a ligand–receptor interaction.

3.2.3. Oscillations
Consider the following set of equations that extends that of Equation (2) with reaction r3 below:

r1 : [1.A]x −→1 [1.B]x

r2 : [1.B]x −→2 [1.B]y

r3 : [1.B]y −→1 [1.A]x

(5)

We can prove that, for all t , if state(t : k, m, n) holds then there exists t′ > t such that state(t′ : k, m, n) is reachable, 
i.e., the system can always go back to the same state. Using the notation introduced in Section 3.2.1, this can be formally 
stated as:

[tω �→ eqs′′ : ·] −→ ∀k,m,n. &
k,m,n

state(t : k,m,n) −◦ Fk,m,n

where Fk,m,n = �t′ : (t + 1)+.state(t′ : k, m, n) ⊗ � and eqs′′ is as eqs but adding the dummy reaction:

eqd(t)
def= [!x.t ct(A,0) ⊗ !x.t ct(B,0) ⊗ !y.t ct(B,0)

]−◦
[!x.(t+1) ct(A,0) ⊗ !x.(t+1) ct(B,0) ⊗ !y.(t+1) ct(B,0)]

The formula eqd(t) is similar to the formula we added in the previous section to detect stable states: one can focus on 
eqd(t) only when the concentrations are zero and none of the reactions (r1, r2, r3) can be fired. Then, the concentrations in 
the next time-unit remain the same.

The proof of the property proceeds as the one in Section 3.2.1. The & connective (on the right) generates several cases 
to be proved. The case state(t : 0, 0, 0) is immediate by first focusing on the formula eqd(t) and then, focusing on F . 
In the other cases, it amounts to use some of the reactions of the system. For instance, the proof of the case state(t :
k>0, m>0, n>0) proceeds as follows:
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[tω �→ eqs′′;state(t + 4 : suc(k),suc(m),suc(n)) : ·] −→ state(t + 4 : suc(k),suc(m),suc(n)) ⊗ � ⊗R , !s R , I R ,�R

[tω �→ eqs′′;state(t + 4 : suc(k),suc(m),suc(n)) : ·] −→ G
D R ,�R

[tω �→ eqs′′;state(t + 3 : k,suc(m),suc(suc(n))) : ·] −→ G
R3

[tω �→ eqs′′;state(t + 1 : k,suc(suc(m)),suc(n)) : ·] −→ G
R2

[tω �→ eqs′′;state(t : suc(k),suc(m),suc(n)) : ·] −→ G
R1

where G = �t′ : (t + 1)+.state(t′ : suc(k), suc(m), suc(n)) ⊗� and Ri represents the logical steps resulting from focusing 
on the formula encoding the reaction ri . Hence, by using the sequence of reactions r1 −→ r2 −→ r3, we can discard this 
case. The other cases follow similarly.

In the context of the TWEAK system, the set of reactions in Equation (5) is akin to the dephosphorylation of the 
molecule [RELA-P]NU in the domain of the nucleus. As we mentioned before, this protein can be translocated between 
the cytoplasm and the nucleus. We note that the reaction of dephosphorylation takes place only when the phosphory-
lated form [RELA-P]NU is already in the nucleus for subsequent catalysis and transportation to the cytoplasm to produce 
[RELA]CY . Accordingly, the system oscillates between the phosphorylation and the dephosphorylation of that molecule 
([RELA]CY → [RELA-P]CY/NU → [RELA]CY) between the spaces CY and NU (see Fig. 4).

4. Logical view of P systems

In this section, in order to give a more general picture of our developments, we show how P systems [10,11] can be also 
characterized as SELL� formulas.

P systems are a model that interprets the processes taking place in the compartmentalized structure of a biological cell 
as computations. The main abstraction is the notion of a cell-like membrane structure. Several membranes, placed in an 
outermost membrane called “the skin membrane”, determine the configuration of the system. This structural shape defines 
compartments where multisets of objects (components) are placed and evolve according to a set of rules. Here we shall 
focus on P systems with boundary rules [11,22], a variant of P systems where the rewriting rules are not internal to a 
region but, rather, they are able to see also the external environment (i.e., the boundary). More precisely,

Definition 1 (P system with boundary rules). A P system with boundary rules is a structure Π = (V , μ0, R, O ) where V is 
an alphabet of symbols; μ0 is the initial configuration; O is the label of the observable membrane; and R is a finite set of 
rewriting rules of two kinds:

• Transformation: [i y −→ [i y′; for y, y′ ∈ V ∗ .
• Communication: xx′[i y′ y −→ xy′[i x′ y; for x, y, x′, y′ ∈ V ∗ .

