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The paper proposes a novel input–output approach to characterize the dynamical properties of
a class of circuits composed by a linear time-invariant two-terminal element coupled with one
of the ideal memelements (memory elements) introduced by Prof. L. O. Chua, i.e. memristors,
memcapacitors, and meminductors. The developed approach permits to readily determine the
conditions under which the dynamics of any circuit of the class admits a first integral. It is
also shown that the circuit dynamics can be obtained by collecting the dynamical behaviors
displayed by a canonical reduced-order input–output system subject to a constant input of any
amplitude. Notably, the reduced-order system exactly describes the dynamics of a circuit forced
by a constant generator and with a nonlinear memoryless element in place of the memelement.
The relation between the proposed input–output approach and the available state space ones
(e.g. Flux-Charge Analysis Method (FCAM)) is also addressed. The main result is that explicit
expressions of the invariant manifolds can be directly obtained in the voltage–current state space.
Finally, it is shown how the approach also applies to circuits which contain forcing generators. It
is believed that the proposed input–output approach can be a useful alternative to state space
methods for studying multistability and control issues.

Keywords : Memristive circuits; input–output representation; nonlinear dynamics; invariant man-
ifolds; multistability.

1. Introduction

The first electronic implementation at Hewlett and
Packard of memristor (memory resistor) in 2008
[Strukov et al., 2008] generated a strong renewed
worldwide interest in the fourth fundamental circuit

element introduced in 1971 by Prof. L. O. Chua
[Chua, 1971]. More recently, an increasing interest
has been devoted also to memcapacitors and memin-
ductors, the elements proposed to model memory
effects for capacitors and inductors [Di Ventra et al.,
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2009]. This is witnessed by the number of contribu-
tions concerning physical modeling, theoretic anal-
ysis, simulations, implementation and applications
of memcapacitors and meminductors [Pershin &
Di Ventra, 2011; Radwan & Fouda, 2015; Pei et al.,
2015; Biolek et al., 2011; Li et al., 2013; Biolek et al.,
2013; Georgiou et al., 2018].

Memristors, memcapacitors and meminductors,
which are also termed memelements, have rapidly
gained a prominent role as completely new electri-
cal components with unconventional functions and
dynamics that are capable of outperforming similar
CMOS implementations to sustain the growth of
the electronics industry at the end of Moore’s law
[Waldrop, 2016; Williams, 2017; Zidan et al., 2018].
On-chip memory, biologically inspired computing
and in-memory computing, i.e. the integration of
storage and computation in the same physical loca-
tion [Li et al., 2019], are categories that are expected
to significantly benefit from memelement develop-
ments. This is in turn particularly relevant to future
computing needs as cognitive processing, big-data
analysis and low-power intelligent systems based on
the Internet of Things. A new era for computational
systems can be foreseen based on new analogue
and non-Boolean computational schemes for real
time processing owing to the possibility of attain-
ing via the use of memelements high bandwidths
with much reduced power consumption [Mazumder
et al., 2012; Tetzlaff, 2014; Adamatzky & Chua,
2014; Traversa & Di Ventra, 2015; Chua, 2015;
Pérez-Tomás, 2019].

This huge interest towards the use of memele-
ments in several applications has motivated the
need to deeply understand the dynamical proper-
ties of circuits containing these memory elements.
Indeed, it has been well established that the state
space of circuits containing ideal memristors is “foli-
ated”, i.e. it can be decomposed in a continuum
of invariant manifolds where the circuit dynamics
is described by a reduced order system. Specifi-
cally, in [Amador et al., 2017; Ponce et al., 2017]
it is shown that the dynamics of a third order
memristor circuit admits a first integral in the
current–voltage domain and hence it can be equiv-
alently described by a family of second order sys-
tems indexed by an additional constant parame-
ter. Notably, the existence of a first integral implies
that the second order systems have a smoother
vector field, which is a useful property when the
memristor has a piecewise linear characteristic. In

[Corinto & Forti, 2016, 2017] a more systematic
technique has been proposed to investigate circuits
containing ideal flux- or charge-controlled memris-
tors. The technique, which is referred to as the
flux-charge analysis method (FCAM), provides an
equivalent state space description of memristor cir-
cuits in the flux-charge domain, which is indeed
shown to be a more natural domain than the
voltage–current one for a deeper understanding of
the circuit dynamics. In both cases, the dynamics of
the original memristor circuits can be equivalently
described by a family of state space reduced-order
systems indexed by some constant parameters (usu-
ally, one for each memristor), whose values depend
on the initial conditions of the memristor circuit
and uniquely identify the specific invariant mani-
fold. Hence, changing this parameter (i.e. the initial
conditions) implies changing the invariant mani-
fold where the memristor circuit can display either
convergent, or oscillatory, or even more complex
behaviors. This dynamical richness of ideal memris-
tor circuits is often referred to as “extreme multista-
bility” [Li et al., 2014; Scarabello & Messias, 2014;
Messias et al., 2010; Bao et al., 2016; Yuan et al.,
2016b; Chang et al., 2019] and involves the so-called
“bifurcations without parameters” phenomenon,
i.e. bifurcations which are induced without varying
the system parameters [Fiedler et al., 2000; Cor-
into & Forti, 2017]. More recently, FCAM has been
extended to much broader classes of circuits con-
taining more than one memristor [Corinto & Forti,
2018; Chen et al., 2020] as well as memcapacitors
and meminductors [Corinto et al., 2019; Rajagopal
et al., 2018; Yuan et al., 2016a; Yuan et al., 2016b].
Also in this case, it is shown that the original circuit
can be equivalently described by a family of state
space reduced-order systems indexed by a number
of constant parameters, usually equal to the number
of ideal memelements.

Several contributions make it clear that cir-
cuits containing memelements are able to display a
rich variety of multistability phenomena [Li et al.,
2014; Scarabello & Messias, 2014; Messias et al.,
2010; Bao et al., 2016; Yuan et al., 2016a; Yuan
et al., 2016b; Xu et al., 2017; Rajagopal et al.,
2018; Varshney et al., 2018; Corinto et al., 2019;
Yuan et al., 2019; Wang et al., 2019; Chang et al.,
2019; Chen et al., 2020; Zhang et al., 2019]. To this
respect, it is worth noting that multistability con-
trol is a field of general growing interest (see, e.g.
[Pisarchik & Feudel, 2014] and references therein),

2050110-2

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
9.

20
.8

0.
17

5 
on

 0
7/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 25, 2020 9:46 WSPC/S0218-1274 2050110

Input–Output Characterization of the Dynamical Properties of Circuits with a Memelement

also for its connection to the development of new
computational paradigms, such as reservoir com-
puting [Appeltant et al., 2011; Jensen & Tufte,
2017]. Indeed, some multistability control aspects
have been recently considered for targeting the
memristor circuit state space towards the attractors
contained in one of the invariant manifolds [Chen
et al., 2018; Corinto & Forti, 2018; Di Marco et al.,
2019] as well as to mimicking neuron dynamics via a
Murali–Lakshmanan–Chua memristor circuit [Inno-
centi et al., 2019a].

In this paper, an input–output approach is
developed for a systematic analysis of the dynamics
of classes of circuits containing ideal memelements.
Besides being the natural counterpart of state space
methods, input–output approaches allow for a thor-
ough use of the several frequency domain tools avail-
able for analysis and control purposes. Some pre-
liminary results in this direction have been already
obtained in [Di Marco et al., 2018; Innocenti et al.,
2019b] for the prediction of limit cycles and their
bifurcation in both forced and unforced circuits
containing one ideal memristor via the Harmonic
Balance Method (HBM). In Sec. 2 the considered
class of circuits, which is composed of the inter-
connection of a linear time-invariant two-terminal
(one port) element and a single ideal memelement,
is described. Specifically, the linear element can con-
tain linear R, L, C components and ideal opera-
tional amplifiers and controlled generators, while
the memelement can be a flux- or charge-controlled
memristor, a flux- or charge momentum-controlled
capacitor, a flux momentum- or charge-controlled
inductor. The problem of developing an input–
output description of the considered class of circuits
for each one of the six memelements is addressed
in Sec. 3. It is shown that any circuit can be
equivalently represented via a canonical reduced-
order input–output system, thus implying that the
circuit dynamics admits a first integral. Specifi-
cally, the reduced-order system is composed of an
internal feedback interconnection between a linear
dynamical subsystem and a nonlinear memoryless
one, plus a feedforward linear dynamical subsys-
tem driven by an external constant input. It turns
out that the linear subsystems are characterized by
either the impedance or the admittance of the lin-
ear two-terminal element, while the nonlinear sub-
system is described by the characteristic of the
memelement. This again highlights that the flux-
charge domain is the natural ground for obtaining

the reduced-order representation. Section 4 relates
the developed input–output representation with the
state space one. Specifically, it is shown how for
each considered circuit the relative invariant man-
ifolds can be analytically computed via a suitable
state space realization of either the impedance or
the admittance of the linear two-terminal element.
Section 5 considers the extension to the case when
the linear two-terminal element also contains exter-
nal generators, by showing that this simply requires
to add feedforward linear dynamic subsystems to
the canonical reduced-order input–output system
developed in Sec. 3. Several examples are presented
throughout the paper to illustrate the features of
the proposed approach.

2. Class of Circuits Description and
Problem Formulation

In this section, we introduce the considered class of
circuits and formulate the problem of interest. The
class of circuits is assumed to contain linear ele-
ments and one ideal memelement. Specifically, it is
composed of a finite-dimensional causal linear time-
invariant two-terminal (one port) element L, with
voltage vL and current iL, and an ideal memelement
ME, with voltage vM and current iM , as described
in Fig. 1. Clearly, we have vL = vM and iL = −iM .

2.1. The linear two-terminal
element L

The two-terminal element L can be either a passive
circuit containing only linear resistors, capacitors
and inductors or an active one including also ideal
operational amplifiers and controlled generators. In
both cases the impedance and admittance of L
are real rational functions of the complex variable
but in the passive case they are subject to some
restriction (see Remark 2.1). The case where L also

Fig. 1. The class of circuits.
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(a) (b)

Fig. 2. (a) Current–voltage model MLi,v and (b) voltage–current model MLv,i.

contains external generators will be considered in
Sec. 5.

