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Abstract
Computably enumerable equivalence relations (ceers) received a lot of attention in the
literature. The standard tool to classify ceers is provided by the computable reducibility
�c. This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees
to the �0

2 case. In doing so, we rely on the Ershov hierarchy. For any notation a for
a non-zero computable ordinal, we prove several algebraic properties of the degree
structure induced by �c on the �−1

a � �−1
a equivalence relations. A special focus of

our work is on the (non)existence of infima and suprema of c-degrees.

Keywords Computability theory · Ershov hierarchy · �0
2 equivalence relations ·

Computably enumerable equivalence relations

Mathematics Subject Classification 03D55

1 Introduction

Computable reducibility is a longstanding notion that allows classifying equivalence
relations on natural numbers according to their complexity.

Definition 1.1 Let R, S be equivalence relations with domain ω. R is computably
reducible to S, denoted R �c S, if there is a computable function f such that, for all
x, y ∈ ω,

x Ry ⇔ f (x) S f (y).
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We write f : R �c S to denote that f is a computable function that reduces R to
S; c-degrees are introduced in the standard way.

The history of computable reducibility has many roots, being often rediscovered
and explored in connectionwith different fields. Its study dates back to the fundamental
work of Ershov in the theory of numberings, where the reducibility is introduced in
a category-theoretic fashion (see Ershov’s monograph [11] in Russian, or [12] for an
English survey). In the 1980s, computable reducibility proved to be a fruitful tool for
calibrating the complexity of provable equivalence of formal systems and scholars
focused mostly on the �0

1 case (see, e.g., [5,19,26]). Following Gao and Gerdes [17],
we adopt the acronym“ceers” to refer to computably enumerable equivalence relations.
The interested reader can consult Andrews et al. [1] for a nice and up-to-date survey
on ceers, with a special focus on universal ceers, i.e., ceers to which all other ceers are
computably reducible. The degree of universal ceers is by now significantly explored:
for instance, in [2] the authors proved that all uniformly effectively inseparable ceers
are universal. A complementary line of research aims at providing concrete examples
of universal ceers. To this end, Nies and Sorbi [21] constructed a finitely presented
group whose word problem is a universal ceer.

Far from being limited to ceers, computable reducibility has been also applied to
equivalence relations of much higher complexity. Fokina et al. [15] showed that all�1

1
equivalence relations are computably reducible to the isomorphism relations on several
classes of computable structures (e.g., graphs, trees, torsion Abelian groups, fields of
characteristic 0 or p, linear orderings). This study was fueled by the observation that
computable reducibility represents a nice effective counterpart of Borel reducibility,
i.e., a key notion of modern descriptive set theory (see [16]). The analogy between
Borel and computable reducibility has been explored, for instance, byCoskey et al. [7],
who investigated equivalence relations on c.e. sets mirroring classical combinatorial
equivalence relations of fundamental importance for Borel theory.

Additional motivation for dealing with computable reducibility comes from the
study of c.e. presentations of structures, as is shown for instance in [13,18] (for a nice
survey about c.e. structures, see [23]).

The goal of the present paper is to contribute to this vast (yet somehowunsystematic)
research program by making use of computable reducibility to initiate a throughout
classification of the complexity of �0

2 equivalence relations. In this endeavour, we
follow and extend the work of Andrews and Sorbi [3], that provides a very extensive
analysis of the degree structure induced by computable reducibility on ceers. Ng
and Yu [20] broadened the perspective by discussing some structural aspects of the
c-degrees of n-c.e., ω-c.e., and �0

1-equivalence relations. We similarly rely on the
Ershov hierarchy to pursue our analysis.

Although our motivation is rather abstract (and to some extent corresponds to the
desire of exporting the guiding questions of classical degree theory to the case of
equivalence relations), our object of study shall not be regarded as too much artificial.
The following example might convince the reader that �0

2 equivalence relations occur
quite naturally.

Consider the following �0
2 equivalence relation R:

i R j ⇔ card(Wi ) = card(Wj ).
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Then one can define a “bounded” version of R:

〈i, s〉 Rb 〈 j, t〉if and only if card(Wi ∩ {0, 1, . . . , s}) = card(Wj ∩ {0, 1, . . . , t}).

It is not hard to show that the relation Rb is ω-c.e. Furthermore, the relation Rb admits
an interpretation via algebraic structures: One can interpret a number 〈i, s〉 as the index
of a finite linear ordering. Indeed, define the ordering Li,s as follows. The domain of
Li,s is equal to Wi ∩ {0, 1, . . . , s}, and the ordering on the domain is induced by the
standard ordering of natural numbers. Notice that here we assume that Li,s may be
empty. The list (Li,s)i,s∈ω gives an enumeration of all finite linear orderings, up to
permutations of the domains. It is easy to see that

〈i, s〉 Rb 〈 j, t〉 ⇔ Li,s ∼= L j,t ,

thus the relation Rb can be treated as (one of the possible formalizations of) the relation
of isomorphism on the class of finite linear orderings.

1.1 Organization of the paper

In Sect. 2, we set up the stage by offering some disanalogies between the degree
structure of ceers and that of �0

2 equivalence relations. We also prove that infinitely
many levels of the Ershov hierarchy contain minimal c-degrees. In Sect. 3, we focus
on dark degrees, i.e., c-degrees not being above the identity on ω: we show that all
levels of the Ershov hierarchy, with the exception of �−1

1 , contain dark equivalence
relations. Sections 4 and 5 are devoted to the existence of infima and suprema of c-
degrees of �0

2-equivalence relations: we introduce the notion of mutual darkness and
prove that, if R, S ∈ �−1

a � �−1
a are mutually dark, then R, S have no infimum in

�−1
a � �−1

a and no supremum in �0
2. It follows that none of the degree structures

considered in this paper is neither upper- or a lower-semilattice.

1.2 Notation and terminology

All our equivalence relations have domain ω. Given a number x , we denote by [x]R
its R-equivalence class. We say that R is infinite if R has infinitely many equivalence
classes (otherwise, it is of course finite). The following basic equivalence relations
will appear many times:

• Idn is the computable equivalence relation consisting of n equivalence classes, i.e.

x Idn y ⇔ x ≡ y (mod n),

for all x, y ∈ ω.
• Id is the identity on ω, i.e., x Id y if and only if x = y.

The following definition is due to Gao and Gerdes [17] (but analogous ways of
coding sets of numbers by equivalence relations occur frequently in the literature, see,
for instance, the definition of a set-induced c-degree in [20]).
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Definition 1.2 Anequivalence relation R is n-dimensional if there are pairwise disjoint
sets A0, . . . , An−1 ⊆ ω such that

x Ry ⇔ x = y ∨ (∃i)(x, y ∈ Ai ).

We denote such R by RA0,...,An−1 .
An equivalence relation R is essentially n-dimensional if it has exactly n noncom-

putable equivalence classes.

The following definition comes from [3].

Definition 1.3 An equivalence relation R is light if Id �c R; it is dark if it is not light
and has infinitely many equivalence classes.

It is often convenient to think of a given light equivalence relation R in terms of
some computable listing of pairwise nonequivalent numbers witnessing its lightness.
More formally, a transversal of an equivalence relation R with infinitely many R-
classes is an infinite set A such that [x]R �= [y]R , for all distinct x, y ∈ A. (The notion
of a transversal, due to [17], has been widely exploited in [3].) It is immediate to see
that R is light if and only it has a c.e. transversal.

Our computability theoretic notions are standard, see for instance [25]. The basic
notions regarding the Ershov hierarchy can be found in [8–10], see also [4]: in partic-
ular, recall the following.

Definition 1.4 Let a be a notation for a computable ordinal. A set A ⊆ ω of numbers
is said to be �−1

a (or A ∈ �−1
a ) if there are computable functions f (z, t) and γ (z, t)

such that, for all z and t ,

(1) A(z) = limt f (z, t), with f (z, 0) = 0 and range( f ) ⊆ {0, 1};
(2) γ (z, 0) = a, and

(a) γ (z, t + 1) �O γ (z, t) �O a;
(b) f (z, t + 1) �= f (z, t) ⇒ γ (z, t + 1) �= γ (z, t).

We call the function γ the mind-change function for A, relatively to f .

A �−1
a -approximation pair to a �−1

a set A, is a pair 〈 f , γ 〉, where f and γ are
computable functions satisfying (1), (2) above, for A. As is known (see, e.g., [22,24]
for more details), one can give an effective list of �−1

a -approximation pairs 〈 fe, γe〉,
so that if Ee is the set whose characteristic function is lims fe(_, s), then (Ee)e∈ω is
an effective list of all �−1

a sets. Clearly, we can also assume that for every e and s
there is at most one x such that fe(x, s + 1) �= fe(x, s). Note that we impose this
assumption only to the canonical enumeration of the sets lying at any given level of
the Ershov hierarchy, and not to the equivalence relations that we will construct. So,
we can also assume that for every e the following is true:

(*) for every s there are infinitely (in fact cofinitely) many x such that γe(x, s) = a.

Thus we can refer to some effective listing (Ee)e∈ω of the �−1
a sets, where Ee is the

set of which 〈 fe, γe〉 is a �−1
a -approximation pair, satisfying (*) as well.