Intuitively, a transformation rule consumes the objects in the multiset y to produce the multiset y′ in the membrane i. 
A communication rule is similar but moves objects through membranes: the multiset x′ (resp. y′) is moved inside (resp. 
outside) the membrane i.

P systems are synchronous systems in the sense that a global clock is assumed and such clock holds for all regions of 
the system. In each time-unit, a configuration μn moves to μn+1 by applying, possibly several times, the rules in R . The 
evolution of the system is usually defined in a non-deterministic and maximally parallel manner [10]. Roughly, occurrences 
of objects in the system are assigned to rules in R until no further assignment is possible (micro steps). Then, all the chosen 
rules are applied exhaustively to produce the new configurations (a macro step).

In the following, we shall encode P systems by using a restricted version of the minimal parallelism semantics defined 
in [12]. In Section 4.1, we generalize the encoding in order to capture different degrees of parallelism in the semantics.

Notation 2 (Reduction relation). Given a set of rules R and two configurations (states) s1 and s2, we shall write s1 ====⇒ s2
if s1 moves to s2 by applying once (if possible) each rule in R .

The above reduction relation is akin to minimal parallelism in [12] since rules are not exhaustively applied to all the 
objects of the system, as in the case of maximal parallelism [10,11]. The non-determinism of ====⇒ comes from the fact 
that rules can compete for the same resource in the system. We note that, compared to the semantics in [12], ====⇒
applies each rule at most once (and not several times).

Predicate symbols. We start defining the predicate symbols used in the encoding.

• p(a1, . . . , an). Assuming a set of n different components, the current state of the system, at time-unit t in the mem-
brane si , is defined as the formula !si .t p(a1, . . . , an) (see Fig. 3 for the ordering of the subexponentials).

• f(a1, . . . , an). Rules manipulate the state of the system by consuming elements in the current time-unit and then, 
producing new ones in the next time-unit. Hence, we shall use the formula !si .t f(a1, . . . , an) to specify that, in the next 
time-unit, there will be ai additional units of the component Ai in the membrane si .
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• oki , tk. As explained below, we shall use these atomic propositions, respectively, to detect whether one rule was 
already applied (oki ) and to enable the set of reactions in a given time-unit (tk).

Encoding of rules. In the encodings below, we assume a set of reactants A = {A1, . . . , An} and we use the following 
notation: �x = x1, . . . , xn (similarly for �y, �z and �w). We write f(�x) to denote f(x1, . . . , xn) and f(�x + �b) to denote f(x1 +
b1, . . . , xn + bn) (similarly for p(·)).

• Transformation rule:

[[rw : [i S −→ [i S ′ ]]t = ∀�x �y.[!si .t(f(�x) ⊗ p(�y)) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t okw))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
Here, from the initial set of components S , ak units of Ak are consumed to produce bl units of Al in the space domain si , 
leading to the multiset S ′ .

• Communication rule:

[[rw : [ j T [i S −→ [ j T ′[i S ′ ]]t

= ∀�x �y �z �w.[(!si .t(f(�x) ⊗ p(�y)) ⊗ !s j .t(f(�z) ⊗ p( �w)))−◦
[((⊗ yi ≥ ai ⊗ ⊗

wi ≥ ci) −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !s j .t f(�z + �d) ⊗ !s j .t p( �w − �c) ⊗ !t okw))

&((
⊕

y1 < ai ⊕ ⊕
wi < ci) −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !s j .t f(�z) ⊗ !s j .t p( �w) ⊗ !t okw))]]

Here, T (resp. S) is the initial multiset of components in the space domain s j (resp. si). The rule consumes ak units of 
Ak in si and ck units of Ak in s j in order to produce bl units of Al in si (resp. dl units of Al in s j).