Two different finite-dimensional causal linear
time-invariant input–output models can be adopted
for L: the current–voltage model MLi,v, where iL
and vL are the input and the output of L, respec-
tively; the voltage–current model MLv,i, where
vL and iL are the input and the output of L,
respectively. Models MLi,v and MLv,i are depicted
in Fig. 2 and formally defined below, where D
denotes the differential operator1 (i.e. Df(t) = ḟ(t),
D2f(t) = f̈(t), and so on).

Definition 2.1. The current–voltage model MLi,v

is described by input–output relation

vL(t) = Li(D)iL(t), (1)

where

Li(D) =
Ri(D)
Pi(D)

(2)

is a proper real rational function and Pi(D), Ri(D)
are coprime polynomials of order ni, i.e.

Pi(D) = Dni + pni−1Dni−1 + · · · + p1D + p0,

Ri(D) = rniDni + rni−1Dni−1 + · · · + r1D + r0.

(3)

Definition 2.2. The voltage–current model MLv,i

is described by input–output relation

iL(t) = Lv(D)vL(t), (4)

where

Lv(D) =
Rv(D)
Pv(D)

(5)

is a proper real rational function and Pv(D), Rv(D)
are coprime polynomials of order nv, i.e.

Pv(D) = Dnv + pnv−1Dnv−1 + · · · + p1D + p0,

Rv(D) = rnvDnv + rnv−1Dnv−1 + · · · + r1D + r0.

(6)

Remark 2.1. If s denotes the complex variable,
then Li(s) is exactly the equivalent impedance of
L, while Lv(s) is the equivalent admittance. This
implies that Li(D) and Lv(D) are such that

Li(D)Lv(D) = 1 (7)

and, therefore, either only one between Li(D) and
Lv(D) is strictly proper, or Li(D) and Lv(D) are
both proper but not strictly proper. Moreover, if L
is a passive circuit, i.e. it contains only resistors,
capacitors and inductors, then the impedance Li(s)
of MLi,v and the admittance Lv(s) of MLv,i are
constrained to be positive real [Khalil, 2002]. This
implies that the relative degree of Li(s) and Lv(s)
cannot exceed one, i.e. rni−1 �= 0 and rnv−1 �= 0.
Hence, to have a relative degree greater than one
L must be an active circuit, i.e. it must contain
also ideal operational amplifiers and/or controlled
generators.

Remark 2.2. Observe that Eqs. (1) and (4) can be
equivalently written as −vL(t) = Li(D)(−iL(t))
and −iL(t) = Lv(D)(−vL(t)), respectively. This for-
mulation will be exploited in Sec. 4.

Remark 2.1 makes it clear when MLi,v

and MLv,i can be used to ensure that L is a
finite-dimensional causal linear time-invariant two-
terminal element.

Proposition 1. Let Li(D) be strictly proper, i.e.
rni = 0. Then, L is uniquely described by MLi,v and
iL(t) and vL(t) obey the following linear time-
invariant ordinary differential equation

Pi(D)vL(t) − Ri(D)iL(t) = 0. (8)

Let Lv(D) be strictly proper, i.e. rnv = 0. Then,
L is uniquely described by MLv,i and vL(t) and
iL(t) obey the following linear time-invariant ordi-
nary differential equation

Pv(D)iL(t) − Rv(D)vL(t) = 0. (9)

1Throughout the paper, the inverse operator D−1 is the integral operator (i.e. D−1f(t) =
R t
−∞ f(τ )dτ ) and Dhf(t0) stands

for the value of Dhf(t) at t = t0.
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Let Li(D) and Lv(D) be proper but not strictly
proper, i.e. rni �= 0 and rnv �= 0. Then, L is
described by both (8) and (9).

The following assumption concerns the struc-
tural properties of controllability and observability
enforced on L.

Assumption 2.1. Model MLi,v is completely con-
trollable and observable from input iL and out-
put vL. Model MLv,i is completely controllable and
observable from input vL and output iL.

Remark 2.3. Assumption 2.1 ensures that the dif-
ferential equations (8) and (9) completely describe
the internal dynamics of L. In particular, it turns
out that MLi,v and MLv,i admit equivalent state
space representations of orders ni and nv, respec-
tively (see Sec. 4).

Some examples of passive or active L are
reported in Fig. 3 and discussed below.

Example 2.1. Let us consider the passive two-
terminal element of Fig. 3(a). It can be verified that

(a)

(b)

(c)

(d)

(e)

Fig. 3. Examples of (a)–(c) passive and (d) and (e) active two-terminal element L.
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the equivalent impedance Li(s) is such that

Li(D) =

1
C
D +

R

LC

D2 +
R

L
D +

1
LC

. (10)

Hence, according to Proposition 1, L is modeled by
the current–voltage model MLi,v and the differen-
tial equation (8) becomes(

D2 +
R

L
D +

1
LC

)
vL(t) −

(
1
C
D +

R

LC

)
iL(t)

= 0. (11)

Example 2.2. Consider the passive circuit of
Fig. 3(b). It turns out that the equivalent admit-
tance Lv(s) is such that

Lv(D) =

1
L
D

D2 +
R

L
D +

1
LC

. (12)

Hence, according to Proposition 1, L is modeled by
the voltage–current model MLv,i and the differen-
tial equation (9) boils down to(

D2 +
R

L
D +

1
LC

)
iL(t) − 1

L
DvL(t) = 0. (13)

Example 2.3. For the passive circuit of Fig. 3(c),
the equivalent impedance Li(s) and the equivalent
admittance Lv(s) of the network L are such that

Li(D) =
RiD2 +

RRi

L
D +

Ri

LC

D2 +
R + Ri

L
D +

1
LC

, (14)

Lv(D) =

1
Ri

D2 +
R + Ri

RiL
D +

1
RiLC

D2 +
R

L
D +

1
LC

. (15)

Hence, according to Proposition 1, L can be mod-
eled by both MLi,v and MLv,i as(

D2 +
R + Ri

L
D +

1
LC

)
vL(t)

−
(

RiD2 +
RRi

L
D +

Ri

LC

)
iL(t) = 0

(16)

and(
D2 +

R

L
D +

1
LC

)
iL(t)

−
(

1
Ri

D2 +
R + Ri

RiL
D +

1
RiLC

)
vL(t) = 0,

(17)

respectively.

Example 2.4. The circuit of Fig. 3(d) is active
since it contains one ideal operational amplifier. It
can be verified that the equivalent impedance Li(s)
is such that

Li(D) =

R2

R1RiC1C2

D2 +
R1 + R2 + Ri

R1RiC1
D +

1
R1RiC1C2

.

(18)

According to Proposition 1, in this case L is mod-
eled by MLi,v and (8) becomes(

D2 +
R1 + R2 + Ri

R1RiC1
D +

1
R1RiC1C2

)
vL(t)

− R2

R1RiC1C2
iL(t) = 0. (19)

Example 2.5. Consider the active circuit of
Fig. 3(e). In this case the equivalent admittance
Lv(s) is such that

Lv(D) =

1
R1R2R3C1C2

D2 +
C1 + C2

R1C1C2
D +

R2 + R3 + R4

R1R2R3C1C2

. (20)

Hence, according to Proposition 1, L is modeled by
MLv,i and (9) becomes(

D2 +
C1 + C2

R1C1C2
D +

R2 + R3 + R4

R1R2R3C1C2

)
iL(t)

−
(

1
R1R2R3C1C2

)
vL(t) = 0. (21)

2.2. The memelement ME

The memelement ME in Fig. 1 can be any of
the following six memelements [Chua, 2009 (reaf-
firmed 2013); Corinto et al., 2019]: (1) a flux-con-
trolled memristor MRϕ; (2) a charge-controlled
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memristor MRq; (3) a flux-controlled memcapaci-
tor MCϕ; (4) a σ-controlled memcapacitor MCσ;
(5) a charge-controlled meminductor MLq; (6) a
ρ-controlled meminductor MLρ. The definitions of
these memelements are recalled below and involve
the flux ϕM , the charge qM as well as their time inte-
grals. The time integral of the flux (or flux momen-
tum) is defined as

ρM (t) =
∫ t

−∞
ϕM (τ)dτ = D−1ϕM (t) (22)

and in the differential form

ϕM (t) = DρM (t). (23)

Analogously, the time integral of the charge (or
charge momentum) is defined as

σM (t) =
∫ t

−∞
qM(τ)dτ = D−1qM (t) (24)

and in the differential form

qM (t) = DσM(t). (25)

• A flux-controlled memristor MRϕ is described by
the nonlinear flux-charge characteristic q̂ : R → R

relating the flux ϕM and the charge qM as follows:

qM = q̂(ϕM ). (26)

In the voltage–current domain the dynamics of
MRϕ obeys{DϕM (t) = vM (t),

iM (t) = q̂′(ϕM (t))vM (t),
(27)

where the derivative q̂′(ϕM ) is known as the mem-
conductance of the memristor. Note that MRϕ is

modeled by a first order causal time-invariant non-
linear system with input vM , output iM and state
ϕM . The block diagram representation of (27) is
depicted in Fig. 4(a).

• A charge-controlled memristor MRq is described
by the nonlinear charge-flux characteristic ϕ̂ : R →
R relating the charge qM and the flux ϕM as follows:

ϕM = ϕ̂(qM ). (28)

In the voltage–current domain the dynamics of
MRq obeys{DqM(t) = iM (t),

vM (t) = ϕ̂′(qM (t))iM (t),
(29)

where the derivative ϕ̂′(qM ) is known as the mem-
ristance of the memristor. Note that MRq is mod-
eled by a first order causal time-invariant nonlinear
system with input iM , output vM and state qM . The
block diagram representation of (29) is depicted in
Fig. 4(b).