123



Classifying equivalence relations in the Ershov hierarchy

Dually, we say that a set A is �−1
a , if A ∈ �−1

a , or equivalently there is a �−1
a -

approximation pair 〈 f , γ 〉, i.e. a pair as above but starting with f (z, 0) = 1. We can
refer to some effective listing (Ee)e∈ω of the �−1

a sets, where Ee is the set of which
〈 fe, γe〉 is a �−1

a -approximation pair, satisfying (*) as well.
If X ∈ {�−1

a : a ∈ O} ∪ {�−1
a : a ∈ O} let us call X d = {A : A ∈ X } the dual

class of X .
We say that a set A is properly X if A ∈ X � X d .
Since any finite ordinal has only one notation, one usually writes �−1

n instead of
�−1
a , if a is the notation of n ∈ ω. In analogy with the terminology used for sets, we

say that R is a n-ceer if R as a set of pairs is �−1
n .

2 A first comparison with ceers

At first sight, one might expect that the structural properties of the c-degrees of ceers
are reflected smoothly on the upper levels of the Ershov hierarchy. In this section we
show that the parallel is much more delicate.

2.1 Equivalence relations with finitely many classes

Recall that any ceer with finitely many classes is computable. Surely, this is not the
case for relations in the Ershov hierarchy. Denote by FX the equivalence relation with
exactly two classes: X and X . It is easy to check that FX is a noncomputable �−1

2n
relation if n > 0 and X ∈ �−1

n � �−1
n . Relations of the form FX already allow us

to demonstrate some simple differences concerning elementary theories of the degree
structures:

Proposition 2.1 Suppose that X ∈ {�−1
a : |a|O � 2} ∪ {�−1

a : |a|O � 3}. Then the
structure of X -equivalence relations is elementarily equivalent to neither ceers nor
co-ceers.

Proof Fix a c.e. setW such that degm(W ) is aminimalm-degree. Note that Id2 <c FW .
Suppose that E is an equivalence relation such that Id2 �c E �c FW . Then E is equal
to FV for some c.e. set V and the minimality of degm(W ) implies that either V is
computable or V ≡m W . Thus, we have E ≡c Id2 or E ≡c FW .

Hence, the desired elementary difference can be witnessed by the following argu-
ment:

(1) The (c-degree of the) relation Id1 is the least element under computable reducibil-
ity (in ceers, co-ceers, and X ).

(2) Id2 is the unique minimal c-degree over Id1 (in ceers, co-ceers, and X ).
(3) Inside X , one can find two incomparable elements x0 and x1 (namely, the c-

degrees of Id3 and FW ) such that Id2 < xi and ¬∃z(Id2 < z < xi ). Note that this
property fails for ceers and co-ceers.

The degree structure ofX -equivalence relations is elementary equivalent to the degree
structure of neither ceers nor co-ceers. ��
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2.2 Finite minimality

We move now to equivalence relations with infinitely many equivalence classes.
Notice that in the context of ceers, explored in [3], equivalence relations with

finitely many classes are computable, whereas this is not so in higher levels of the
Ershov hierarchy as witnessed by the two-classes equivalence relations of the form
FX . This suggests the following notion of minimality (called finite minimality) when
we work in the Ershov hierarchy.

Definition 2.2 An equivalence relation R is finitely minimal if S <c R implies that S
has only finitely many equivalence classes.

Observe also that if R is light and R �c Id, then R is not finitely minimal.
The previous definition does perfect justice to the notion of minimality for dark

equivalence relations, as it is easy to see (see [3] where the property is stated for ceers,
but it clearly holds of all equivalence relations) that if E is dark, R �c E and R
has infinitely many equivalence classes, then R is dark as well. So a finitely minimal
dark equivalence relation is exactly a minimal dark equivalence relation, i.e. a dark
equivalence relation for which there is no dark equivalence relation strictly below it.

One of the tools that will be useful to us is the collapse technique, extensively used
for ceers in [3]. If R is an equivalence relation and x�Ry, then the collapse Rcoll(x,y)
(denoted by R/(x,y) in [3]) is defined as

Rcoll(x,y) := R ∪ {(u, v) : u, v ∈ [x]R ∪ [y]R}.

We illustrate the technique by obtaining the next two results about finite minimality.

Lemma 2.3 Suppose that R is dark with a computable class. Then R cannot be finitely
minimal.

Proof Suppose that classes [a]R and [b]R are distinct, and [b]R is computable. Con-
sider the collapse S := Rcoll(a,b). Then (by essentially the same argument as in the
proof of [3, Lemma 2.6]) S is reducible to R by the function

f (x) =
{
x, if x /∈ [b]R,

a, otherwise.

Assume that g : R �c S. Consider the map h := f ◦ g and the h-orbit of b, i.e. the
set

orbh(b) = {hk(b) : k ∈ ω}.

It is easy to see that h : R �c R. We claim that the orbit orbh(b) consists of pairwise
non-R-equivalent elements: indeed, if hk(b) R hl(b) for k < l, then we have b R
hl−k(b), and range( f )∩[b]R �= ∅, which contradicts the choice of the map f . Hence,
orbh(b) is a c.e. transversal of R, and we obtain a contradiction with the darkness of
R. Therefore, we deduce that S <c R and R is not finitely minimal. ��
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Now we show that there are infinitely many levels of the Ershov hierarchy which
contain finitely minimal dark equivalence relations properly belonging to the level.

Theorem 2.4 Suppose that a ∈ O and |a|O � 1. Then there exists a finitely minimal,
dark equivalence relation R ∈ �0

2 � �−1
a .

Proof In the proof of [3, Theorem 3.3], Andrews and Sorbi constructed infinitely
many pairwise incomparable finitely minimal dark ceers Sl , l ∈ ω, with the following
property: for any e and l, if the c.e. set We intersects infinitely many Sl -classes, then
it intersects every Sl -class. We choose only one such ceer S := S0. As explained
in the introduction, fix a �−1

a list (Ee)e∈ω of all �−1
a sets (Ee)e∈ω. We build a �0

2
equivalence relation R with the following properties:

• R ⊇ S, and
• R �= Ee, for every e ∈ ω.

The construction proceeds in a straightforward 0′-effective manner. We choose a
0′-effective list {xe}e∈ω which enumerates representatives of all S-classes, without
repetitions (i.e. xi �Sx j for i �= j). We start with R[0] = S, i.e. S is the approximation
R[0] to R at stage 0.

Consider stage k. If x2k��Ekx2k+1, then R[k + 1] is equal to the collapse
R[k]coll(x2k ,x2k+1). Otherwise, R[k + 1] = R[k].

As per usual, set R = ⋃
k∈ω R[k]. First notice that R is �0

2: to see if x R y use
oracle 0′ to search for the unique h, k such that x S xh and y S xk , and then check if
xh = xk or xh and xk have been collapsed at stage [ h2 ]. Finally, it is not hard to show
that R has infinitely many classes, and R /∈ �−1

a .
Assume now that f : I d �c R. Since R ⊇ S, the map f is also a reduction from

I d to S, which contradicts the darkness of S. Thus, R is also dark.
Suppose that g : Q �c R and Q has infinitely many classes. Since Q contains

infinitely many classes, the set W := range(g) is a c.e. set which intersects infinitely
many R-classes. Recall that R ⊇ S, hence, W intersects infinitely many S-classes.
The choice of the ceer S implies that W intersects every S-class.

Now we build a map h as follows: fix an effective approximation {S[t]}t∈ω of the
ceer S and for a number x , define h(x) to be the first seen y such that g(y) S x : more
formally,

t(x) := μt[(∃y � t)((x, g(y)) ∈ S[t])],
h(x) := μy[(x, g(y)) ∈ S[t(x)]].

Since range(g) intersects every S-class, h is a computable function. We show that
h : R �c Q. Note that for any x, y ∈ ω, we have x S gh(x) and the following
conditions are equivalent:

h(x) Q h(y) ⇔ g(h(x)) R g(h(y)) ⇔ x R y.

Thus, we have Q ≡c R, and R is finitely minimal. Theorem 2.4 is proved. ��
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Note that, in the relation R from the theorem above, every R-class is a c.e. set.
Thus, R has the following curious property: if Q �c R and Q has only finitely many
classes, then Q ≡c I dn for some n ∈ ω.

2.3 Failure of inversion lemma

A fundamental technique when studying ceers is provided by the following result: see
for instance [3, Lemma 1.1].

Lemma 2.5 (Inversion lemma). Suppose that R, S are ceers and R �c S via f . If
f hits all the equivalence classes of S (i.e. range( f ) intersects every S-class), then
S �c R.

The Inversion lemma does not hold, in general, for the Ershov hierarchy. In fact, it
fails already for 2-ceers:

Lemma 2.6 There is an equivalence relation R ∈ �−1
2 � �−1

1 such that I d �c R via
a function f which is surjective on the equivalence classes of R.

Proof Fix a noncomputable c.e. set X . Split ω into four computable parts: A =
{a0, a1, a2, . . . }, B={b0, b1, b2, . . . },C={c0, c1, c2, . . . }, and D={d0, d1, d2, . . . }.

The relation R is given by its equivalence classes: for every i ∈ ω,

• If i /∈ X , then R contains disjoint classes {ai , ci } and {bi , di }.
• If i ∈ X , then there are R-classes {ai , di } and {bi , ci }.

It is clear that R is not a ceer, and the function

f (2i) = ai , f (2i + 1) = bi ,

gives a reduction from I d to R, hitting all the R-classes. Furthermore, R is a 2-ceer,
since after separating two classes in the approximation of R (due to some i being
enumerated in X ), we never merge them again. ��
Lemma 2.7 For any dark �0

2 equivalence relation R, there are a dark equivalence
relation R <c S and a reduction f : R �c S such that f hits all the S-classes.