The first implication in each rule, that we shall call available rule, is similar to the encodings studied in Section 3. We 
note that the elements are consumed in the current time-unit but the products are “stored” in the predicate f(·) since they 
must be available only in the next-time unit. The new part is the second implication that we call the absence rule. In this 
implication we check whether there are not enough resources to fire the rule. Hence, the concentrations remain the same. 
We note that either the available rule or the absence rule are fired but not both due to the & connective. Furthermore, 
the choice is determined entirely by the current concentration of the components (i.e., the predicates p(·) in each space). 
Finally, note that the available and absence rules add the formula ok which is needed as we explain in brief.

Remark 1. In the above encodings we use the relational symbols ≥ and <. Those symbols require a set of axioms to define 
their meaning. Adding such theory in the logical context would imply that, in the following results, we have to analyze the 
cases when an axiom of such theory is focused on. We note that this is not necessary since we can rewrite such formulas. 
Consider for instance a transformation rule that consumes two tokens per time-unit from membrane i. Instead of encoding 
such a rule as

∀x, y.[!si .t(f(x) ⊗ p(y)) −◦ (y ≥ 2 −◦ (!si .t f(x) ⊗ !si .t p(y − 2) ⊗ !t okw))]
&(y < 2 −◦ (!si .t f(x) ⊗ !si .t p(y) ⊗ !t okw))]

we can encode it as

[∀x, y. !si .t(f(x) ⊗ p(suc2(y))) −◦ (!si .t f(x) ⊗ !si .t p(y) ⊗ !t okw)]
&[∀x. !si .t(f(x) ⊗ p(0)) −◦ (!si .t f(x) ⊗ !si .t p(0) ⊗ !t okw)]
&[∀x. !si .t(f(x) ⊗ p(suc(0))) −◦ (!si .t f(x) ⊗ !si .t p(suc(0)) ⊗ !t okw)]

In the first encoding, in a positive phase, the connectives ∀ and −◦ (on the left) are introduced. Then, the focusing persists 
on & choosing one of the branches (y ≥ 2 or y < 2). Finally, in a negative phase, it adds the resulting formulas into the 
context. Similarly, in the second encoding, the & connective chooses one of the branches representing, respectively, y ≥ 2, 
y = 0 and y = 1. Then, focusing persists on ∀ and −◦. Finally, in a negative phase, the predicates are stored into the context.

Auxiliary Formulas. Our encoding also requires the following formulas to control the execution of the rules:

next(t)
def= ∀�x �y.[!t(ok1 ⊗ · · · ⊗ okm) ⊗ ⊗

i∈O
(!si .t p(�xi) ⊗ !si .t f(�yi))

−◦ !t+1 tk⊗ ⊗
i∈O

(!si .t p( �xi + �yi) ⊗ !si .t f(0, . . . ,0))]
system(t)

def= !tω �tx : 0+. !tx tk−◦ (next(tx) ⊗ ⊗
r j∈R

[[r j]]tx)

state(t, �a1, . . . , �an)
def= !t tk⊗ ⊗

i∈O
[!si .t p(�ai) ⊗ !si .t f(0, . . . ,0)]

where �a is the current (initial) concentration of the components. Once we focus on the formula F = [ [r j] ]t , F is decomposed 
and it adds, in the end of the negative phase, the formula ok j into the context t . Note also that, unlike the encoding of the 
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previous section, here the encoding of each rule is glued with the ⊗ connective (while in the previous section we used &). 
This allows us to fire, at most once, all the rules during the current time-unit. Once all the rules are fired (either modifying 
the state or not) the formula next can be focused on to propagate the changes to the next time-unit. When this happens, 
we can say that the time-unit t ends and we start the computations of the time-unit t + 1.

In the encoding presented here, we cannot prove that one flip of the polarity in the proof corresponds exactly to a macro 
step ( ====⇒) of the P system. The reason is simple: when a rule is fired (i.e., a micro step is performed), we have a flip 
in the polarity of the proof. Hence, applying the k rules of the system at the time-unit t requires flipping k + 2 times the 
polarity of the proof. The “+2” is due to the extra phases needed to consume the token tk and decompose the formula 
next as shown in the proof of the following theorem.