• A flux-controlled memcapacitor MCϕ is charac-
terized by the nonlinear characteristic σ̂ : R → R

relating the flux ϕM and the charge momentum σM

as follows:

σM = σ̂(ϕM ). (30)

In the voltage–current domain MCϕ obeys⎧⎪⎨
⎪⎩
DϕM (t) = vM (t),

qM(t) = σ̂′(ϕM (t))vM (t),

iM (t) = DqM(t),

(31)

where the derivative σ̂′(ϕM ) is known as the
memcapacitance of MCϕ. Note that the first

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Block diagram representations: (a) MRϕ, (b) MRq , (c) MCϕ, (d) MCσ, (e) MLρ and (f) MLq.

2050110-7

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
9.

20
.8

0.
17

5 
on

 0
7/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 25, 2020 9:46 WSPC/S0218-1274 2050110

G. Innocenti et al.

two equations represent a first order causal time-
invariant nonlinear system with input vM , output
qM and state ϕM , while the third equation provides
iM as the output of a pure derivative system with
input qM . The block diagram representation of (31)
is depicted in Fig. 4(c).

• A σ-controlled memcapacitor MCσ is described
by the nonlinear characteristic ϕ̂ : R → R relat-
ing the charge momentum σM and the flux ϕM as
follows:

ϕM = ϕ̂(σM ). (32)

In the voltage–current domain the dynamics of
MCσ obeys⎧⎪⎪⎨

⎪⎪⎩
DσM (t) = qM(t),

DqM (t) = iM (t),

vM (t) = ϕ̂′(σM (t))qM (t),

(33)

where the derivative ϕ̂′(σM ) is known as the inverse
memcapacitance of MCσ. Note that MCσ is mod-
eled by a second order causal time-invariant non-
linear system with input iM , output vM and state
variables σM and qM . The block diagram represen-
tation of (33) is depicted in Fig. 4(d).

• A ρ-controlled meminductor MLρ is characterized
by the nonlinear characteristic q̂ : R → R relat-
ing the flux momentum ρM and the charge qM as
follows:

qM = q̂(ρM ). (34)

In the voltage–current domain MLρ obeys⎧⎪⎪⎨
⎪⎪⎩
DρM(t) = ϕM (t),

DϕM (t) = vM (t),

iM (t) = q̂′(ρM (t))ϕM (t),

(35)

where the derivative q̂′(ρM ) is known as the inverse
meminductance of MLρ. Note that MLρ is mod-
eled by a second order causal time-invariant non-
linear system with input vM , output iM and state
variables ρM and ϕM . The block diagram represen-
tation of (35) is depicted in Fig. 4(e).

• A charge-controlled meminductor MLq is charac-
terized by the nonlinear characteristic ρ̂ : R → R

relating the charge qM and the flux momentum ρM

as follows:

ρM = ρ̂(qM ). (36)

In the voltage–current domain MLq obeys⎧⎪⎪⎨
⎪⎪⎩
DqM(t) = iM (t),

ϕM (t) = ρ̂′(qM (t))iM (t),

vM (t) = DϕM (t),

(37)

where the derivative ρ̂′(qM ) is known as the memin-
ductance of MLq. Note that the first two equations
represent a first order causal time-invariant nonlin-
ear system with input iM , output ϕM and state qM ,
while the third equation provides vM as the output
of a pure derivative system with input ϕM . The
block diagram representation of (37) is depicted in
Fig. 4(f).

Throughout the paper, it is assumed that the
nonlinear characteristics (26), (28), (30), (32), (34),
(36) vanish as the argument is equal to zero. Also,
it is enforced that they are as smooth as needed to
ensure existence and uniqueness of the solutions of
the system of differential equations describing the
dynamics of the class of circuits of Fig. 1.

2.3. Problem formulation

We are interested in studying the dynamics of the
class of circuits of Fig. 1 where ME can be any of
the six memelements considered in Sec. 2.2. In this
respect, from Fig. 4 it follows that the input and
the output of each ME are clearly well defined.
This implies that, since vL = vM and iL = −iM ,
the class of circuits of Fig. 1 admits six input–
output feedback representations in the voltage–
current domain, each one pertaining to a given
memelement. Specifically, the representations cor-
respond to interconnecting the memelements MRϕ,
MCϕ and MLρ with the current–voltage model
MLi,v [see Fig. 5(a)] and the memelements MRq,
MCσ and MLq with the voltage–current model
MLv,i [see Fig. 5(b)]. Note that for the systems
of Fig. 5(b) the input and the output of MLv,i are
indeed −vL and −iL (see also Remark 2.2), respec-
tively. Clearly, the dynamics of each representation
is completely described by either the differential
equation (8) or the differential equation (9) plus
the dynamical relations pertaining to the considered
memelement ME [i.e. (27) for MRϕ, (29) for MRq,
(31) for MCϕ and so on].

Our aim is to find the most simple input–output
description of the dynamics displayed by each one
of the six representations of Fig. 5. In Sec. 3, we
show how a canonical reduced order input–output
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(a) (b)

Fig. 5. Input–output feedback representations in the voltage–current domain: (a) MLi,v with MRϕ, MCϕ and MLρ and
(b) MLv,i with MRq , MCσ and MLq.

representation, able to completely describe the
sought dynamics, can be found in the flux-charge
domain. Specifically, the dynamics of each one of the
six representations of Fig. 5 can be exactly obtained
by collecting the dynamics of a family of reduced
order nonlinear differential equations involving only
the variable used for controlling the memelement,
i.e. the flux ϕM for both MRϕ and MCϕ, the
charge qM for both MRq and MLq, the flux
momentum ρM for MLρ and the charge momen-
tum σM for MCσ. The relation of this input–output
approach with the state space one developed in
[Corinto et al., 2019] is discussed in Sec. 4. Finally,
Sec. 5 deals with the extension to the case where L
also contains generators.

3. A Canonical Reduced Order
Input–Output Representation
of the Class of Circuits

In this section, we focus on the possibility of describ-
ing the dynamics of each one of the six feedback
representations of Fig. 5 via that of the canonical
input–output system Σ depicted in Fig. 6, where the
external input r is assumed to be any constant value
(i.e. r(t) = X0, X0 ∈ R). It is worth observing that
Σ has an internal feedback interconnection between
the linear subsystem L1(D) and the nonlinear sub-
system described by the function n(·), while L2(D)
is a feedforward linear block driven by the exter-
nal constant input r. A lot of attention has been
devoted in the literature to the study of dynamical
properties of systems enjoying this structure, due
to its connection with the celebrated Lur’e control
problem (see e.g. [Khalil, 2002]).

Specifically, in the next three subsections, we
show that each one of the six feedback represen-
tations of Fig. 5 admits an equivalent descrip-
tion via the canonical system Σ, where the system
output y and the nonlinear function n(·) of Σ are
the controlling variable and the nonlinear charac-
teristic of the considered ME (i.e. the flux ϕM

and the flux-charge characteristic q̂ for MRϕ, and
so on), while the rational functions L1(D) and
L2(D) depend on Li(D) for the feedback inter-
connections of Fig. 5(a) and Lv(D) for those of
Fig. 5(b). Memristors MRϕ and MRq are con-
sidered in Sec. 3.1, while Sec. 3.2 deals with
MCϕ and MCσ and Sec. 3.3 is devoted to MLq and
MLρ. Finally, Sec. 3.4 summarizes the obtained
results.

Fig. 6. System Σ: a canonical input–output representation
of the class of circuits.
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3.1. The case of ideal memristor

Consider the class of circuits of Fig. 1 with MRϕ as
ME. Exploiting (8) and (27), it turns out that the
relative representation of Fig. 5(a) is governed by
the system of differential equations{

Pi(D)vM (t) + Ri(D)iM (t) = 0,

DϕM (t) = vM (t),
(38)

with iM as in the second equation of (27). The next
result holds true.

Proposition 2. Consider the class of circuits of
Fig. 1 with MRϕ as ME and L such that Li(D) is
strictly proper, i.e. rni = 0, and let Assumption 2.1
hold. Then, the dynamics of the class of circuits is
completely described by the one-parameter family of
differential equations of order ni

Σ
Φ

(R)
0

:

⎧⎨
⎩

Pi(D)ϕM (t) + Ri(D)q̂(ϕM (t)) = Φ(R)
0 ,

Φ(R)
0 ∈ R.

(39)

Proof. We first observe that Assumption 2.1
ensures that (38) completely describes the internal
dynamics of the considered class of circuits. Then,
since iM = DqM , it can be verified that the system
of differential equations (38) is equivalent to the fol-
lowing single differential equation of order ni + 1

Pi(D)DϕM (t) + Ri(D)DqM (t) = 0, (40)

where qM(t) = q̂(ϕM (t)) according to (26). More-
over, the condition rni = 0 ensures that the solu-
tions of (40), and hence of (38), are uniquely
determined by the initial conditions ϕM (t0), vM (t0),
DvM (t0), . . . ,Dni−1vM (t0). Now, it turns out
that (40) can be equivalently rewritten as

D(Pi(D)ϕM (t) + Ri(D)qM (t)) = 0. (41)

This implies that the scalar variable

Φ(R)(t) .= Pi(D)ϕM (t) + Ri(D)qM (t)

= Pi(D)ϕM (t) + Ri(D)q̂(ϕM (t)) (42)

is constant over time, i.e.

Φ(R)(t) = Φ(R)(t0)
.= Φ(R)

0 ∀ t ≥ t0, (43)

which is exactly the differential equation defining
Σ

Φ
(R)
0

. To complete the proof, it remains to show

that Φ(R)
0 must assume any real value to ensure

that Σ
Φ

(R)
0

generates all the solutions of the system

of differential equations (38). Observe that Φ(R)
0

depends on the initial conditions ϕM (t0), vM (t0),
DvM (t0), . . . ,Dni−1vM (t0) of (38) as follows

Φ(R)
0 = Dni−1vM (t0) +

ni−2∑
h=0

ph+1DhvM (t0)

+ p0ϕM (t0) +
ni−1∑
h=0

rhDhq̂(ϕM (t0)).