Proof Fix a dark ceer Q. Choose a 0′-effective list {ri }i∈ω of representatives of all
R-classes, without repetitions. Similarly, choose a 0′-effective list {qi }i∈ω for repre-
sentatives of Q-classes.

The construction is given in a 0′-computable way. At stage 0, set S[0] := R ⊕ Q.
At stage e + 1, if ϕe(2re) ↓�Rϕe(2qe + 1) ↓, then set S[e + 1] := S[e]coll(2re,2qe+1).
Otherwise, define S[e + 1] := S[e]coll(0,2qe+1).

It is not hard to show that the constructed S is �0
2, and S �c R. Moreover, the

function f : x �→ 2x gives a reduction of R to S, hitting all the S-classes.
Assume that g : I d �c S. Then either range(g) contains infinitely many even

numbers or infinitely many odd numbers. In any case, this leads to a contradiction
with darkness of R or Q, thus, S is dark. ��
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3 Dark equivalence relations in the Ershov hierarchy

In this section, we show that the phenomenon of darkness is rather pervasive: with
the exception of the co-ceers, dark degrees exist properly at each level of the Ershov
hierarchy. In the construction of these degrees we also develop some strategies that
will be helpful in further sections, when the focus will be in on the existence of infima
and suprema of c-degrees.

Proposition 3.1 There are no dark co-ceers.

Proof Suppose that R ∈ �0
1. If R has finitely many equivalence classes, then it is

trivially not dark. Hence, assume there exist infinitely many R-classes. We prove that
R is light by inductively building the following c.e. transversal of R: Let x0 = 0 and
let xi+1 be any number z such that, for all j � i , (x j , z) /∈ R. Such a z must exist
(otherwise, there would be only finitely many R-classes) and, since R is co-c.e. will
be found effectively. ��
Theorem 3.2 IfX ∈ {�−1

a : a ∈ O, |a|O � 1}∪ {�−1
a : a ∈ O, |a|O > 1} then there

is a dark equivalence relation having only finite equivalence classes, and properly
lying in X .

Remark 3.3 Theorem 3.2 can be obtained as a corollary of Theorem 4.6. For the sake
of exposition, being the proof of Theorem 4.6 more complicated, we shall provide
a proof of Theorem 3.2 nonetheless. This might help the reader to familiarize, in a
simpler context, with the techniques required for Theorem 4.6.

Proof of Theorem 3.2 Let us start with the caseX = �−1
a , |a|O � 1. We want to build

an equivalence relation R satisfying the following requirements, for every e ∈ ω:

Fe : [e]R is finite,

Pe : We is not a transversal for R,

Qe : R �= Ee,

where (Ee)e∈ω is a listing of the�−1
a sets as explained in the introduction, with 〈 fe, γe〉

a �−1
a -approximation pair to Ee satisfying also (*).
Let us define the priority ordering of the requirements as

F0 < Q0 < P0 < · · · < Fe < Qe < Pe < · · · .

We build computable functions f (x, s) and γ (x, s) so that the pair 〈 f , γ 〉 is a
�−1
a -approximation pair (in the sense of Definition 1.4) to a �−1

a equivalence relation
R defined as

x R y ⇔ lim
s

f (〈x, y〉, s) = 1,

satisfying the given requirements. In fact at step s we define a computable set R[s],
where x R[s] y ⇔ f (〈x, y〉, s) = 1, and thus x R y if and only if x R[s] y for
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cofinitely many s. Except for R[0], which is the empty set, for every s > 0 R[s] is
an equivalence relation in which almost all equivalence classes are singletons. Notice
that we do not define here R[0] = Id, as would be perhaps more appropriate by
the reflexivity property of equivalence relations, because we want to accompany the
definition of R with an accompanying �−1

a -approximation pair 〈 f , γ 〉 to R so that f
must start with f (x, 0) = 0, for every x .

Strategies for the requirements and their interactions The strategy for Fe requires
that no lower priority requirement modify [e]R , which is therefore eventually finite
because only higher priority requirements may contribute with their actions to add
elements to [e]R (we will see that every requirement may act only finitely many
times).

For the Q-requirement Qe we appoint as witness a pair (xe, ye), with (xe, ye) ∈
2ω × (2ω + 1): we will in fact choose (xe, ye) of the form (xe, ye) = (2i, 2i + 1)
for some i . The reason we choose xe to be even and ye to be odd is for the sake
of P-requirements. The requirement Pe waits for We to enumerate a pair of distinct
numbers u, v, both even, or both odd, which avoid the finitely many classes restrained
by higher priority requirements.When found, it simply R-collapses u, v (if not already
collapsed): this ensures that We is not a transversal for R. Notice that if We is infinite
then by the Pigeon Hole Principle it either contains infinitely many even numbers or
infinitely many odd numbers. We will see by Lemma 3.4 that Pe will not be restrained
by �−1

a -ness from R-collapsing two even numbers or two odd numbers, since the
construction will ensure that a necessary condition, at any stage s, for which we may
have f (〈x, y〉, s) = 0 but already γ (〈x, y〉, s) = 1, is that x, y have different parity.

When at a stage s0 we appoint (xe, ye), wemay assume by (*) that fe(〈xe, ye〉, s0) =
1 and γe(〈xe, ye〉, s0) = a: so we start up with having (xe, ye) not in R, i.e.,
f (〈xe, ye〉, s0) = 0, and γ (〈xe, ye〉, s0) = a. Every time we see, after this,
fe(〈xe, ye〉, s + 1) �= fe(〈xe, ye〉, s) , we change accordingly f (〈xe, ye〉, s + 1) as to
have

f (〈xe, ye〉, s + 1) �= fe(〈xe, ye〉, s + 1),

and we define

γ (〈xe, ye〉, s + 1) := γe(〈xe, ye〉, s + 1).

In this way Qe is able to diagonalize against Ee at the witness (xe, ye), consistently
with R being in �−1

a . When we choose xe and ye we choose them big enough so that
the corresponding finiteness requirements Fxe and Fye follow Qe in the priority listing
of the requirements, so that they do not impose any restraint to Qe, which of course
sets up a restraint requiring that no lower priority requirement modify the equivalence
classes of xe and ye.

The construction The construction is in stages: at stage s we define the approximation
R[s] to R, and the approximations to the various parameters (xe, ye). We will often
omit to mention the stage to which a given parameter is referred, if this is clear from
the context. Unless otherwise specified, at each stage each parameter keeps the same
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value as at the previous stage. To initialize a Q-requirement at stage s means to set
as undefined at that stage the current value of its witness. A pair (xe, ye) is an active
witness for Qe at stage s if the pair has been appointed as a witness for Qe at some
previous stage, and has never been canceled thereafter. We say that a requirement Pe
is inactive at the end of stage s if there are already distinct numbers u, v ∈ We such
that u R v at the end of stage s; it is active otherwise.

A requirement T requires attention at stage s + 1 if either

(1) T is initialized; or
(2) one of the following holds, for some e:

(a) T = Pe, Pe is active at the end of s, and at the current stage there is a pair
of distinct numbers u, v ∈ We both even or both odd, and u, v bigger than all
numbers in the union of all current equivalence classes of numbers i � e, and
xi , yi , for i � e (in this way, u, v are respectful of the restraint imposed by
higher priority requirements);

(b) T = Qe and f (〈xe, ye〉, s) = fe(〈xe, ye〉, s+1), where (xe, ye) is the witness
of T at the end of stage s.

Stage 0 Initialize all Q-requirements. Define f (x, 0) := 0 and γ (x, 0) := a for all x ;
consequently R[0] = ∅.
Stage 1 Define f (〈x, x〉, 1) := 1 and γ (〈x, x〉, 1) := 1 for all x , leaving f (_, 1) :=
f (_, 0) and γ (_, 1) := γ (_, 0) the other values of f and γ . Consequently, R[1] = Id.
[Recall that |1|O = 0. Notice that for every s � 1, we will have x R[s] x , so there
will never be need to redefine γ (〈x, x〉, _).] Therefore we can say that the construction
essentially starts (with R = Id) at stage 1 instead of 0.

Stage s + 1 � 2 Consider the highest priority requirement T that requires attention.
(Notice that there is always such a requirement since at each stage almost all Q-
requirements are initialized.) Action:

(1) If T is initialized, then T = Qe for some e: choose a fresh witness (xe, ye) for
T , i.e. xe = 2i and ye = 2i + 1, where i is bigger than all numbers so far used
in the construction (either as components of witnesses, or as numbers involved
in collapses demanded by P-requirements, bigger than all numbers in the current
equivalence classes [ j]R , for j � e, and so that Qe precedes F2i and F2i+1 in the
priority listing of the requirements). Notice that because of (*) in the definition of
a �−1

a -approximation, we may as well suppose that still fe(〈xe, ye〉, s + 1) = 1,
f (〈xe, ye〉, s) = 0, and γe(〈xe, ye〉, s + 1) = γ (〈xe, ye〉, s) = a.