Theorem 2 (Adequacy). Let s1 and s2 be states, [ [s] ]t = state(t, �a1, . . . , �an) and t ≥ 0. Then, s1 ====⇒ s2 iff the sequent 
system(t), [ [s1] ]t −→ [ [s2] ]t+1 is provable.

Proof. Consider the sequent

[· : ·],system(t), [[s1]]t −→ [[s2]]t+1

We shall show that a proof of such sequent corresponds to the operational step s1 ====⇒ s2.
We start with a negative phase by decomposing the !s and ⊗ connectives on the left:

[tω �→ F ; t �→ tk; {si �→ {p( �ai),f(0, . . . ,0)}}i : ·] −→ [[s2]]t+1

[· : ·],system(t), [[s1]]t −→ [[s2]]t+1
⊗L, !sL

where F = �tx : 1+. !tx tk−◦ (next(tx) ⊗ ⊗
r j∈R

[ [r j] ]tx). We note that the negative phase ends here and, for each space i, the 

context si stores the corresponding concentration of the components (�ai). To move up in the derivation, the only choice we 
have on the left is to focus on the formula stored in the context tω (i.e., F ) and we observe the following:

[t �→ tk : ·] −→ tk
D R , I R

[tω �→ F ; t �→ tk : ·]−!t tk→
!sR

�[tω �→ F ... : next(t), [[r1]]t , · · · , [[rm]]t] −→ [[s2]]t+2

[tω �→ F : ·]
next(t)⊗ ⊗

r j∈R
[[r j ]]t

−−−−−−−−−−−−→ [[s2]]t+1

R L,⊗L, StL

[tω �→ F ... : ·]
!t tk−◦(next(t)⊗ ⊗

r j∈R
[[r j ]]t )

−−−−−−−−−−−−−−−−−→ [[s2]]t+1

−◦L

[tω �→ F ... : ·] F−→ [[s2]]t+1

�R

[tω �→ F ... : ·] −→ [[s2]]t+1
D L1

where tk is proved (in the subexponential t) and the formula next(t) and the encoding of the reactions are stored in the 
context.

In � , we can continue by focusing again on the formula F (stored in tω). However, in that case, we cannot finish the 
proof since tk is not in the context t and it cannot be produced by focusing on F (nor by focusing on next(t)). Hence, the 
only choice is to focus on one of the formulas of the shape [ [r j ] ]t . Such action will be similar to the derivations of consume
and produce in the proof of Theorem 1. We also note that we can only focus on next(t) when all the formulas of the 
shape [ [r j] ]tx were used, thus adding the tokens oki into the context.

Hence, due to the focusing discipline, we can guarantee that: the set of reactions are copied to the location t only if the 
predicate tk is in that location; then, the set of reactions are executed (each one in a change of the polarity of the proof); 
when all the reactions are executed, one can focus on the formula next(t) to allocate the resources (and the formula tk) 
in the next time-unit. That is, after k + 2 flips of the polarity we observe a macro step where the logical context encodes 
the state s2. �

Besides reachability properties as those stated in the previous section, we can also check the periodicity of the system, i.e., 
whether the system exhibits the behavior s1 ====⇒ sx1 ====⇒ · · · ====⇒ sxn ====⇒ s1 where sxi is different from s1. 
This means that, after n time-units, there is a cycle in the system going back to the state s1. This property holds iff 
the sequent system(0), [ [s1] ]0 −→ [ [s1] ]n+1 is provable. More generally, we can find such periodicity by using existential 
quantification on subexponentials, i.e., by looking at the final instantiation of the subexponential variable l in the proof of 
the sequent system(0), [ [s1] ]0 −→ �l : 1+.[ [s1] ]l .