(44)

Also, it can be verified that
∑ni−1

h=0 rhDhq̂(ϕM (t0))
does not depend on Dni−1vM (t0) but only
on ϕM (t0), vM (t0), DvM (t0), . . . ,Dni−2vM (t0), and
hence Φ(R)

0 can be written as

Φ(R)
0 = Dni−1vM (t0) + Fϕ(ϕM (t0), vM (t0),

DvM (t0), . . . ,Dni−2vM (t0)) (45)

with

Fϕ(ϕM (t0), vM (t0),DvM (t0), . . . ,Dni−2vM (t0))

.=
ni−2∑
h=0

ph+1DhvM (t0) + p0ϕM (t0)

+
ni−1∑
h=0

rhDhq̂(ϕM (t0)). (46)

This implies that the solution of Σ
Φ

(R)
0

with

initial conditions ϕM (t0), vM (t0), DvM (t0), . . . ,
Dni−2vM (t0) is exactly the solution of the system
of differential equations (38) with initial conditions
ϕM (t0), vM (t0), DvM (t0), . . . , Dni−1vM (t0) once

Dni−1vM (t0) = Φ(R)
0 − Fϕ(ϕM (t0), vM (t0),

DvM (t0), . . . ,Dni−2vM (t0)), (47)

which in turn shows that Φ(R)
0 must assume any real

value. �

Remark 3.1. The proof makes it clear that (38)
admits a first integral and thus its dynamics is con-
fined to lie in some invariant manifold according to
Eqs. (42) and (43). Indeed, this fact is related to
the well-known property that the state space of cir-
cuits containing an ideal memelement is foliated, as
it will be discussed in Sec. 4.
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Remark 3.2. Note that Σ
Φ

(R)
0

can be equivalently
described by the input–output relation

ϕM (t) = −Li(D)q̂(ϕM (t)) +
1

Pi(D)
Φ(R)

0 ,

Φ(R)
0 ∈ R, (48)

thus implying that Σ
Φ

(R)
0

admits the canonical
input–output representation of Fig. 6 once

y = ϕM , n(·) = q̂(·), n(y) = qM ,

L1(D) = Li(D), L2(D) =
1

Pi(D)
, r = Φ(R)

0 .

(49)

In addition, it can be shown that this representation
is exactly that of a circuit containing a nonlinear
resistor in place of the memristor plus an additional
constant generator (see, e.g. Example 3.1).

Consider now the class of circuits of Fig. 1 with
MRq as ME. Exploiting (9) and (29), it follows
that the dynamics of the relative representation of
Fig. 5(b) is governed by{

Pv(D)iM (t) + Rv(D)vM (t) = 0,

DqM(t) = iM (t),
(50)

with vM as in the second equation of (29). In this
case, the following result holds.

Proposition 3. Consider the class of circuits of
Fig. 1 with MRq as ME and L such that Lv(D) is
strictly proper, i.e. rnv = 0, and let Assumption 2.1
hold. Then, the dynamics of the class of circuits is
completely described by the one-parameter family of
differential equations of order nv

Σ
Q

(R)
0

:

⎧⎨
⎩

Pv(D)qM (t) + Rv(D)ϕ̂(qM (t)) = Q
(R)
0 ,

Q
(R)
0 ∈ R.

(51)

Proof. The proof parallels that of Proposition 2
once iM , vM , qM , ϕM , Li(D) and q̂(·) are replaced
with vM , iM , ϕM , qM , Lv(D) and ϕ̂(·), respectively.
In particular, it turns out that the scalar variable

Q(R)(t) .= Pv(D)qM (t) + Rv(D)ϕM (t)

= Pv(D)qM (t) + Rv(D)ϕ̂(qM (t)) (52)

is constant over time, i.e.

Q(R)(t) = Q(R)(t0)
.= Q

(R)
0 ∀ t ≥ t0, (53)

where the constant Q
(R)
0 is given by the sum of the

initial conditions Dnv−1iM (t0) and a term depend-
ing only on the remaining initial conditions qM (t0),
iM (t0),DiM (t0), . . . ,Dnv−2iM (t0). �

Remark 3.3. Note that also (50) admits a first inte-
gral. Moreover, Σ

Q
(R)
0

is equivalently described by
the input–output relation

qM (t) = −Lv(D)ϕ̂(qM (t)) +
1

Pv(D)
Q

(R)
0 ,

Q
(R)
0 ∈ R. (54)

This implies that Σ
Q

(R)
0

admits the canonical repre-
sentation of Fig. 6 once

y = qM , n(·) = ϕ̂(·), n(y) = ϕM ,

L1(D) = Lv(D), L2(D) =
1

Pv(D)
, r = Q

(R)
0 .

(55)

Also in this case, there exists a circuit contain-
ing a nonlinear resistor in place of the memris-
tor plus an additional constant generator (see, e.g.
Example 3.2).

From Proposition 2 (resp., Proposition 3) it
turns out that, among the two-terminal elements
of Fig. 3, MRϕ (resp., MRq) can be intercon-
nected only with those of Figs. 3(a) and 3(d) [resp.,
Figs. 3(b) and 3(e)]. Three examples are now con-
sidered in some details: the first two deal with the
cases of Figs. 3(a) and 3(b), the third one discusses
why Propositions 2 and 3 do not apply to the case
of Fig. 3(c).

Example 3.1. Consider the circuit of Fig. 3(a) with
MRϕ as ME.2 From (10) it follows that the reduced
order family ΣΦ0 in (39) amounts to(

D2 +
R

L
D +

1
LC

)
ϕM (t)

+
(

1
C
D +

R

LC

)
q̂(ϕM (t)) = Φ(R)

0 , (56)

where the parameter Φ(R)
0 is any real number.

Proposition 2 ensures that each solution of the

2This circuit is the unforced version of the well-known Murali–Lakshmanan–Chua oscillatory memristive circuit (see, e.g.
[Ahamed & Lakshmanan, 2017]).
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system of differential equations (38) can be recov-
ered as a solution of (56) for a specific value of Φ(R)

0 .
Indeed, let vM (t) and ϕM (t) be the solution of (38),
i.e. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
D2 +

R

L
D +

1
LC

)
vM (t)

+
(

1
C
D +

R

LC

)
iM (t) = 0,

DϕM (t) = vM (t),

(57)

with iM (t) as in the second equation of (27) and ini-
tial conditions vM (t0), DvM (t0) and ϕM (t0). Then,
it can be checked that this solution is exactly the
solution of the second order differential equation
in (56), once Φ(R)

0 is given by

Φ(R)
0 = DvM (t0) +

R

L
vM (t0) +

1
LC

ϕM (t0)

+
R

LC
q̂(ϕM (t0)) +

1
C
Dq̂(ϕM (t0)). (58)

Moreover, it turns out that the dynamics of (56)
is exactly that displayed by the circuit of Fig. 7(a)
where V is a constant voltage generator and the
memristor is replaced by a nonlinear resistor with

(a)

(b)

Fig. 7. Equivalent circuits with nonlinear resistors and
additional constant generators of the memristor circuits:
(a) Example 3.1 and (b) Example 3.2.

voltage–current characteristic ĝ(·), i.e. iRNL =
ĝ(vRNL). Indeed, it can be verified that the dynam-
ics of this circuit obeys the following differential
equation(

D2 +
R

L
D +

1
LC

)
vRNL(t)

+
(

1
C
D +

R

LC

)
ĝ(vRNL(t)) =

V

LC
, (59)

which exactly coincides with (56) once V =
Φ(R)

0 LC, vRNL = ϕM and q̂(·) = ĝ(·).
Example 3.2. Consider the circuit of Fig. 3(b) with
MRq as ME. From (12) the family Σ

Q
(R)
0

in (51) is
given by(

D2 +
R

L
D +

1
LC

)
qM (t) +

1
L
Dϕ̂(qM (t)) = Q

(R)
0 ,

(60)

with Q
(R)
0 ∈ R. Also in this case the dynamics

of (60) can be exactly recovered by the circuit of
Fig. 7(b), where I is a constant current generator
and the memristor is replaced by a nonlinear resis-
tor with current–voltage characteristic r̂(·), i.e.
vRNL = r̂(iRNL). Indeed, the dynamics of the circuits
obeys(

D2 +
R

L
D +

1
LC

)
iRNL(t) +

1
L
Dr̂(iRNL(t)(t))

=
I

LC
, (61)

which is equal to (60) once I = Q
(R)
0 LC, iRNL = qM

and ϕ̂(·) = r̂(·).
Example 3.3. Consider the circuit of Fig. 3(c) with
MRϕ as ME. It turns out that Li(D) is proper but
not strictly proper and the differential equation (8)
becomes(

D2 +
R + Ri

L
D +

1
LC

)
vL(t)

−
(

RiD2 +
RRi

L
D +

Ri

LC

)
iL(t) = 0. (62)

It can be readily verified that the dynamics of the
circuit is described by the differential equation(

D2 +
R + Ri

L
D +

1
LC

)
DϕM (t)

+
(

RiD2 +
RRi

L
D +

Ri

LC

)
Dq̂(ϕM (t)) = 0,

(63)
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whose solutions are uniquely determined once the
initial conditions ϕM (t0), vM (t0) and DvM (t0) are
fixed. Now, (63) can be equivalently rewritten as

D
((

D2 +
R + Ri

L
D +

1
LC

)
ϕM (t)

+
(

RiD2 +
RRi

L
D +

Ri

LC

)
q̂(ϕM (t))

)
= 0,

(64)

from which it follows that(
D2 +

R + Ri

L
D +

1
LC

)
ϕM (t)

+
(

RiD2 +
RRi

L
D +

Ri

LC

)
q̂(ϕM (t))

= Φ(R)
0 ∀ t ≥ t0, (65)

with

Φ(R)
0 = (1 + Riq̂

′(ϕM (t0)))DvM (t0)

+
1

LC
(ϕM (t0) + Riq̂(ϕM (t0)))

+
(

R + Ri

L
+

RRi

L
q̂′(ϕM (t0))

+ Riq̂
′′(ϕM (t0))vM (t0)

)
vM (t0). (66)

Hence, the differential equation (63) still admits a
first integral. However, (66) shows that, differently
from the case when Li(D) is strictly proper as in
the proof of Proposition 2, for fixed ϕM (t0) and
vM (t0) the relation between Φ(R)

0 and DvM(t0) is
not in general invertible. Indeed, the family of dif-
ferential equations (65) generates all the solutions
of (63) by varying Φ(R)

0 ∈ R once q̂(·) and Ri are
such that 1 + Riq̂

′(φ) �= 0, ∀φ ∈ R. It can be
shown that this condition is related to the well-
known impasse point issue, which prevents the exis-
tence of a state space representation for the circuit
(see, e.g. [Chua, 1980]). Clearly, the same conclu-
sion can be reached by considering the circuit of
Fig. 3(c) with MRq as ME.