(2) Otherwise:

(a) if T = Pe then pick the least pair u, v as in the definition of requiring attention;
define, for any x, y ∈ [u]R[s]∪[v]R[s], f (〈x, y〉, s+1) := 1 and γ (〈x, y〉, s+
1) := 1;

(b) if T = Qe then define f (〈xe, ye〉, s + 1) so that f (〈xe, ye〉, s + 1) �=
fe(〈xe, ye〉, s + 1), and γ (〈xe, ye〉, s + 1) := γe(〈xe, ye〉, s + 1), so that
we diagonalize R against Ee. [Notice that by Lemma 3.4, f (_, s + 1) will
still the characteristic function of an equivalence relation.]
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R[s+1] is consequently the equivalence relation having f (_, s+1) as characteristic
function. This is the end of the stage. Initialize all lower priority Q-requirements.

The verificationAn easy inductive argument shows that for every requirement T there
is a least stage tT such that no T ′ of higher priority than T , nor T itself, requires
attention or acts at any s � tT . Indeed suppose that this is true for every T ′ of higher
priority than T . Then there is a least stage t such that no such T ′ requires attention after
t . So either T = Pe and thus T may act at most once after t ; or T = Qe and thus T
may require attention a first time to appoint the final value of its witness (xe, ye) (this
value will never be canceled, because T will never be re-initialized again, as no higher
priority T ′ will ever act again), and subsequently finitely many times in response to
the finitely many changes of fe(〈xe, ye〉, s). In any case this shows that tT exists.

Lemma 3.4 For every e, s, if (xe, ye) is still an active witness for Qe at s, then at that
stage [xe]R ∪ [ye]R = {xe, ye}, each equivalence class among [xe]R and [ye]R being
a singleton if and only if fe(〈xe, ye〉, s) = 1. Moreover, if distinct u, v have the same
parity then f (〈u, v〉, _) may change at most once from value 0 to 1 in response to the
action of some P-requirement which becomes inactive.

Proof Suppose that (xe, ye) is active at s, and let t � s be the stage at which this
witness has been appointed for Qe. Then the restraint imposed by Qe prohibits any
modification of the equivalence classes of xe, ye done by any lower priority require-
ment. Such a modification can only be performed by a higher priority requirement
Pi , but if such a requirement has acted after t , then the witness (xe, ye) has been
re-initialized and thus canceled.

The latter claim about the number of changes of f (〈u, v〉, _) if u, v are distinct and
have the same parity follows from the fact that by the first part of this lemma the value
f (〈u, v〉, _) is not changed by any Q-requirement, so if the value f (〈u, v〉, 1) = 0 is
later changed from 0 to 1 then this is due to a P-requirement, which becomes inactive,
and by choice of u, v and the first part of this lemma this change is never revoked by
any higher priority Q-requirement. ��

This enables us to show also that T is in the end satisfied. This claim is evident if
T = Fe as after tQe no P-requirement can add numbers to [e]R because of the restraint
imposed by Fe. This shows that each R-equivalence class is finite.

The claim is also evident if T = Qe as T is by Lemma 3.4 the only requirement
which is entitled to move its final witness (xe, ye) in or out of R.

To show that T is satisfied if T = Pe, assume that We is infinite. Since the witness
(xe, ye) reaches a limit, and all equivalence classes are finite, it follows thatWe contains
at least two even numbers respectful (as specified in the definition of Pe requiring
attention) of the restraint imposed by higher priority requirements, so that at some
point we are able to R-collapse such a pair u, v if Pe is still active. So if We is infinite
then it can not be a transversal of R.

By Lemma 3.4 it is also clear that R ∈ �−1
a , and the pair 〈 f , γ 〉 is a �−1

a -
approximation to R. Indeed, any action at stage s + 1 which makes f (x, s +
1) �= f (x, s) is accompanied by a corresponding definition of γ which makes
γ (x, s + 1) <O γ (x, s). For instance, if we act due to (2a) then γ (〈u, v〉, s) = a,
hence γ (〈u, v〉, s + 1) = 1 <O a = γ (〈u, v〉, s).
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Finally, we consider the case when X = �−1
a for some notation a with |a|O > 1.

The construction is virtually the same as in the dual case. We start with R[0] = Id1
by defining f (x, 0) := 1 and γ (x, 0) := a for every x . Next, we take R[1],

x R[1] y ⇔ x = y ∨ (∃i)[{x, y} = {2i, 2i + 1}]
[recall that we pick witnesses (xe, ye) to be of the form (2i, 2i + 1)] by suitably
defining f and γ : in particular

γ (〈x, y〉, 1) =
{
a, if x = y ∨ (∃i)[{x, y} = {2i, 2i + 1}],
2, otherwise,

where we have used the assumption that |a|O > 1. The construction now mim-
ics the one for the �−1

a case, essentially starting from stage 1. The idea is to make
the first non-trivial approximation R[1] to R to look very much like Id (as in the
proof of Theorem 3.2), except for pairs of the form (2i, 2i + 1) for which we do not
want to add an extra initial change which could spoil our possibility of playing the
extraction/enumeration game exploited by the diagonalization strategies. This allows
a requirement Pe to be able, if it requires attention, to R-collapse pairs of numbers
of the same parity that have been set as non-R-equivalent at stage 1 (when we have
defined γ to be 2 for these pairs). ��

4 The problem of the existence of infima

Let us fix a notation a for a non-zero computable ordinal. The following observation
is straightforward.

Fact 4.1 The poset of degrees of �−1
a equivalence relations is not a lower-semilattice.

Proof This follows immediately from the fact that the degrees of ceers forms an initial
segment of the degrees of �−1

a equivalence relations, and on the other hand ceers are
known not to form a lower-semilattice, see for instance [3]. ��

We will show however that we can find properly �−1
a equivalence relations with

no inf, proving that the c-degrees of �−1
a � �−1

a equivalence relations do not form a
lower-semilattice.

Andrews and Sorbi [3] showed that many questions about the degree structure of
ceers can be fruitfully tackled by inspecting the interplay between light and dark ceers.
By lifting our focus to the class of �0

2 equivalence relations, we need to introduce the
following relativized version of Definition 1.3, which stands as a natural companion
of the analysis of the complexity of transversals of a given ceer provided in [14].

Definition 4.2 Let R be an equivalence relation, and A any set of numbers. R is A-dark
if R is infinite and has no A-transversal, i.e. there is no infinite A-c.e. set W A

e such
that, for all distinct u, v ∈ W A

e , one has u�Rv.
Two equivalence relations R, S are mutually dark if R is S-dark, and S is R-dark.

Notice.
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Proposition 4.3 If R, S are mutually dark then they are dark.

Proof In fact, if R is such that there is a set A such that R has no A-c.e. set as a
transversal then R is dark. This follows from the fact that a c.e. set is A-c.e. relatively
to every oracle A. ��

ByTheorem4.6, we prove thatmutually dark equivalence relations exist at all levels
of the Ershov hierarchy. But before that, let us offer a nice alternative characterization
of mutual darkness. We first need to relativize computable reducibility in an obvious
way (as in [14], where the complexity of d-computable reductions is considerably
explored): Letd be aTuringdegree. R isd-computably reducible to S, denoted R �d S,
if there is a total d-computable function f such that, for all x, y ∈ ω,

x R y ⇔ f (x) S f (y).

Definition 4.4 Define R|d S if R, S are infinite and R �degT (R) S and S �degT (S) R.

Hence, R|d S holds if the information of neither of the two equivalence relations
is enough by itself to compute a reduction into the other. The next proposition shows
that this is the same as asking that R and S are mutually dark.

Proposition 4.5 R|d S if and only if R, S are mutually dark.

Proof Let R, S be infinite equivalence relations.
Suppose that R is not S-dark, and let g be an S-computable function which lists

a transversal of R. We claim in this case that S �degT (S) R. Indeed, a suitable S-
computable function reducing S to R can be defined by induction as follows: f (0) :=
g(0); and

f (n + 1) :=
{
f (i), if i least such that i � n and i S n + 1,

g(n + 1), if there is no i � n such that i S n + 1.

In a similar way one can show that if S is not R-dark then R �degT (R) S.
Vice versa suppose that S �degT (S) R, via a function f ∈ degT (S). As S is infinite,

let g be an S-computable function listing a transversal for S. Then the function f ◦ g
is S-computable and lists a transversal of R. Thus R is not S-dark. In a similar way,
one shows that if R �degT (R) S then S is not R-dark. ��

Theorem 4.6 IfX ∈ {�−1
a : a ∈ O, |a|O � 1}∪ {�−1

a : a ∈ O, |a|O > 1} then there
exist mutually dark equivalence relations having only finite classes, and properly lying
in X .
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Proof Let us start again with the caseX = �−1
a , with |a|O � 1.We build equivalence

relations U , V satisfying the following requirements, for every e ∈ ω:

FU
e : [e]U is finite,

FV
e : [e]V is finite,

PU
e : WU

e is not a transversal for V ,

PV
e : WV

e is not a transversal for U ,

QU
e : U �= Ee,

QV
e : V �= Ee,

where (Ee)e∈ω is an effective listing of the �−1
a sets, with 〈 fe, γe〉 a �−1

a -
approximation pair to Ee, satisfying (*). We build U , V via defining �−1

a -
approximation pairs 〈 f U , γU 〉 and 〈 f V , γ V 〉 to U , V respectively.

The priority ordering of the requirements is

FU
0 < FV

0 < QU
0 < QV

0 < PU
0 < PV

0 < · · ·
< FU

e < FV
e < QU

e < QV
e < PU

e < PV
e < · · · .