4.1. Maximal and minimal parallelism semantics

In this section we show how the encodings studied in the previous section can be adapted in order to deal with other 
notions of parallelism in P systems. It turns out that we only need to control the way the token ok is added into the 
context.
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In the following, we consider a predicate rule(i) that is added into the context when the rule i can be executed. The 
transformation rule [i S −→ [i S ′ is encoded as

[[[i S −→ [i S ′]]t =
!t rule(w) −◦ [
∀�x �y.[(!si .t(f(�x) ⊗ p(�y))) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t okw))

&(
⊗

yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t rule(w)))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
If there are enough resources (lines 2 and 3 above), one can decide to either add okw or rule(w) to the context after 

updating the state of the system. In the first case, the rule is applied only once in the current time-unit. In the second case, 
there is a chance of applying it again. The formula in the last line, as in the previous encodings, is chosen when the rule 
cannot be applied in the current state. The encoding of communication rules can be adapted similarly.

Since rules can be applied several times during the same time-unit, we need to adapt also the definition of system as 
follows:

system(t)
def= !tω �tx : 0+. !tx tk−◦ (next(tx) ⊗ ⊗

ri∈R
!tx rule(ri))

⊗!tω �tx : 0+.[[r j]]tx

Note that the formula system stores the encoding of the rules in the unbounded subexponential tω . Moreover, when 
tk can be deduced in time-unit tx , the formula next(tx), as well as the formulas rule(ri), are added into the context.

The above encoding allows us to use the same rule zero or several times and such choice is non-deterministic (due to 
the & connective). Hence, similarly to Theorem 2, we can show that in each focused step, we observe the execution of one 
of the rules in a given time-unit (micro steps). However, we cannot bound the number of flipping of polarities needed to 
move to the next time-unit (macro step).

The maximal parallelism semantics (where all the rules must be exhaustively applied in all the possible objects of the 
system) can be characterized in SELL� by encoding the rules of the system as follows:

!t rule(w) −◦ [
∀�x �y.[(!si .t(f(�x) ⊗ p(�y))) −◦ [(⊗ yi ≥ ai −◦ (!si .t f(�x + �b) ⊗ !si .t p(�y − �a) ⊗ !t rule(w)))

&(
⊕

yi < ai −◦ (!si .t f(�x) ⊗ !si .t p(�y) ⊗ !t okw))]]
In this case, the token okw is added only when there are not enough resources to apply the rule again.
Finally, if we were to consider sequential P systems, where only one rule is used in each step of a computation [23], the 

resulting encoding would be closer to the one in Section 3. More precisely, the encodings of the rules must be glued with 
the connective & in order to choose one of the available rules. Moreover, the predicate ok and the formula next would not 
be necessary to control the change of the time-unit. In this case, one flip of the polarity of the proof corresponds exactly to 
one step in the computation.

5. Logical frameworks and the verification problem

In the previous sections we have shown that SELL is able to specify and verify biochemical systems where temporal and 
spatial modalities can be combined. Besides the applications shown in Sections 3 and 4, it is important to further discuss 
the practical and theoretical implications of our results.

The main goal of this paper is to use theorem proving techniques for the verification of biochemical systems. For that, 
we followed two design principles: (1) the foundations must be settled on a logical framework with good proof theoretical 
properties. Moreover, the (meta) theory of the framework should help us drawing new conclusions of the studied systems; 
(2) the language of properties must be expressive enough to declaratively specify properties constrained by temporal and 
spatial modalities. Additionally, proofs in the logical framework must accurately characterize (operational) steps in the sys-
tem. Let us elaborate on how we achieved (1) and (2) and compare our developments with other proposals in the literature.

5.1. Cut elimination and focusing

Linear logic [6] is a very expressive and elegant logical framework. The distinction between multiplicative and additive 
connectives offers a very precise control on the resources (formulas) during a proof. Such control is even more expressive 
in the case of SELL [7] where one can split the logical context into different parts, each representing a given modality 
(e.g., spatial locations or time-units). Our encodings rely extensively on such strict use of resources, and specially, on the 
promotion rule (!sR ) that limits the use of resources to the ones related to the goal we are proving.

Linear logic and SELL have good proof theoretical properties: the cut rule below is admissible [6] (cut elimination) and 
it admits a sound and complete focused [13] proof system.
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The cut rule in linear logic is as follows:

� −→ G �, G −→ F
�,� −→ F

cut

Intuitively, we prove the intermediate lemma G (using �) and then, using G , we prove the desired result F . The cut-
elimination procedure shows that any proof with cut can be transformed into a (possibly larger) proof without cut. This 
result is fundamental in proof theory (see e.g., [20]). From it, we can show that the system is consistent (since we cannot 
derive falsity from the empty set of premises). Moreover, the system has the subformula property (only subformulas of the 
root sequent can appear in a proof).