Remark 3.4. Example 3.3 makes it clear that if
Li(D) (resp., Lv(D)) is not strictly proper, then
Σ

Φ
(R)
0

(resp., Σ
Q

(R)
0

) does not provide an equivalent

representation of (38) [resp., (50)] for all the non-
linear characteristics (26) [resp., (28)], but only for
some of them.

3.2. The case of ideal
memcapacitor

Consider the class of circuits of Fig. 1 with MCϕ as
ME. In this case, the dynamics of the correspond-
ing representation of Fig. 5(a) is governed by{

Pi(D)vM (t) + Ri(D)iM (t) = 0,

DϕM (t) = vM (t),
(67)

where iM is obtained from ϕM and vM according
to the second and third equations in (31). We have
the following result.

Proposition 4. Consider the class of circuits of
Fig. 1 with MCϕ as ME and L such that Li(D) has
relative degree greater than one, i.e. rni = rni−1 =
0, and let Assumption 2.1 hold. Then, the dynam-
ics of the class of circuits is completely described by
the one-parameter family of differential equations of
order ni

Σ
Φ

(C)
0

:

⎧⎨
⎩

Pi(D)ϕM (t) + DRi(D)σ̂(ϕM (t)) = Φ(C)
0 ,

Φ(C)
0 ∈ R.

(68)

Proof. The proof is similar to that of Proposition 2
once it is observed that, since iM = DqM = D2σM ,
Eq. (67) can be equivalently rewritten as the follow-
ing differential equation of order ni + 1

Pi(D)DϕM (t) + Ri(D)DqM(t)

= D(Pi(D)ϕM (t) + DRi(D)σM (t)) = 0,
(69)

and that the degree of DRi(D) is strictly less than
that of Pi(D). In particular, according to (30), it
turns out that the scalar variable

Φ(C)(t) .= Pi(D)ϕM (t) + DRi(D)σM (t)

= Pi(D)ϕM (t) + DRi(D)σ̂(ϕM (t)) (70)

is constant over time, i.e.

Φ(C)(t) = Φ(C)(t0)
.= Φ(C)

0 ∀ t ≥ t0, (71)

where Φ(C)
0 is given by the sum of the initial con-

ditions Dni−1vM (t0) and a term depending only
on the remaining initial conditions ϕM (t0), vM (t0),
DvM (t0), . . . ,Dnv−2vM (t0). �

Remark 3.5. Note that also Σ
Φ

(C)
0

admits a first
integral and it is equivalently described by the
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input–output relation

ϕM (t) = −DLi(D)σ̂(ϕM (t)) +
1

Pv(D)
Φ(C)

0 ,

Φ(C)
0 ∈ R. (72)

Hence, also Σ
Φ

(C)
0

can be put in the form of Fig. 6
once

y = ϕM , n(·) = σ̂(·), n(y) = σM ,

L1(D) = DLi(D), L2(D) =
1

Pi(D)
, r = Φ(C)

0 .

(73)

Finally, note that Proposition 4 requires that the
relative degree of Li(D) is greater than one and,
hence, according to Remark 2.1, L must be an active
two-terminal input. If the relative degree of Li(D)
is equal to one, then a conclusion analogous to that
of Remark 3.4 is reached, i.e. Σ

Φ
(C)
0

does not pro-

vide an equivalent representation of (67) for all the
nonlinear characteristics (30).

The observation of Remark 3.5 on the relative
degree of Li(D) implies that MCϕ can be intercon-
nected, among the two-terminal elements of Fig. 3,
only with that of Fig. 3(d).

Consider now the class of circuits of Fig. 1 with
MCσ as ME. In this case, the dynamics of the
relative representation of Fig. 5(b) obeys⎧⎪⎪⎨

⎪⎪⎩
Pv(D)iM (t) + Rv(D)vM (t) = 0,

DσM(t) = qM (t),

DqM(t) = iM (t),

(74)

where vM is obtained from σM and qM according
to the third equation in (33). The next result holds
true.

Proposition 5. Consider the class of circuits of
Fig. 1 with MCσ as ME and L such that Lv(D)
is proper and let Assumption 2.1 hold. Then, the
dynamics of the class of circuits is completely
described by the one-parameter family of differen-
tial equations of order nv + 1

Σ
Q

(C)
0

:

⎧⎨
⎩
DPv(D)σM (t)+ Rv(D)ϕ̂(σM (t))= Q

(C)
0 ,

Q
(C)
0 ∈ R.

(75)

Proof. The proof is similar to that of Proposition 2
once it is observed that (74) can be equivalently

rewritten as a unique differential equation of order
nv + 2

Pv(D)D2σM (t) + Rv(D)DϕM (t)

= D(DPv(D)σM (t) + Rv(D)ϕM (t)) = 0
(76)

and that the degree Rv(D) is strictly less than that
of DPv(D). In particular, it turns out that the scalar
variable

Q(C)(t) .= DPv(D)σM (t) + Rv(D)ϕM (t)

= DPv(D)σM (t) + Rv(D)ϕ̂(σM (t)) (77)

is constant over time, i.e.

Q(C)(t) = Q(C)(t0)
.= Q

(C)
0 ∀ t ≥ t0, (78)

where Q
(C)
0 is given by the sum of the initial con-

ditions Dnv−1iM (t0) and a term depending only
on the remaining initial conditions σM (t0), qM (t0),
iM (t0),DiM (t0), . . . ,Dnv−2iM (t0). �

Remark 3.6. Note that also Σ
Q

(C)
0

admits a first inte-
gral and it is equivalently described by the input–
output relation

σM (t) = − 1
D

Lv(D)ϕ̂(ϕM (t)) +
1

DPv(D)
Q

(C)
0 ,

Q
(C)
0 ∈ R. (79)

Hence, Σ
Q

(C)
0

can be put in the form of Fig. 6 once

y = σM , n(·) = ϕ̂(·),

n(y) = ϕM , L1(D) =
1
D

Lv(D),

L2(D) =
1

DPv(D)
, r = Q

(C)
0 .

(80)

Proposition 5 implies that MCσ can be inter-
connected, among the two-terminal elements of
Fig. 3, with those of Figs. 3(b), 3(c) and 3(e).

3.3. The case of ideal meminductor

Consider now the class of circuits of Fig. 1 with
MLρ as ME. In this case, the dynamics of the rel-
ative representation of Fig. 5(a) obeys⎧⎪⎪⎨

⎪⎪⎩
Pi(D)vM (t) + Ri(D)iM (t) = 0,

DρM (t) = ϕM (t),

DϕM (t) = vM (t),

(81)
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where iM is obtained from ρM and ϕM according
to the third equation in (35). The next result holds
true.

Proposition 6. Consider the class of circuits of
Fig. 1 with MLρ as ME and L such that Li(D)
is proper and let Assumption 2.1 hold. Then, the
dynamics of the class of circuits is completely
described by the one-parameter family of differen-
tial equations of order ni + 1

Σ
Φ

(L)
0

:

⎧⎨
⎩
DPi(D)ρM (t) + Ri(D)q̂(ρM (t)) = Φ(L)

0

Φ(L)
0 ∈ R.

(82)

Proof. The proof parallels that of Proposition 5
once vM , iM , ϕM , qM , σM , Lv(D) and ϕ̂(·) are
replaced with iM , vM , qM , ϕM , ρM and Li(D) and
q̂(·), respectively. In particular, it turns out the
scalar variable

Φ(L)(t) .= DPi(D)ρM (t) + Ri(D)qM (t)

= DPi(D)ρM (t) + Ri(D)q̂(ρM (t)) (83)

is constant over time, i.e.

Φ(L)(t) = Φ(L)(t0)
.= Φ(L)

0 ∀ t ≥ t0, (84)

where Φ(L)
0 is given by the sum of the initial con-

ditions Dni−1vM (t0) and a term depending only
on the remaining initial conditions ρM (t0), ϕM (t0),
vM (t0),DvM (t0), . . . ,Dnv−2vM (t0). �

Remark 3.7. Note that also Σ
Φ

(L)
0

admits a first inte-
gral and it is equivalently described by the input–
output relation

ρM (t) = − 1
D

Li(D)q̂(ρM (t)) +
1

DPi(D)
Φ(L)

0 ,

Φ(L)
0 ∈ R. (85)

Hence, Σ
Φ

(L)
0

can be put in the form of Fig. 6 once

y = ρM , n(·) = q̂(·),

n(y) = qM , L1(D) =
1
D

Li(D),

L2(D) =
1

DPi(D)
, r = Φ(L)

0 .

(86)

Proposition 6 implies that MLρ can be inter-
connected, among the two-terminal elements of
Fig. 3, with those of Figs. 3(a), 3(c) and 3(d).

Consider the class of circuits of Fig. 1 with
MLq as ME. In this case, the dynamics of the rel-
ative representation of Fig. 5(b) is governed by{

Pv(D)iM (t) + Rv(D)vM (t) = 0,

DqM(t) = iM (t),
(87)

where vM is obtained from ϕM and iM according
to the second and third equations in (37). We have
the following result.

Proposition 7. Consider the class of circuits of
Fig. 1 with MLq as ME and L such that Lv(D) has
relative degree greater than one, i.e. rnv = rnv−1 = 0,
and let Assumption 2.1 hold. Then, the dynamics
of the class of circuits is completely described by
the one-parameter family of differential equations
of order nv

Σ
Q

(L)
0

:

⎧⎨
⎩

Pv(D)qM (t) + DRv(D)ρ̂(qM (t)) = Q
(L)
0 ,

Q
(L)
0 ∈ R.