Strategies for the requirements and their interactions The strategies for the require-
ments are essentially the same as the ones for the “corresponding” requirements in
the proof of Theorem 3.2. The additional complication is due to the fact that we have
also sometimes to preserve certain Turing-computations. For this reason we will view
the restraint imposed at any stage by a P-requirement R as a finite binary string rR,U

or rR,V : if S ∈ {U , V } the string rR,S extends r−
R,S (i.e. rR,S ⊇ r−

R,S) which repre-
sents the restraint coming at that stage from the higher priority P-requirements (the
string r−

R,S is empty if R is not preceded in the priority ordering by any higher priority
P-requirement); in turn, rR,S is a string which lower priority requirements are bound
to preserve if R is not re-initialized: this string automatically becomes rR,S = r−

R′,S
where R′ is the requirement immediately following R in the priority ordering. The
strings r−

R,S and rR,S depend of course on the stage: we denote by r
−
R,S(s) and rR,S(s)

their values at stage s.
The strategy for R = FU

e (the one for FV
e is similar) sets up a restraint requesting

that no lower priority requirement change [e]U .
The strategy for R = QU

e (the one for QV
e is similar) works with a suitable witness

(xUe , yUe ) ∈ 2ω × (2ω + 1), consisting as in the proof of Theorem 3.2 of numbers of
the form (2i, 2i + 1), and sets up a restraint to preserve the U -equivalence classes of
xUe and yUe . We assume we have chosen 2i and 2i + 1, so that QU

e precedes FU
2i and

FU
2i+1 in the priority listing of the requirements, so that the latter two requirements do

not impose any restraint to QU
e .

Let us now consider a P-requirement R = PU
e (the case R = PV

e is similar). The
strategy for PU

e consists in seeing if we can define U , V so that there are distinct
u, v ∈ WU

e of the same parity, and u, v can be V -collapsed without injuring higher
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priority restraints. It sets up a restraint asking that the initial segment rR,U of the
characteristic function of U , sufficient to keep u, v ∈ WU

e , be preserved.
Due to the action of higher priority requirements, P- and Q-requirements may

have to be (re-)initialized as in the proof of Theorem 3.2, by setting their parameters
as undefined (in the case of a PS-requirement this entails that all rR′,S are set to be
undefined, for all lower priority R′); moreover, as in that proof, when at any stage
s + 1 a PU -requirement V -collapses a pair of distinct numbers, then this collapse is
forever, reflected in the fact that we define γ V (〈u, v〉, s + 1) = 1: the same applies of
course for the symmetric case, where the roles of U and V are interchanged.

A requirement R requires attention at stage s + 1 if either

(1) R is initialized and R is a Q-requirement; or
(2) one of the following holds,with e ∈ ω and S ∈ {U , V } (we assume for definiteness

S = U , the other case being similar and treated by interchanging the roles of U
and V ):

(a) R = PU
e , R is active at the end of s (i.e. it is not the case that at s + 1, rR,U

has been already defined and there are already distinct numbers u, v with
u, v ∈ W

rR,U
e and u V [s] v), and there are now a string σ and a pair (u, v) of

distinct numbers of the same parity such that:
(i) r−

R,U ⊆ σ ⊂ U [s] (the latter inclusion means that σ is an initial segment
of the characteristic function of U [s]), and u, v ∈ W σ

e ;
(ii) V [s]coll (u,v) and V [s] give the same equivalence classes relatively to

the V -equivalence classes restrained by higher priority FV - and QV -
requirements, and the V -collapse of the equivalence classes of u, v does
not alter r−

R,V .

(b) R = QU
e and f U (〈xUe , yUe 〉, s) = fe(〈xUe , yUe 〉, s+1), where (xUe , yUe ) is the

witness of R at the end of stage s.

The construction At stage s we define approximations to f S(_, s) and γ S(_, s) for
S ∈ {U , V } (if s > 0 then U [s] and V [s] will be the equivalence relations having
f U (_, s) and f V (_, s) as characteristic functions, respectively: in this case, it will be
clear from the construction thatU [s] andV [s] are equivalence relationswith only finite
equivalence classes and such that almost all equivalence classes are singletons; on the
other hand we define S[0] := ∅), and the approximations to the various parameters,
including rR,S and r−

R,S . We will often omit to mention the stage to which a given
parameter is referred, if this is clear from the context. Unless otherwise specified at
each stage each parameter keeps the same values as at the previous stage.

Stage 0 Initialize all P- and Q-requirements; for S ∈ {U , V } define f S(x, 0) := 0
and γ S(x, 0) := a for all x ; consequently S[0] = ∅.
Stage 1 For S ∈ {U , V } define f S(〈x, x〉, 1) := 1 and γ S(〈x, x〉, 1) := 1 for all
x , keeping the values already defined at 0 for the other values of both f S(_, 1) and
γ S(_, 1). Consequently, S[1] = Id.

Stage s + 1 � 2 Consider the highest priority requirement R that requires attention.
(Notice that there is always such a requirement since at each stage almost all Q-
requirements are initialized.) Action:
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(1) If R is initialized, then R = QS
e for some e and S ∈ {U , V }. Assume S = U : the

other case is similar, and is treated by interchanging the roles of U and V . As in
the proof of Theorem 3.2 choose a fresh witness (xUe , yUe ) for R, i.e. (xUe , yUe ) =
(2i, 2i + 1) where i is bigger than all numbers so far used in the construction,
bigger than the length of r−

R,U , and QU
e precedes FU

2i and FU
2i+1 in the priority

listing of the requirements: by property (*) of the�−1
a -approximation pair 〈 fe, γe〉

we may suppose that fe(〈xUe , yUe 〉, s + 1) = 1 but f U (〈xUe , yUe 〉, s) = 0, and

γe(〈xUe , yUe 〉, s + 1) = γU (〈xUe , yUe 〉, s) = a.

For each S ∈ {U , V } define the values of f S and γ S at s + 1 to be the same as at
s; consequently U [s + 1] = U [s], and V [s + 1] = V [s].

(2) Otherwise:

(a) R = PS
e for some e and S ∈ {U , V }, and Pe is still active. Suppose that S = U :

the other case is similar, and is treated by interchanging the roles ofU and V .
Then pick the least (by code) triple (σ, u, v) as in the definition of requiring
attention; define rR,U := σ . On pairs 〈x, y〉 that are V -collapsed following
the V -collapse of u and v performed by PU

e , define f V (〈x, y〉, s + 1) := 1
and γ V (〈x, y〉, s+1) := 1, leaving untouched the other values of f V and γ V ;
let also the values of f U and γU at s + 1 be the same as at s. Consequently
U [s + 1] = U [s] and V [s + 1] = V [s]coll (u,v).

(b) T = QS
e . Assume that S = U : the other case is similar, and is treated by

interchanging the roles of U and V . Define f U (〈xUe , yUe 〉, s + 1) so that
f U (〈xUe , yUe 〉, s + 1) �= fe(〈xUe , yUe 〉, s + 1) and γU (〈xUe , yUe 〉, s + 1) :=
γe(〈xUe , yUe 〉, s+1), so that we diagonalizeU against Ee at witness (xUe , yUe );
leave untouched the other values of f U and γU , and let the values of f V and
γ V at s+1 be the same as at s. Consequently V [s+1] = V [s] andU [s+1] is
the equivalence relation such that xUe U [s + 1] yUe if and only if xUe ���U [s]yUe
and coinciding with U [s] on all other pairs. (As remarked in the verification,
no number x /∈ {xUe , yUe } lies in the U -equivalence classes of xUe , yUe .)

In all cases when we do not redefine rR,S , let rR,S := r−
R,S , or rR,S is the empty string

if R is not preceded by PS-requirements. At the end of the stage, initialize all P- and
Q-requirements, having lower priority than the requirement that has acted.

The verification A standard inductive argument shows that for every requirement R
there is a least stage tR such that no R′ of higher priority than R nor R itself requires
attention or acts at any s � tR . Hence all parameters for R, including witnesses
(x Si , ySi ) and the restraints rR,S, r

−
R,S , for S ∈ {U , V }, reach a limit.

An argument similar to Lemma 3.4 enables us to conclude that for every e, s, if
(x Se , ySe ) is still an active witness for QS

e at s, then at that stage [x Se ]S ∪ [ySe ]S =
{x Se , ySe }, each equivalence class among [x Se ]S and [ySe ]S being a singleton if and only
if f Se (〈x Se , ySe 〉, s) = 1.

Moreover, by arguments similar to those in the proof of Lemma 3.4, all U - and
V -equivalence classes are finite. Finally, all other requirements R are satisfied. Let us
check this in the particular case R = PU

e , leaving the other cases to the reader. Let
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t ′R be a stage after which no requirement R′ having higher priority than R requires
attention and the finite amount of restraint, imposed (including the strings r−

RU
and

r−
RV

) imposed by higher priority requirements, does not change any longer. Suppose

now that WU
e is infinite. Then by the finiteness of r−

R,U , r
−
R,V , and of the finitely

many equivalence classes restrained by the higher priority requirements, after t ′R WU
e

certainly enumerates a pair of distinct u, v of the same parity which can be safely
V -collapsed. Then after t ′R eventually there are σ, u, v which are eligible to make Pe
require attention if Pe is still active. In this case, when this happens, the action required
by the construction restrains u, v ∈ WU

e and permanently makes u V v, achieving
that WU

e is not a transversal for V .
Finally, by an argument similar to the one employed in the proof of Theorem 3.2

one can also conclude that U , V ∈ �−1
a , as the pairs 〈 f U , γU 〉 and 〈 f V , γ V 〉 are

�−1
a -approximation pairs toU , V , respectively. With respect to Theorem 3.2, there is

indeed the additional restraining activity required by P-requirements to be accounted
for, when at a stage s + 1 we define rR,S = σ for a suitable σ , but since σ ⊂ S[s] this
action does not introduce any changes in γ S(_, s + 1).