The cut elimination procedure entails also an important result from the theoretical and practical points of view: it allows 
us to use intermediate lemmas to finish a proof. As a direct consequence, we have compositionality of properties: if the 
subsystem represented by � exhibits some behavior G and, assuming G we know that � exhibits F , then the whole system 
exhibits F . We can thus build libraries of (formally proved) theorems about biochemical systems, as it already happens 
in Mathematics (see e.g., the list of math theorems formalized in different theorems provers at http :/ /www.cs .ru .nl /~freek /
100/).

From the computational point of view, the cut rule is difficult to handle in an automatic procedure: the computer should 
guess the intermediate lemma G to continue the proof. The automatization of part of the verification technique comes from 
the focused system. As we already showed, focusing allows us to reduce the non-determinism during proof search (i.e., 
search for a cut-free proof). Therefore, it is possible to have semi-automatic procedures where the expert can compose 
previously proved lemmas and the computer handles the automatic proof search procedure. Such integration of automatic 
techniques and user-guided proofs are already available for some frameworks in the context of biological systems [24].

5.2. Theory of SELL

The meta theory of SELL brings important benefits for the verification of biochemical systems. In the following, we 
highlight some of these features.

As hinted above, the focused system allows us to control the shape of the proofs and reduce the non-determinism 
during the proof search procedure. This result was fundamental to show tight adequacy results relating proofs and steps in 
the specified system. Controlling the shape of the derivations opens also the possibility of using other reasoning techniques 
at the meta level. Take for instance the example in Section 3.2.1 where we used induction to verify a reachability property. 
In this case, we could use induction only because focusing guaranteed the exact shape of the formulas (and the context) in 
a step of the derivation.

Modeling spatial property propagation in Biological Systems. The subexponential structure may also play an important role 
for verification at the meta level. Consider for instance that we have a proof of the sequent � −→!a F showing that the 
system represented by � exhibits certain behavior on the space domain a. We know that in SELL provability is preserved 
downwards, i.e., from a proof of � −→!a F we can also conclude � −→ !b F for any b � a. This corresponds, intuitively, to 
show that F holds in every subordinated (w.r.t. �) location in the system. This precise control on the hierarchy (defined 
by �) can be used, for instance, to specify systems where stimuli/actions are propagated into the internal spatial structure. 
Take for instance the process of oncosis/necrosis [25], a pre-lethal pathway leading to cell death accompanied by cellular 
swelling, organelle swelling, blebbing, and increased membrane permeability. This process is caused by physical disruption 
on cellular structure and function through injury, bacterial toxins, or nutritional deprivation.

The use of subexponentials allows us to divide the logical context in order to neatly distinguish different subsystems. 
We can thus derive local information from each subsystem. In order to draw more general conclusions of the whole system, 
we can combine local properties using the rule cut. From the point of view of automatic procedures, the promotion rule 
has also an important consequence in practice: non-related subexponentials must be dropped (weakened) from the context. 
This allows us to “simplify” the context of a proof by (safely) discarding some part of it that cannot “interact” with the 
formula we are proving.

Another interesting meta-theoretic result that is entailed from our approach is that, whenever we prove an existential 
property from a set of (encoded) rules, the property is satisfied also for larger systems (due to weakening and the use of 
subexponentials). This indeed is quite interesting since it gives some compositionality for verification which is not possible, 
in general, in Model Checking.

Some other (practical and theoretical tools) in proof theory may also be useful for our verification task. For instance, 
in theorem provers, it is possible to greatly simplify proofs of properties with an existential quantifier on the right (or 
universal quantifiers on the left) by using unification (see, e.g., [26]). Roughly, the term to be instantiated does not need to 
be determined immediately but delayed until the application of the initial rule. This meta-theoretic result may simplify the 
proof of periodicity properties (as the one before Section 4.1) in our framework.