(88)

Proof. The proof parallels that of Proposition 4
once iM , vM , qM , ϕM , σM , Li(D) and σ̂(·) are
replaced with vM , iM , ϕM , qM , ρM and Lv(D) and
ρ̂(·), respectively. In particular, it turns out that the
scalar variable

Q(L)(t) .= Pv(D)qM (t) + DRv(D)ρM (t)

= Pv(D)qM (t) + DRv(D)ρ̂(qM (t)) (89)

is constant over time, i.e.

Q(L)(t) = Q(L)(t0)
.= Q

(L)
0 ∀ t ≥ t0, (90)

where Q
(L)
0 is given by the sum of the initial con-

ditions Dnv−1iM (t0) and a term depending only
on the remaining initial conditions qM (t0), iM (t0),
DiM (t0), . . . ,Dnv−2iM (t0). �

Remark 3.8. Note that also Σ
Q

(L)
0

admits a first inte-
gral and it is equivalently described by the input–
output relation

qM(t) = −DLv(D)ρ̂(qM(t)) +
1

Pv(D)
Q

(L)
0 ,

Q
(L)
0 ∈ R. (91)

Hence, Σ
Q

(L)
0

can be put in the form of Fig. 6 once

y = qM , n(·) = ρ̂(·), n(y) = ρM ,
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L1(D) = DLv(D), L2(D) =
1

Pv(D)
, r = Q

(L)
0 .

(92)

Finally, note that, if Lv(D) has relative degree
equal to one, then a conclusion analogous to that
of Remark 3.4 is reached. Moreover, the condition
of Proposition 7 on the relative degree of Lv(D)
requires that L must be an active two-terminal
element.

The last observation of Remark 3.8 implies
that MLq can be interconnected, among the two-
terminal elements of Fig. 3, only with that of
Fig. 3(e).

3.4. Summary of the results

In the previous subsections it has been shown that
each one of the six representations in the voltage–
current domain can be equivalently described via
the canonical input–output representation of Fig. 6,
where the external input r is assumed to be any
constant value. Table 1 summarizes the obtained
results for each one of the representations. Specif-
ically, for each memelement ME a column is
reported containing the order of its dynamical
model, the models ML and Σ and their relative
orders, the output y, the nonlinearity n(·) and its
output n(y), the constant input r, the rational func-
tions L1(D) and L2(D) together with the condi-
tions on their coefficients. The table clearly high-
lights that, for each ME, the order of the system
Σ is equal to that of the original representation in

the voltage–current domain minus one, which is due
to the fact that the dynamics of the original rep-
resentation admits a first integral. Also, the input
and output of the nonlinear subsystem are the flux
ϕM and the charge qM or their time integrals ρM

and σM , which puts into evidence the importance
of the flux-charge approach recently developed (see,
e.g. [Corinto & Forti, 2016]) for the analysis of cir-
cuits containing memelements. Clearly, the voltage
vM and the current iM of each memelement can be
obtained by simply differentiating the input and the
output of the nonlinear subsystem.

An application example is now developed to
show how the canonical input–output representa-
tion can be readily obtained for a given circuit con-
taining a memelement.

Example 3.4. Consider the celebrated Chua’s cir-
cuit reported in Fig. 8(a) with the nonlinear resis-
tor (Chua’s diode) replaced by a memristor MRϕ.
It can be verified that the impedance of Li(D) of
L is such that

Li(D) =

1
C1

(
D2 +

1
RC2

D +
1

LC2

)

D3 +
C1 + C2

RC1C2
D2 +

1
LC2

D +
1

RLC1C2

(93)

and hence

Pi(D) = D3 +
C1 + C2

RC1C2
D2 +

1
LC2

D +
1

RLC 1C2
.

(94)

Table 1. Summary of the characteristics of the canonical input–output representation related to each ME.

ME MRϕ MRq MCϕ MCσ MLρ MLq

ME order 1 1 1 2 2 1

ML MLi,v MLv,i MLi,v MLv,i MLi,v MLv,i

ML order ni nv ni nv ni nv

Σ Σ
Φ

(R)
0

Σ
Q

(R)
0

Σ
Φ

(C)
0

Σ
Q

(C)
0

Σ
Φ

(L)
0

Σ
Q

(L)
0

Σ order ni nv ni nv + 1 ni + 1 nv

y ϕM qM ϕM σM ρM qM

n(·) q̂(·) ϕ̂(·) σ̂(·) ϕ̂(·) q̂(·) ρ̂(·)
n(y) qM ϕM σM ϕM qM ρM

r Φ
(R)
0 Q

(R)
0 Φ

(C)
0 Q

(C)
0 Φ

(L)
0 Q

(L)
0

L1(D) Li(D) Lv(D) DLi(D)
1

DLv(D)
1

DLi(D) DLv(D)

L2(D)
1

Pi(D)

1

Pv(D)

1

Pi(D)

1

DPv(D)

1

DPi(D)

1

Pv(D)

Conditions rni = 0 rnv = 0 rni = rni−1 = 0 rnv = rnv−1 = 0
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(a)

(b)

Fig. 8. (a) Memristive Chua’s circuit and (b) equivalent circuit with the nonlinear resistor in place of the memristor and the
additional constant voltage generator.

According to the first column of Table 1, the canon-
ical input–output representation of the memristive
Chua’s circuit is in Fig. 9, with Li(D) and Pi(D) as
in (93) and (94), respectively, and

Φ(R)
0 = D2vM (t0) +

C1 + C2

RC1C2
DvM (t0)

+
1

LC2
vM (t0) +

1
RLC 1C2

ϕM (t0)

Fig. 9. The canonical input–output representation of the
memristive Chua’s circuit.

+
1
C1

D2q̂(ϕM (t0)) +
1

RCC2
Dq̂(ϕM (t0))

+
1

LC1C2
q̂(ϕM (t0)). (95)

The dynamics of the memristive Chua’s circuit is
thus obtained by collecting the dynamical behav-
iors of the canonical representation generated by
all the constant values Φ(R)

0 . It is interesting to
note that the dynamical behaviors pertaining to a
given value of Φ(R)

0 are exactly those displayed by
the classical Chua’s circuit of Fig. 8(b) where the
memristor is replaced by a nonlinear resistor with
voltage–current characteristic such that ĝ(·) = q̂(·),
i.e. iRNL = q̂(vRNL), forced by an additional con-
stant voltage generator given by

V = Φ(R)
0 RLC 1C2. (96)

Hence, the dynamics of the memristive Chua’s cir-
cuit can be equivalently obtained via a family of
classical Chua’s circuit, which clearly highlights the
richness of a memristive circuit over a classical one
(see also [Di Marco et al., 2018]).

Remark 3.9. It is worth underlining that having
reduced the study of the dynamics of the class of
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circuits in Fig. 1 to the analysis of a system enjoy-
ing the structure of Σ is quite important. Indeed,
Σ is completely defined by the nonlinear character-
istic pertaining to ME and the impedance or admit-
tance of L. In this respect, note that the impedance
and admittance can be obtained experimentally
even if a model is not available. Moreover, sev-
eral tools are available for the dynamical analysis of
systems enjoying this structure, including the well-
known Harmonic Balance Method (HBM) [Ather-
ton, 1975; Mees, 1981; Khalil, 2002]. The HBM has
been widely used to predict periodic solutions, their
bifurcations and more complex dynamics [Gene-
sio & Tesi, 1992; Piccardi, 1994; Tesi et al., 1996;
Basso et al., 1997; Bonani & Gilli, 1999; Di Marco
et al., 2003; Innocenti et al., 2010; Di Marco et al.,
2018; Innocenti et al., 2019b]. In a forthcoming
paper, it will be applied in a systematic way to the
canonical input–output system Σ.

4. State Space Representations and
Invariant Manifolds
Characterization

In this section, we focus on state space represen-
tation of the six interconnected systems of Fig. 5.
First, we introduce a suitable state representation of
the current–voltage and the voltage–current models
of L,3 by considering that the input and the output
of MLi,v are iL and vL [see Fig. 5(a)], while those of
MLv,i are −vL and −iL [see Fig. 5(a)], respectively.

Proposition 8. Let Assumption 2.1 hold and con-
sider the state space representation{Dx(t) = Ax(t) + Bu(t),

z(t) = Cx(t) + Du(t),
(97)

where x ∈ R
N is the state vector, u is the scalar

input, z is the scalar output, and A ∈ R
N×N ,

B ∈ R
N×1, C ∈ R

1×N , D ∈ R
1×1 are the following

matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−pN−1 1 0 · · · 0

−pN−2 0 1 · · · 0
...

...
...

. . .
...

−p1 0 0 · · · 1

−p0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

rN−1 − rNpN−1

rN−2 − rNpN−2

...

r1 − rNp1

r0 − rNp0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C = (1 0 · · · 0 0),

D = rN .

(98)

Then, MLi,v and MLv,i admit the state represen-
tations (97)–(98) with N = ni, u = iL, z = vL and
N = nv, u = −vL, z = −iL, respectively.

Proof. The proof follows from Assumption 2.1 and
by observing that in the MLi,v case4

C(DIN − A)−1B + D = Li(D) (99)

and in the MLv,i case

C(DIN − A)−1B + D = Lv(D). (100)
�

Remark 4.1. Note that if Li(D) and Lv(D) are
strictly proper, i.e. rni = rnv = 0, then D = 0 and
B = (rN−1, rN−2, . . . , r1, r0)�. Moreover, if Li(D)
and Lv(D) have relative degree greater than one,
i.e. rni = rni−1 = rnv = rnv−1 = 0, then D = 0 and
B = (0, rN−2, . . . , r1, r0)�.

Remark 4.2. There are infinite equivalent state
space representations depending on the choice of
the state vector x. For instance, consider the nat-
ural representation in the voltage–current domain
where the state vector x ∈ R

N collects the voltages
of all capacitors and the currents of all inductors of
L. Let us write this new state representation as{Dx(t) = Ax(t) + Bu(t),

z(t) = Cx(t) + Du(t),
(101)

where A ∈ R
N×N , B ∈ R

N×1, C ∈ R
1×N , D ∈

R
1×1, and u = iL, z = vL in the MLi,v case, while

u = −vL, z = −iL in the MLv,i case. The unique
nonsingular transformation matrix S ∈ R

N×N such
that x = S−1x can be computed by solving the

3To avoid the trivial case we assume that the order N of L, defined as in Proposition 8, is such that N > 1. If N = 1 state
space models boil down to the differential Eqs. (8) and (9).
4IN denotes the identity matrix of order N .
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linear equations

SA =AS , SB = B, C =CS , D = D. (102)

Let us now develop a state space represen-
tation of each one of the six systems of Fig. 5.
The next result readily follows from Proposition 8
and Eqs. (27) and (29) describing the dynamics of
MRϕ and MRq, respectively.