To finish off the proof, the case whenX = �−1
a for some notation a with |a|O > 1

is treated exactly as in Theorem 3.2. ��
As anticipated by Remark 3.3, Theorem 3.2 immediately follows from Theorem

4.6 and Proposition 4.3.
Our goal now is to prove that no pair of mutually dark equivalence relations can

have infimum. To show this, we make use of the operation R �→ R⊕Id1, that has been
greatly exploited in [3]. This operation can be viewed as an inverse of the operation on
equivalence relations obtained by collapsing two equivalence classes, and leading from
an equivalence relation R to Rcoll(x,y). In fact, if R is an equivalence relation and z is a
number such that [z]R is not a singleton, then define R[z] to be the equivalence relation

x R[z] y ⇔ x = y ∨ [x R y& z /∈ {x, y}].

So we see that in getting R[z] instead of collapsing two equivalence classes we do
exactly the opposite, i.e. splitting an equivalence class into two classes. We have:

Lemma 4.7 For every z such that [z]R is not a singleton, R ⊕ Id1 ≡c R[z].

Proof To show R[z] �c R ⊕ Id1, consider the computable function f where

f (x) =
{
1, if x = z,

2x, if x �= z.

To show R ⊕ Id1 �c R[z], pick y �= z in the equivalence class of z, and consider the
computable function g,

g(x) =

⎧⎪⎨
⎪⎩

x
2 , if x even and x

2 �= z,

y, if x even and x
2 = z,

z, if x is odd.

��
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The following lemma has been proved in [3] for ceers (see Observation 4.2 and
Lemma 4.6 of [3]), but the same proof works whatever equivalence relation R one
starts with.

Lemma 4.8 If R is dark then R <c R ⊕ Id1.

Proof We recall how the proof goes. First of all, one shows that if R is dark then R is
self-full i.e. any reduction f : R �c R must have range that intersects all equivalence
classes: indeed, if f were a reduction missing, say the equivalence class of a, then
the orbit orb f (a) would be easily seen to provide a transversal for R. Next, one easily
shows that if S is a self-full equivalence relation then S <c S⊕ Id1 (in fact it is shown
in [3] that S is self-full if and only if S <c S ⊕ Id1). ��
Lemma 4.9 If R, S ∈ �−1

a and R|d S then R, S do not have inf in the�−1
a equivalence

relations.

Proof Let R, S ∈ �−1
a be such that R|d S, and suppose that T is an infimum of R, S

in �−1
a , i.e. T �c R, S and for every Z such that Z �c R, S we have Z �c T . It is

clear that T is not finite. Let f , g be computable functions reducing T to R and S. We
claim that f and g do not hit respectively all the R-classes and all the S-classes, i.e.
there exist numbers yR, yS such that for every x , f (x)�RyR and g(x)�SyS , respectively.
Suppose for instance that for every y there exists x such that f (x) R y. Then it is easy
to define an R-computable function f ∗ reducing R �c T : just set f ∗(y) = x where
x is the least number such that f (x) R y. It follows that g ◦ f ∗ is an R-computable
function reducing R �degT (R) S contradicting that R|d S. In a similar way one shows
that the range of g avoids some S-classes.

We now derive a contradiction by showing that T ⊕ Id1 �c R, S and applying
Lemma 4.8. We use the existence of yR to show that a suitable reducing computable
function f − reducing T ⊕ Id1 to R is given by

f −(x) =
{
f (x), if x even,

yR, if x odd.

A similar argument shows that T ⊕ Id1 �c S. ��
We are now in a position to prove.

Theorem 4.10 For a ∈ O such that |a|O > 0, there are two properly�−1
a equivalence

relations without infimum.

Proof By Theorem 4.6 and Lemma 4.5 let R, S be two equivalence relations lying
properly in �−1

a such that R|d S. Then by Lemma 4.9 R and S have no inf. ��
Having shown that no pair of mutually dark c-degrees can have infimum, it is

natural to ask whether one can obtain the same with dark equivalence relations. The
next result answers negatively this question: there are infinitely many levels of the
Ershov hierarchy which properly contain a pair of c-incomparable dark equivalence
relations with infimum. This contrasts to the case of ceers (where no pair of dark ceers
have infimum, see [3]) and thus vindicates the idea that mutual darkness is the correct
analogous of darkness for �0

2 equivalence relations.
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Theorem 4.11 (1) There are c-incomparable dark equivalence relations R, S ∈ �−1
2

such that R and S have an infimum.
(2) For every a ∈ O such that |a|O > 0, there are dark �0

2 equivalence relations
E, F /∈ �−1

a such that E and F have an infimum.

Proof (1) Let (xm, ym) be aminimal pair of c.e.m-degrees.We choose c.e. sets X ∈ xm
and Y ∈ ym . We also choose a dark ceer Q.

We will show that the equivalence relations R := FX ⊕ Q and S := FY ⊕ Q have
infimum T = Id2 ⊕Q (recall that by FX we denote the equivalence relation consisting
of exactly two classes: X and X ). It is clear that T is a lower bound for R and S, and
R and S are �−1

2 relations. In addition, the darkness of Q ensures that R and S are
dark.

Assume that E is a lower bound of R and S. Consider a reduction g : E �c R.
Then exactly one of the following three cases holds:

(a) range(g) does not contain even numbers. Then the function g1 : x �→ [g(x)/2] is
a reduction from E to Q, and we have E �c Q �c T .

(b) There is only one class [w]E such that g([w]E ) ⊆ 2ω. Then the set [w]E is
computable, and the function

g2(x) :=
{
0, if x E w,

g(x), otherwise;
gives a reduction from E to Id1 ⊕Q. Thus, E �c Id1 ⊕Q �c T .

(c) There are two different classes [u]E and [v]E such that g([u]E ∪ [v]E ) ⊆ 2ω.
Note that if x�Eu and x�Ev, then g(x) must be an odd number.
We distinguish two cases. If the class [u]E is computable, then it is easy to
show that E �c Id2 ⊕Q. Assume that [u]E is non-computable. Without loss of
generality, suppose that [u]E is a co-c.e. set and [v]E is c.e. Hence, [u]E �m X .
Recall that E �c S, and the relation S contains only one non-computable co-c.e.
class, namely, the S-class {2z : z ∈ Y }. Thus, we deduce that [u]E �m Y . Hence,
the choice of the sets X and Y implies that the set [u]E must be computable
(as its complement would be m-reducible to both X and Y , and thus would be
computable), which gives a contradiction.

In each of the cases above, we showed that E �c T , therefore, T is the greatest lower
bound of R and S.

(2) The proof of the second part is similar to the first one, modulo the following
key modification: One needs to choose �0

2 sets X and Y such that X ,Y /∈ �−1
a and

the m-degrees degm(X) and degm(Y ) form a minimal pair. The existence of such sets
is guaranteed by the following more general theorem: we prove that, in any �-level
of the Ershov hierarchy that corresponds to a successor ordinal (i.e., having notation
2a for some a), there are T -degrees that form a minimal pair and do not contain any
set of a lower �-level. Note also that any minimal pair with respect to �T is also a
minimal pair with respect to �m .

Theorem 4.12 For every notation a ∈ O, there are �−1
2a sets X ,Y such that degT (X)

and degT (Y ) form a minimal pair and do not contain �−1
a sets.
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Proof This theorem is a combination of the two following results. The first one is
Selivanov’s result [24] about properness of every level in the Ershov hierarchy relative
to Turing reducibility. The second one is Yates’ construction of a minimal pair of c.e.
Turing degrees (see, e.g., [25]). Below we sketch how these two constructions can be
combined together.

We satisfy the following infinite sequence of requirements (recall that, by Posner’s
trick, we can consider the same index in an N -requirement, see [25]):

Ne : 	X
e = 	Y

e = f is total ⇒ f is computable,

QX
e : X �= 
Ee

e ∨ Ee �= �X
e ,

QY
e : Y �= 
Ee

e ∨ Ee �= �Y
e ,

where {	e}e∈ω is an effective list of all Turing functionals, and {
e,�e, Ee}e∈ω is
an effective list of all possible triples consisting of a pair of Turing functionals and a
�−1
a set. As before, we consider 〈 fe, γe〉 as a �−1

a -approximation pair to Ee. We also
build pairs 〈 f X , γ X 〉 and 〈 f Y , γ Y 〉 in order to get X and Y .

Strategies for the requirements and their interactions In the following we freely adopt
language and terminology (length-agreement functions, tree of strategies, use func-
tions, etc.: in particular a small Greek letter denotes the use function of a Turing
functional denoted by the corresponding capital Greek letter) which belong to the
jargon of the (infinite) priority method of proof: for details the reader is referred to
[25].

A Q-requirement in isolation can be satisfied using Cooper’s idea in [6], as adapted
by Selivanov [24] to the infinite levels of the Ershov hierarchy. Without loss of gen-
erality, we consider the strategy for QX

e , also we assume that each functional is
nondecreasing by stage and increasing by argument. For the sake of convenience
consider the following length-agreement function:

l(X , e, s) = μz(∀x � z (X(x)[s]
= 
Ee

e (x)[s] ∧ �X
e � ψe(x)[s] = Ee � ψe(x)[s])).