5.3. SELL and other logics

There exist other logics such as CTL (Computation tree logic), temporal logic [27], spatial logics [28], among several 
others, that we may have used as foundations for our framework. We preferred SELL mainly due to its proof theoretic 

http://www.cs.ru.nl/~freek/100/
http://www.cs.ru.nl/~freek/100/
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elegance, in particular, its proof system with good properties. The above mentioned logics, as far as we know, do not 
have cut-free nor focused proof systems. Then, devising verification procedures for those logics implies building specific 
structures/procedures to use model checking (see e.g., [29]). Moreover, compositionality is not guaranteed as in the case of 
SELL.

On the other side, the above mentioned logics aim only to specify properties of the system but not the system itself. 
In that sense, those logics are not a logical framework as in the case of SELL: inside SELL, we can specify, verify and also 
compare the behavior of different systems inside the same logical framework. We believe that this is an interesting feature 
of our approach since properties (goals in the logic) can be expressed using the same language, and reachability corresponds 
directly to logical entailment. The language of properties is quite rich and it includes spatial and temporal modalities (the 
main feature of our framework). For instance, we can express spatial and temporal patterns like “once reaction r happens, 
reaction r′ can be fired in the space domain a”. Some other properties, e.g., oscillations, can be naturally expressed as shown 
in Section 3.2.3.

The representation of the system inside SELL, as shown by Theorems 1 and Theorem 2 (adequacy) is not ad-hoc. We 
showed that the maximal level of adequacy can be achieved and then, a derivation in the logic corresponds exactly to a 
possible trajectory/configuration of the system. By looking at such logical representation of the system, we have been able 
to characterize, in a modular way, different concurrent semantics for P systems. We note that, in other frameworks, usually 
different structures/procedures are needed to deal with different semantics [30].

5.4. Model checking, theorem proving and concurrency theory

In the literature, there are several tools and techniques for the verification of biochemical systems (see also the related 
work section below). In particular, there exists an extensive work on using model checkers for the verification of P systems. 
In the following, we highlight some of the differences between Model Checking [31] (MC) techniques and our Theorem 
Proving approach (TP).

We first note that TP and MC are complementary (and rather different) techniques. MC is an automatic technique that 
usually requires a finite state model of the system. TP is a semi-automatic technique where some proofs need to be “assist-
ed” by the user.

P systems, in general, may generate an infinite number of states. In fact, reachability is undecidable [30] since simple 
fragments of P systems are Turing complete. Then, only an abstraction of the systems can be verified by MC techniques. TP 
can deal with infinite state systems. This, of course, comes with a price: the technique cannot be fully mechanizable and an 
expert is needed to find the right invariants, e.g., in proofs by induction or using cut.

MC is a useful companion for a theorem prover. A good strategy for understanding the behavior of a system is to use a 
model checker to verify a (finite/abstract) representation of the system. Once the property is verified on that abstraction of 
the system, we may attempt to formally prove the property in the whole system. Then, TP offers the possibility to combine 
already proved results to conclude more facts.

MC explicitly requires a (symbolic) representation of the transition system. The need for symbolic/abstract representa-
tions of the system comes from the inherent state-explosion problem of this technique. In TP, we encode the system and the 
desired property as a SELL formula. Hence, proving a property requires the application of logical rules and it is not required 
to explicitly build the transition system.

It is worth noticing that the proof theory of SELL was also useful to understand different concurrent behaviors in P 
Systems. As shown in Section 4.1, our encodings can modularly capture different degrees of parallelism in P systems in the 
same logical framework. In MC techniques (see, e.g., [30]), the structures/procedures must be adjusted in order to verify P 
systems with different parallel semantics.

We believe that the connections between logic (proof theory), concurrency theory and biochemical system may have 
much to offer. To be more precise, we have shown in [9] that Concurrent Constraint (CCP) languages have a strong connec-
tion with SELL and then, such languages can be seen as a runnable specification of (fragments of) SELL. In [32,33] we have 
shown that CCP can indeed be used as a declarative language to implement simulation tools for biochemical systems. Such 
tools can be improved by the recent findings in [34], where optimizations for CCP were derived from the proof theory of 
linear logic. Similarly, we hope that the results in this paper and the body of knowledge in proof theory will allow us to 
build more automatic (and efficient) theorem provers to verify biochemical systems.