Proposition 9. Let Assumption 2.1 hold and let
Li(D) and Lv(D) be strictly proper, i.e. rni = rnv =
0, respectively. Then, the representation of Fig. 5(a)
with MRϕ and the representation of Fig. 5(b) with
MRq admit the state space representation

S(I) :

(Dξ1(t)

Dx(t)

)
=

(
0 C

0N×1 A

)(
ξ1(t)

x(t)

)

−
(

0

B

)
f ′(ξ1(t))Cx(t),

(103)

once N = ni, ξ1 = ϕM , f = q̂, and N = nv,
ξ1 = qM , f = ϕ̂, respectively.

We can now show that (103) enjoys the funda-
mental property that its state space is foliated, i.e.
it amounts to a continuum of invariant manifolds
where different lower-order dynamical behaviors are
displayed.

Proposition 10. Let (ξ1(t), x(t))� ∈ R
N+1 be the

solution for t ≥ t0 of the state representation
S(I) with initial condition (ξ1(t0), x(t0))� ∈ R

N+1.
Then,

(ξ1(t), x(t))� ∈ M(I)
0 , ∀ t ≥ t0, (104)

where

M(I)
0 = {(ξ1, x)� ∈ R

N+1 : xN + p0ξ1 + r0f(ξ1)

= xN (t0) + p0ξ1(t0) + r0f(ξ1(t0))

.= K
(I)
0 }. (105)

The dynamics on the invariant manifold M(I)
0 is

described by the equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ1(t) = η1(t),

xi(t) = ηi+1(t) − pN−iη1(t)

− rN−if(η1(t)), i = 1, . . . , N − 1,

xN (t) = K
(I)
0 − p0η1(t) − r0f(η1(t)),

(106)

where η(t) ∈ R
N is the solution of the reduced order

state space model

S(I)
R :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN−1(t)

DηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN−1(t)

ηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− Bf(η1(t))

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

K
(I)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (107)

with initial condition

(ξ1(t0), x1(t0) + pN−1ξ1(t0) + rN−1f(ξ1(t0)), . . . ,

xN−1(t0) + p1ξ1(t0) + r1f(ξ1(t0)))� ∈ R
N .

Proof. See the Appendix. �

Remark 4.3. Proposition 10 characterizes the invari-
ant manifolds of the state space of the representa-
tion of Fig. 5(a) with MRϕ, once N = ni, ξ1 = ϕM ,
f = q̂, and that of Fig. 5(b) with MRq, once
N = nv, ξ1 = qM , f = ϕ̂. In both cases any
solution (ξ1(t), x(t))� of S(I) can be computed by
first obtaining K

(I)
0 according to the last equality

in (105), then solving S(I)
R for η1(t), η2(t), . . . , ηN (t)

and finally using relations (106). In this respect, it
is interesting to note that S(I)

R does not contain the
derivative of the function f , which is a useful prop-
erty when piecewise linear flux-charge and charge-
flux characteristics are considered.

Remark 4.4. Note that the solution η1(t) of (107) is
such that

η1(t) = −C(DIN − A)−1Bf(η1(t))

+
K

(I)
0

det[DIN − A]
. (108)

Hence, from Eqs. (99) and (100) and relations (48)
and (54) it follows the constant K

(I)
0 is indeed equal

to the parameter Φ(R)
0 defining the family Σ

Φ
(R)
0

,
in the case of a flux-controlled memristor, while is
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equal to the parameter Q
(R)
0 defining Σ

Q
(R)
0

in the
charge-controlled case.

Remark 4.5. According to Remark 4.2, the invari-
ant manifold M(I)

0 can be expressed in terms of the
state vector x of (101) as

N∑
h=1

sNhxh + p0ξ1 + r0f(ξ1) = K
(I)
0 , (109)

where sNh, h = 1, . . . , N are the entries of the Nth
row of S. It is interesting to note that the invari-
ant manifold is linear when r0 = 0, which means
the polynomials Rϕ(D) and Rq(D) must vanish at
D = 0.

Let us now develop a state space representation
for the system of Fig. 5(a) with MCϕ and the one of
Fig. 5(b) with MLq. The next result readily follows
from Proposition 8 and relations (31), (37).

Proposition 11. Let Assumption 2.1 hold and let
Li(D) and Lv(D) have relative degree less than one,
i.e. rni = rni−1 = rnv = rnv−1 = 0. Then, the repre-
sentation of Fig. 5(a) with MCϕ and the represen-
tation of Fig. 5(b) with MLq admit the state space
representation

S(II ) :

(Dξ1(t)

Dx(t)

)
=

(
0 C

0N×1 A

)(
ξ1(t)

x(t)

)

−
(

0

B

)
(f ′′(ξ1(t))(Cx(t))2

+ f ′(ξ1(t))CAx(t)), (110)

once N = ni, ξ1 = ϕM , f = σ̂, and N = nv,
ξ1 = qM , f = ρ̂, respectively.

It can be shown that also in this case the state
space is foliated.

Proposition 12. Let (ξ1(t), x(t))� ∈ R
N+1 be the

solution for t ≥ t0 of S(II ) with initial condition
(ξ1(t0), x(t0))� ∈ R

N+1. Then,

(ξ1(t), x(t))� ∈ M(II )
0 , ∀ t ≥ t0, (111)

where

M(II )
0 = {(ξ1, x)� ∈R

N+1 :xN + p0ξ1 + r0f
′(ξ1)x1

= xN (t0) + p0ξ1(t0) + r0f
′(ξ1(t0))x1(t0)

.= K
(II )
0 }. (112)

The dynamics on the invariant manifold M(II )
0 is

described by the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(t) = η1(t),

x1(t) = η2(t) − pN−1η1(t) − rN−2f(η1(t)),

xi(t) = ηi+1(t) − pN−iη1(t) − rN−1−if(η1(t))

− rN−if
′(η1(t))(η2(t) − pN−1η1(t)

− rN−2f(η1(t))), i = 2, . . . , N − 1,

xN (t) = K
(II )
0 − p0η1(t) − r0f

′(η1(t))(η2(t)

− pN−1η1(t) − rN−2f(η1(t))),
(113)

where η(t) ∈ R
N is the solution of the reduced order

state space model

S(II )
R :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN−1(t)

DηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN−1(t)

ηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− B0f(η1(t))

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

K
(II )
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (114)

with initial condition

(ξ1(t0), x1(t0) + pN−1ξ1(t0) + rN−2f(ξ1(t0)), x2(t0)

+ pN−2ξ1(t0) + rN−3f(ξ1(t0))

+ rN−2f
′(ξ1(t0))x1(t0), . . . , xN−1(t0)

+ p1ξ1(t0) + r0f(ξ1(t0))

+ r1f
′(ξ1(t0))x1(t0))� ∈ R

N and

B0 = (rN−2, rN−3, . . . , r0, 0)� ∈ R
N×1.

Proof. See the Appendix. �

Remark 4.6. Proposition 12 characterizes the state
space invariant manifolds of the representation of
Fig. 5(a) with MCϕ, once N = ni, ξ1 = ϕM ,
f = σ̂, and that of Fig. 5(b) with MLq, once
N = nv, ξ1 = qM , f = ρ̂. In particular, according
to Remark 4.2, the invariant manifold M(II )

0 can be

2050110-20

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
9.

20
.8

0.
17

5 
on

 0
7/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 25, 2020 9:46 WSPC/S0218-1274 2050110

Input–Output Characterization of the Dynamical Properties of Circuits with a Memelement

expressed in the voltage–current domain as
N∑

h=1

sNhxh + p0ξ1 + r0f
′(ξ1)Cx = K

(II )
0 , (115)

where sNh, h = 1, . . . , N are the entries of the Nth
row of S and C is the output matrix in (101). Also in
this case for r0 = 0 the invariant manifold is linear.
Finally, it can be verified that the constant K

(II )
0

is equal to the parameter Φ(C)
0 defining the family

Σ
Φ

(C)
0

, in the case of MCϕ, and to the parameter

Q
(L)
0 defining Σ

Q
(L)
0

in the case of MLq.

We now consider a state space model for the
representation of Fig. 5(a) with MLρ and the one
of Fig. 5(b) with MCσ. The next result readily fol-
lows from Proposition 8 and relations (35), (37).

Proposition 13. Let Assumption 2.1 hold. Then,
the representation of Fig. 5(a) with MLρ and the
representation of Fig. 5(b) with MCσ admit the
state space representation

S(III ) :

⎛
⎜⎝
Dξ1(t)

Dξ2(t)

Dx(t)

⎞
⎟⎠

=

⎛
⎜⎝

0 1 01×N

0 0 C

0N×1 0N×1 A

⎞
⎟⎠
⎛
⎜⎝

ξ1(t)

ξ2(t)

x(t)

⎞
⎟⎠

−

⎛
⎜⎝

0

D

B

⎞
⎟⎠ f ′(ξ1(t))ξ2(t), (116)

once N = ni, ξ1 = ρM , ξ2 = ϕM , f = q̂, and
N = nv, ξ1 = σM , ξ2 = qM , f = ϕ̂, respectively.

It can be shown that also in this case the state
space is foliated.