Thus the strategy for QX
e works as follows:

(1) Choose a fresh witness xe = x at stage s0, thus f X (x, s0) = 0 and γ X (x, s0) =
2a .

(2) Wait for a stage s1 > s0 such that x � l(X , e, s1).
(3) “Put” x into X , namely define f X (x, s1 + 1) := 1 and γ X (x, s1 + 1) := a.
(4) Wait for a stage s2 > s1 such that x � l(X , e, s2).
(5) Thus at stage s2 we have that fe(z, s1) �= fe(z, s2) and a �O γe(z, s1) >O

γe(z, s2) for some element z < ψe(x)[s1]. Moreover, from this stage on we have
(in case X changes only at x) that if x � l(X , e, s) then f X (x, s) = 0 if and only
if fe(z, s) = fe(z, s1). This means that by putting and extracting x we force z to
go in and out from Ee.

(6) Thus, we define f X (x, s2 + 1) := 0 and γ X (x, s2 + 1) := γe(z, s2).
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(7) At later stages s, if we see that x � l(X , e, s) then define f X (x, s + 1) :=
1 − f X (x, s) and γ X (x, s + 1) := γe(z, s). Clearly, if later fe(x, t) �= fe(x, s)
for some t > s then γe(z, t) <O γe(z, s). Thus, at stage t , if x � l(X , e, t)
then we can act the same as at stage s and define (in particular) γ X (x, t + 1) =
γe(z, t) <O γ X (x, s + 1).

Notice:

• If QX
e can keep X restrained below θe(ψe(x)) then it is enough for the win.

• The function γ X (x, s) always has the possibility to be defined as notation of
a smaller ordinal unless γe(z, s) = 1 (note that when γe(z, s) turns into 1 the
function γ X (x, s) has the possibility to have a last change, thus after this change
for any t > s we never see x < l(X , e, t) and the strategy becomes satisfied).

Therefore, each QX
e -strategy changes X(x) finitely many times and wins (if some

initial part of X is restrained). The restraint can easily be achieved by initialization
of lower priority strategies. The strategy for QY

e works in the same way. Thus, each
Q-strategy is a finitary strategy and has only one outcome f in on the tree of strategies.

An N -requirement in isolation is satisfied by waiting for an expansionary stages
and restraining either	X

e or	Y
e . The definition of an e-expansionary stage is as usual.

Namely, let the length-agreement function be defined as follows:

l(e, s) = μz(∀u � z 	X
e (u)[s] ↓= 	Y

e (u)[s] ↓),

and define a stage s to be e-expansionary if l(e, s) > l(e, t) for all t < s (we also
assume that 0 is expansionary). The goal of a strategy Ne is to build a computable
function: thus for a given u it waits for the first e-expansionary stage which covers u.
At this stage s the values of 	X

e (u)[s] ↓ and 	Y
e (u)[s] are the same as 	X

e (u) and
	Y

e (u) (unless N is initialized). Thus, each N -strategy has two outcomes ∞ < f in
on the tree of strategies, where it is satisfied vacuously below outcome f in and build
a computable function below outcome ∞.

The tree of strategy is a subtree of {∞ < f in}<ω with the usual ordering of nodes.
At level k = 2e we put copies of the strategy Ne, at level k = 4e + 1 we put copies
of QX

e , and at level k = 4e + 3 we put copies of QY
e .

Similar to the construction of a minimal pair we analyze the most problematic
case of interaction between strategies, namely the work of an N -strategy with sev-
eral Q-strategies below its infinite outcome. So, let η�∞ ⊂ α1 ⊂ α2 ⊂ · · · ⊂
αk . Assume that each Q-strategy αi has current witness xi . Then it holds that
xi < θi (ψi (xi )) < xi+1 < θi+1(ψi+1(xi+1)) for 1 � i < k. Now, if αi acts
at stage s [in particular, either f X (xi , s) or f Y (xi , s) is changed] then xi+1 and
all greater witnesses are canceled. Also we can visit any of these nodes α j , where
j < i , only when we get the next η-expansionary stage t > s, which means that
	X

e (u)[s] ↓= 	Y
e (u)[s] ↓= 	Y

e (u)[t] ↓= 	X
e (u)[t] ↓ for any u < l(e, s). There-

fore, if some α j , where j < i , acts at stage s then η continues to win, moreover αi

is initialized and α j continues to win too since θ j (ψ j (x j )) was smaller than xi (note
also that it does not matter whether α j works with X - or Y -side).
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Below we sketch construction and verification, which can easily be expanded to
more formal versions.

The construction At stage s + 1 we construct a computable approximation (with the
help of substages) of the true path on the tree of strategies. Starting from the root
node we perform actions relative to the visited node and decide its outcome, then we
visit the node below the outcome and continue until we reach the node of length s.
Proceeding to the next stage, we initialize all nodes to the right to, or below, the visited
one.

If we work with an N -strategy η at substage t + 1 then we check whether the stage
s + 1 is η-expansionary. If it is so then η has outcome ∞, otherwise η has outcome
f in.
If we work with a QX -strategy (the case of a QY -strategy is totally similar) α

at substage t + 1 then we assign a fresh witness xα = x (bigger then any number
mentioned so far) and initialize all nodes below α. If witness x was already assigned
then check whether x � l(X , α, s). If the answer is “no” then just take outcome f in; if
the answer is “yes” then initialize all nodes below α and also define f X (x, s+1) := 1
and γ X (x, s + 1) := a; moreover if the answer “yes” already happened at least one
time (after assigning x) then there is the least z such that fα(z, s1) �= fα(z, s0) and
γα(z, s1) <O γα(z, s0) �O a, where s0 + 1 is a stage such that γ X (x, s0 + 1) = a
and γ X (x, s0) = 2a (namely, it is the stage when we initiated the attack using x) and
s1 + 1 is the next stage with answer “yes”, then define f X (x, s + 1) := 1− f X (x, s)
and γ X (x, s + 1) := γα(z, s), and initialize all strategies below α. In all of the cases
the outcome is f in.

The verification The true path T P , defined as the leftmost path on the tree of strategies
visited infinitely often, clearly exists. It remains to show that each requirement is
satisfied by a strategy on the true path. However, most of the arguments have been
already presented in the previous discussions. Also, by induction it is easy to see that
each strategy is initialized and initializes other strategies only finitely many times.

If η ∈ T P is an N -strategy then it clearly satisfies the corresponding requirement.
Namely, waiting for η-expansionary stages allows to correctly see the value of the
computation (also we assume that it happens after stage s0 after which η is not initial-
ized). If α ∈ T P is a QX -strategy, then let s0 be a stage after which α is not initialized.
Henceforth, after assigning the witness x the strategy α either sees x > l(X , α, s), or
several times it sees x � l(X , α, s) [which immediately forces f X (x, s) to be changed
by the construction]. As previously argued, the case x � l(X , α, s) can happen only
finitely many times [we always have γα(z, s) < γ X (x, s) which allows at least one
more change for γ X (x, s)]. ��

Going back to the proof of item (2) of Theorem 4.11, we can now argue as in (1)
by using the sets X ,Y constructed in the previous theorem. ��

5 The problem of the existence of suprema

In this sectionwe consider the problemofwhen a given pair of�0
2 equivalence relations

has a supremum. The problem is somehow more delicate than the one concerning
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infima, discussed in the previous section. This is because a priori the existence of a
supremum depends on the level of the Ershov hierarchy that we choose to consider:
E.g., consider R, S ∈ �−1

a and a <O b. Since R ⊕ S ∈ �−1
a is an upper bound of

{R, S}, if T is a supremum of R and S at the �−1
b level, then T ∈ �−1

a as well and
T is the supremum at the �−1

a level. On the other hand, R and S can have sup inside
�−1
a , but not have sup inside �−1

b . Therefore, we split the problem in two parts: we
first provide a necessary condition for the nonexistence of suprema in �0

2, and then
we restrict the focus to the �−1

a equivalence relations.

5.1 Nonexistence of suprema in10
2

The next theorem shows that mutual darkness forbids the existence of suprema in �0
2.

Theorem 5.1 If R, S ∈ �0
2 are mutually dark, then they have no sup in �0

2.

Proof Towards a contradiction, assume that T ∈ �0
2 is the supremum of R, S. We

build U ∈ �0
2 such that U is an upper bound of R, S and avoids the upper cone of T .

That is to say, we build U satisfying the following requirements

Pe : ϕe does not reduce T to U ,

QR : R �c U ,

QS : S �c U .

Strategy for the requirementsCall the R-part (resp. S-part) of R⊕S the one consisting
of all even (odd) numbers. Our idea is to constructU ⊇ R ⊕ S by injectively merging
equivalence classes of the S-part of R ⊕ S with classes of R-part of R ⊕ S (and by
these actions meeting the above requirements). Eventually, each equivalence class of
U will consist of the union of exactly two equivalence classes of R⊕ S, one belonging
to its R-part and the other to its S-part.

The strategy for meeting a single Pe-requirement is straightforward. We look for
a pair of distinct numbers u, v such that ϕe(u) ↓= xe, ϕe(v) ↓= ye and xe, ye have
different parity. When found, we distinguish two cases:

(1) If u T v, we do nothing and keep [xe]U and [ye]U separate;
(2) If u�T v, we merge [xe]U and [ye]U and keep them together.