6. Concluding remarks

We presented a formal method to specify and verify computational biological systems grounded on proof theory. We have 
dealt with the problem of representing both spatial and time-dependent information. Our proposal relies on linear logic [6]
with subexponentials (SELL�) [7–9]. We have shown examples of properties of biochemical systems that can be proven in 
our framework. Moreover, we have proved that our logical characterization has a strong level of adequacy: derivations in 
the logical system follow exactly the rules (reactions) of the modeled system. We have then shown that our framework is 
general enough to give a logical characterization to P Systems. In other terms, the embeddings presented show that SELL� is 
expressive enough to give a logical interpretation to such systems, thus opening the possibility to use all the meta theory of 
linear logic to reason about the behavior of biochemical systems that exhibit temporal and spatial modalities. The next step 
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will be implementing our framework in a functional logic language (e.g., lambda Prolog) and to use an assisted theorem 
prover (e.g., Coq) to have a semi-automatic process of verification (see e.g., [24]). Providing skeletons/templates to ease the 
specification of properties may be also useful.

Related work. Many works in the literature (see e.g., [14–17,8]) have shown that linear logic is general enough to give a 
proof-theoretic account of many concurrent systems and formalisms. In all these works, computation amounts to proofs, 
thus bringing new tools and frameworks to study those systems. In the context of biochemical systems, a work closely 
related to ours is [24] where the authors show that temporal properties of biochemical systems can be expressed in HyLL 
(hybrid linear logic). In HyLL, a partial order structure on words is defined to model locations where the formulas hold. This 
is much like the subexponential structure in SELL� . In this work, we show that time and spatial modalities can be examined 
in the same framework. Moreover, the focusing discipline allowed us to show stronger adequacy results.

In [32], we proposed a tailored Concurrent Constraint Programming-based [35] formalism for dealing with spatial modal-
ities. However, in [32] we could not deal with temporal information, and we did not study thoroughly how to specify and 
prove properties of our systems.

The notion of probabilities and preferences have been introduced in HyLL and SELL in [24] and [36] respectively. This 
may open the possibility to enhance our encodings to consider set of rules that can be chosen according to priorities or 
probabilities. In fact, we can encode P systems with priorities (as defined in [10]) straightforwardly. In this semantics, if r1
has higher priority than r2, then r2 can be applied only if there are not more resources to apply r1. This would correspond 
to guard the encoding of r2 with a token added by the encoding of r1 in its absence rule.

There are also other formalisms for specifying time modalities. For instance, in Pathway Logic (PL) [4], each rule 
(biochemical reaction) is associated with a scalar value called affinity. Such value can be bounded by a time-dependent 
interpretation either by using exponential random or deterministic amortized variables. In [37] a timed-π -calculus is used 
to deal with time-stamps and clocks. These are handled as other names and transmitted through channels.

For dealing with spatial information, formalisms such as Bio-Pepa [2], BioNetGen [38], BioAmbients [39], and Brane 
Calculi [40] embed a tree representation of the hierarchical structure of cellular compartments. Alternatively, in Biocham 
[41], PL [4], and Beta-Binders [42], cellular compartments can be abstracted as symbolic locations by assigning labels to 
molecular compounds. In the π@-calculus [43], restricted names are exploited to model compartments.

Other frameworks allow reasoning about biological properties by using different types of logics and techniques (usually 
the formalisms for modeling and that for proving properties are different). Properties of Biocham models [1], for instance, 
can be formalized within the boolean, differential and stochastic semantics by using (probabilistic) temporal logics. Bio-
Pepa’s models [2] can be translated into PRISM [44], a probabilistic model checker. Processes in PL [4] can be analyzed 
by using the Maude system. Bounded Linear Temporal Logic [45] and statistical model checking are used in BioNetGen 
to express and to verify system properties. Temporal properties for BioAmbients processes can be analyzed by using state 
formulas [46] or modal logics to express spatial and temporal modalities [47]. Similarly, modal logic can be used to ex-
press spatial and temporal properties over membranes and systems, which is known as Brane Logic [48]. In the case of 
Beta-Binders models, causality properties [42] as well as flow control analyses [49] can be performed.
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