The strategy prevents ϕe from being a reduction of T toU . Indeed, if ϕe is total and
fails to converge on elementswith different parity, then range(ϕe)must be all contained
in either the R-part or the S-part of R⊕S. Without loss of generality assume range(ϕe)

is a subset of the S-part of R⊕ S. If so, one can easily construct from ϕe a computable
f reducing T to S. But since R �c T , we would have R �c S, contradicting the fact
that R and S are incomparable.

To deal with Q-requirements, we letU be initially equal to R⊕S. So at first stage of
the construction we have that R �c U via f (x) = 2x and S �c U via g(x) = 2x +1.
We claim that this is not injured by the subsequent action of any P-requirement. To
see why, consider for instance R. R is obviously reducible to R ⊕ S. Now let U be
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obtained from R⊕ S by merging a class of its R-part (say, [2k]R⊕S) with a class of its
S-part (say, [2 j + 1]R⊕S). Then R �c U , since no equivalence classes in the range of
f (x) = 2x have been collapsed. A similar reasoning can be made for S. Hence if we
allow Pe to merge only equivalence classes with different parity, we obtain that the
Q-requirements are automatically satisfied.

Interaction between strategies To combine all strategies, we have to address the fol-
lowing difficulty. When Pe wants to collapse a given pair of equivalence classes we
need to be careful that this does not imply collapsing also (by transitivity) equivalence
classes of the same parity, because if this happens we might injure a Q-requirement.
Suppose for instance that Pi wants to collapse [2k]U and [2 j + 1]U but Pe already
collapsed [2k]U and [2i + 1]U . If we let Pi be free to act, then by transitivity it would
collapse two equivalence classes of the same parity, i.e., [2 j + 1]U and [2i + 1]U . To
avoid this, we define the following priority ordering of the requirements

P0 < P1 < · · · Pe < · · ·

Next, Pe looks for numbers u, v such that ϕe(u) and ϕe(v) have different parity and
come from fresh equivalence classes of R ⊕ S, i.e., neither u nor v belongs to equiva-
lence classes already collapsed in the construction. A similar condition seems �0

2 : Pe
asks whether there exist u, v not being in the union of finitely many �0

2 sets (i.e., the
equivalence classes already collapsed). Nonetheless, by making use of the fact that R
and S are mutually dark we will prove that 0′ can decide such condition (see Lemma
5.2).

The constructionWe buildU in stages, i.e.,U = ⋃
k∈ω U [k]. During the construction

we keep track of the equivalence classes that we collapse by putting a witness them
in a set Z .

Stage 0 U [0] := R ⊕ S and Z := ∅.
Stage s + 1 = 2e We deal with Pe. In doing so, we execute the following algorithm
(which is computable in 0′): List all pairs of distinct numbers (u, v) until one of the
following cases happens

(1) ϕe(u) ↓= xe, ϕe(v) ↓= ye, and

(a) either u T v � xe U ye,
(b) or xe and ye have different parity and {xe, ye} ∩ Z = ∅;

(2) there is ϕe(x) ↑.
Lemma5.2 proves that the algorithmalways terminate. If it terminateswith outcome

(1.b), letU [s + 1] = U [s]coll(xe,ye) and put [xe]R⊕S and [ye]R⊕S in Z ; if it terminates
with outcome (1.a) or (2), do nothing.

Stage s + 1 = 2e + 1 We ensure that eventually any U -class will be the merging of
an R-class and a S-class. To do so, let ue (resp. ve) be the least even (odd) number not
in Z . Let U [s + 1] = U [s]coll(ue,ve) and put [ue]R⊕S and [ve]R⊕S in Z .

The verification The verification is based on the following lemma.
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Lemma 5.2 For all Pe, the algorithm defined at stage 2e terminates.

Proof Assume that there is Pe for which the algorithm does not terminate. This means
that ϕe is total [otherwise, the algorithm at some point would outcome (2)] and ϕe

reduces T toU [otherwise, at some point the algorithm would outcome (1.a)]. More-
over, ϕe can not hit infinitely many equivalence classes of both the R-part and the
S-part of R⊕ S. Otherwise, the algorithm would eventually find a pair of fresh equiv-
alence classes with different parity.Without loss of generality, assume that ϕe hits only
finitely many classes in the R-part of R ⊕ S. Let A = {a0, . . . , an} be a set of repre-
sentatives from such classes and let B = {b0, . . . , bn} be a set of odd numbers such
that, for all 0 � i � n, ai U bi . The existence of such B is guaranteed by the fact that
each equivalence class of the R-part of R⊕ S is merged inU with an equivalence class
of the S-part of R ⊕ S. But then one can define the following degT (R)-computable
reduction from T to U that hits only the S-part of U ,

f (x) =
{

ϕe(x) ϕe(x) is odd,

bz,where z is such that x Raz otherwise.

It follows that R �degT (R) S, contradicting the fact that R|d S. ��

We are in the position now to show that all P-requirements are satisfied. The last
lemma guarantees that, given Pe, the corresponding strategy terminates with either
disproving that ϕe is a reduction from T toU or by providing two equivalence classes
that can be collapsed in U to diagonalize against ϕe. The Q-requirements are also
satisfied because we carefully avoid, within the construction, to collapse classes of the
same parity. ��

By modifying the last proof, we can obtain something stronger.

Theorem 5.3 If R, S ∈ �0
2 and R is S-dark or S is R-dark, then R, S have no sup in

�0
2.

Proof sketch Suppose that S is R-dark. Then the proof of Proposition 4.5 shows that
R �degT (R) S.

Assume that T is a �0
2 equivalence relation, and T = sup{R, S}. We construct

a �0
2 equivalence relation U by employing precisely the same construction as in

Theorem 5.1. In order to verify the construction, it is sufficient to re-prove Lemma 5.2
as follows.

Suppose that for some e ∈ ω, the algorithm for Pe does not terminate. Then, arguing
as above, we may assume that:

(1) the function ϕe is total,
(2) ϕe : T �c U , and
(3) ϕe does not hit infinitely many classes of either the R-part or the S-part of the

relation R ⊕ S.
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Thus, one of the following two cases holds.

Case 1. The function ϕe hits only finitely many classes in the R-part and infinitely
many classes in the S-part. Then the same argument as in the proof of Lemma 5.2
shows that R �degT (R) S, which contradicts the R-darkness of S.

Case 2.Assume thatϕe hits infinitelymany classes in the R-part and only finitelymany
classes in the S-part. Then choose a computable function h : S �c T , and consider a
partial computable function

f (x) :=
{

ϕe(h(x))/2, if ϕe(h(x)) is even,
↑, otherwise.

Since the function ϕe ◦ h reduces S to U , the c.e. set range( f ) intersects infinitely
many R-classes. Therefore, one can choose an infinite R-c.e. set A with the following
properties: A ⊆ dom( f ) and f (x)�R f (y) for distinct x, y ∈ A. Note that the condition
f (x)�R f (y) implies that ϕe(h(x))��Uϕe(h(y)), and this, in turn, implies x�Sy. Hence,
A is an R-c.e. transversal of S, which contradicts the R-darkness of S.

Therefore, one can re-prove Lemma 5.2 and verify the construction. ��
The above result contrasts with the fact that Id and a dark ceer have always sup in the

ceers: see [3, Observation 5.1]. Furthermore note that, by reasoning as in Theorem 5.1,
one can show that if R, S are mutually dark equivalence relations of any complexity,
then they have no sup.

5.2 Nonexistence of suprema at the same level of Ershov hierarchy

We finally turn to the problem of whether there are equivalence relations R, S ∈ �−1
a

with no supremum in�−1
a .Weknow from [3] that this is the case for ceers: in particular,

there are light ceers with no sup (in the class of ceers). The next proposition extends
this fact to all levels of the Ershov hierarchy, with the exception of co-ceers. For what
follows, recall that R is essentially n-dimensional if R has exactly n noncomputable
equivalence classes

Proposition 5.4 Suppose that X ∈ {�−1
a ,�−1

a : |a|O � 2}. There are light equiva-
lence relations R and S such that both R and S properly belong to X , and R, S have
no sup in the X -equivalence relations.

Proof Fix a set A properly belonging to the class X . Consider two c.e. sets U and
V such that U and V are �m-incomparable. We define the relations Q, R, and S as
follows:

Q := Id∪{(2y, 2y + 1), (2y + 1, 2y) : y ∈ A},
R := RU ⊕ Q, S = RV ⊕ Q.

It is easy to show that each of the relations Q, R, S is light and properly belongs toX .
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Assume that T is the supremum of {R, S}. Without loss of generality, suppose that
0 ∈ U ∩ V . Since the relation

E := (RU ⊕ RV )coll(0,1) ⊕ Q

is an upper bound for R and S, we have T �c E , and T must be essentially 1-
dimensional. Let [a]T be the unique non-computable T -class. The conditions R �c T
and S �c T imply that

U �m [a]T and V �m [a]T . (1)

Consider the essentially 2-dimensional relation F := (RU ⊕ RV ) ⊕ Q. Since T
should be reducible to F , we have either [a]T �m U or [a]T �m V . This fact and (1)
together contradict the choice of U and V . Thus, R and S have no supremum. ��

We conclude the paper with the following open question.

Question 1 For which a ∈ O, do there exist equivalence relations properly in �−1
a

with sup in �−1
a ?
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