Proposition 14. Let (ξ1(t), ξ2(t), x(t))� ∈ R
N+2 be

the solution for t ≥ t0 of S(II ) with initial condition
(ξ1(t0), ξ2(t0), x(t0))� ∈ R

N+2. Then,

(ξ1(t), ξ2(t), x(t))� ∈ M(III )
0 , ∀ t ≥ t0, (117)

where

M(III )
0 = {(ξ1, ξ2, x)� ∈R

N+2 :xN + p0ξ2 + r0f(ξ1)

= xN (t0) + p0ξ2(t0) + r0f(ξ1(t0))

.= K
(III )
0 }. (118)

The dynamics on the invariant manifold M(III )
0 is

described by the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(t) = η1(t),

ξ2(t) = η2(t) − pN−1η1(t) − rNf(η1(t)),

xi(t) = ηi+2(t) − (pN−1−i − pN−ipN−1)η1(t)

− pN−iη2(t) − (rN−i − pN−irN )f(η1(t)),

i = 2, . . . , N − 1,

xN (t) = K
(III )
0 + p0pN−1η1(t) − p0η2(t)

− (r0 − p0rN )f(η1(t)),
(119)

where η(t) ∈ R
N+1 is the solution of the reduced

order state space model

S(III )
R :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN (t)

DηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
A 01×N

0N×1 0

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN (t)

ηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
(

D

B

)
f(η1(t)) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0

K
(III )
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (120)

with initial condition

(ξ1(t0), pN−1ξ1(t0) + ξ2(t0) + rNf(ξ1(t0)), x1(t0)

+ pN−2ξ1(t0) + pN−1ξ2(t0)

+ rN−1f(ξ1(t0)), . . . , xN−1(t0) + p0ξ1(t0)

+ p1ξ2(t0) + r1f(ξ1(t0)))� ∈ R
N+1.

Proof. See the Appendix. �

Remark 4.7. Proposition 14 characterizes the state
space invariant manifolds of the representation of
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Fig. 5(a) with MLρ, once N = ni, ξ1 = ρM ,
ξ2 = ϕM , f = q̂, and that of Fig. 5(b) with MCσ,
once N = nv, ξ1 = σM , ξ2 = qM , f = ϕ̂. In partic-
ular, according to Remark 4.2, the invariant mani-
fold M(III )

0 can be expressed in the voltage–current
domain as

N∑
h=1

sNhxh + p0ξ2 + r0f(ξ1) = K
(III )
0 , (121)

where sNh, i = h, . . . ,N are the entries of the Nth
row of S. Also in this case for r0 = 0 the invariant
manifold is linear. Finally, it can be verified that
the constant K

(III )
0 is equal to the parameter Φ(L)

0
defining the family Σ

Φ
(L)
0

, in the case of MLρ, and

to the parameter Q
(C)
0 defining Σ

Q
(C)
0

in the case
of MCσ.

Table 2 summarizes the expressions in the
voltage–current domain of the invariant manifolds
for each one of the six representations of Fig. 5.
Specifically, x ∈ R

N is the natural state vector
in the voltage–current domain (see Remark 4.2)
and sNh are the components of the last row of the
matrix S ∈ R

N×N which can be computed accord-
ing to relations (102). The next example shows in
some detail how to compute the invariant manifolds
for all admissible interconnection between the two-
terminal elements L of Fig. 3 and each ME.

Example 4.1. For the two-terminal element L of
Fig. 3(a) the state vector in the voltage–current
domain is x = (vC , iL)� ∈ R

2. It can be verified that
its time evolution is described by the state space
representation (101), where u = iL, z = vL and

A =

⎛
⎜⎜⎜⎜⎝

0
1
C

− 1
L

−R

L

⎞
⎟⎟⎟⎟⎠,

B =

⎛
⎜⎜⎝

1
C

0

⎞
⎟⎟⎠,

C = (1 0), D = 0.

(122)

From the expression of Li(D) in (12), we have
r0 = R/(LC), r1 = 1/C, p0 = 1/(LC), p1 = R/L
and thus we get the matrices (98). To obtain the
expressions in Table 2 of the invariant manifolds
it remains to compute the last row of the matrix
S ∈ R

2×2. By solving the linear equations (102), we
get s21 = R/L and s22 = 1/C and, hence, the ana-
lytical expressions of the invariant manifolds of the
circuit of Fig. 3(a) with MRϕ and MLρ as ME are
readily obtained (see Table 3).

Consider now the two-terminal element L of
Fig. 3(b). The time evolution of the state vector

Table 2. Summary of the invariant manifolds of the state space representation related to each ME.

ME Invariant Manifolds

MRϕ

(
(ϕM , x)� ∈ R

ni+1 :

niX
h=1

snihxh + p0ϕM + r0q̂(ϕM ) = Φ
(R)
0 , Φ

(R)
0 ∈ R

)

MRq

(
(qM , x)� ∈ R

nv+1 :

nvX
h=1

snvhxh + p0qM + r0ϕ̂(qM ) = Q
(R)
0 , Q

(R)
0 ∈ R

)

MCϕ

(
(ϕM , x)� ∈ R

ni+1 :

niX
h=1

snihxh + p0ϕM + r0σ̂
′(ϕM )Cx = Φ

(C)
0 , Φ

(C)
0 ∈ R

)

MCσ

(
(σM , qM , x)� ∈ R

nv+2 :

nvX
h=1

snvhxh + p0qM + r0ϕ̂(σM ) = Q
(C)
0 , Q

(C)
0 ∈ R

)

MLρ

(
(ρM , ϕM , x)� ∈ R

ni+2 :

niX
h=1

snihxh + p0ϕM + r0q̂(ρM ) = Φ
(L)
0 , Φ

(L)
0 ∈ R

)

MLq

(
(qM , x)� ∈ R

nv+1 :

nvX
h=1

snvhxh + p0qM + r0ρ̂′(qM )Cx = Q
(L)
0 , Q

(L)
0 ∈ R

)
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x = (vC , iL)� ∈ R
2 is described by the state space

representation (101) where u = −vL, z = −iL and

A =

⎛
⎜⎜⎜⎜⎝

0
1
C

− 1
L

−R

L

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎝ 0

1
L

⎞
⎟⎠,

C = (0 1), D = 0.

(123)

From the expression of Lv(D) in (12), it follows that
r0 = 0, r1 = 1/L, p0 = 1/(LC), p1 = R/L from
which we get the matrices (98). By solving (102),
we obtain s21 = 1/L and s22 = 0 which complete
the analytical expression of the invariant manifolds
of the circuit of Fig. 3(b) with MRq and MCσ as
ME (see Table 3). It is interesting to note that, in

this case, according to Remark 4.5, the invariant
manifolds are linear.

Similar arguments apply to the linear two-
terminal elements of Figs. 3(c)–3(e). The resulting
invariant manifolds are reported in Table 3.

Two numerical examples are now developed to
provide some insights on the structure of the invari-
ant manifolds.

Example 4.2. Let us consider the interconnection
between the passive circuit of Fig. 3(b) (with R =
0.6, C = 0.5 and L = 1) and a charge-controlled
memristor MRq with a cubic charge-flux charac-
teristic given by

ϕM = ϕ̂(qM ) = α0qM +
α1

3
q3
M , (124)

Table 3. State space invariant manifolds of the admissible interconnection between the two-terminal elements L of Fig. 3
and each ME.

L ME Invariant Manifolds

Fig. 3(a) MRϕ

j
(ϕM , vC , iL)� ∈ R

3 :
R

L
vC +

1

C
iL +

1

LC
ϕM +

R

LC
q̂(ϕM ) = Φ

(R)
0

ff

Fig. 3(a) MLρ

j
(ρM , ϕM , vC , iL)� ∈ R

4 :
R

L
vC +

1

C
iL +

1

LC
ϕM +

R

LC
q̂(ρM ) = Φ

(L)
0

ff

Fig. 3(b) MRq

j
(qM , vC , iL)� ∈ R

3 :
1

L
vC +

1

LC
qM = Q

(R)
0

ff

Fig. 3(b) MCσ

j
(σM , qM , vC , iL)� ∈ R

4 :
1

L
vC +

1

LC
qM = Q

(C)
0

ff

Fig. 3(c) MCσ

j
(σM , qM , vC , iL)� ∈ R

4 :
1

L
vC +

1

LC
qM +

1

RiLC
ϕ̂(σM ) = Q

(C)
0

ff

Fig. 3(c) MLρ

j
(ρM , ϕM , vC , iL)� ∈ R

4 :
Ri

L
vC +

1

LC
ϕM +

Ri

LC
q̂(ρM ) = Φ

(L)
0

ff

Fig. 3(d) MRϕ

j
(ϕM , vC1 , vC2)� ∈ R

3 : − 1

R1C2
vC1 +

R1 + R2 + Ri

R1RiC1
vC2 +

1

R1RiC1C2
(ϕM + R2q̂(ϕM )) = Φ

(R)
0

ff

Fig. 3(d) MCϕ

j
(ϕM , vC1 , vC2)� ∈ R

3 : − 1

R1C2
vC1 +

R1 + R2 + Ri

R1RiC1
vC2 +

1

R1RiC1C2

`
ϕM + R2σ̂′(ϕM )vC2

´
= Φ

(C)
0

ff

Fig. 3(d) MLρ

j
(ρM , ϕM , vC1 , vC2)

� ∈ R
4 : − 1

R1C2
vC1 +

R1 + R2 + Ri

R1RiC1
vC2 +

1

R1RiC1C2
(ϕM + R2q̂(ρM )) = Φ

(L)
0

ff

Fig. 3(e) MRq

j
(qM , vC1 , vC2)

� ∈ R
3 :

−1

R1R3

„
1

C2
vC1 +

1

C1
vC2 − R2 + R3 + R4

R2C1C2
qM − 1

R2C1C2
ϕ̂(qM )

«
= Q

(R)
0

ff

Fig. 3(e) MCσ

j
(σM , qM , vC1 , vC2)� ∈ R

4 :
−1

R1R3

„
1

C2
vC1 +

1

C1
vC2 − R2 + R3 + R4

R2C1C2
qM − 1

R2C1C2
ϕ̂(σM )

«
= Q

(C)
0

ff

Fig. 3(e) MLq

j
(qM , vC1 , vC2)

� ∈ R
3 :

−1

R1R3

„
1

C2
vC1 +

1

C1
vC2 − R2 + R3 + R4

R2C1C2
qM +

1

R2R3C1C2
ρ̂′(qM )vC1

«
= Q

(R)
0

ff
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Fig. 10. Planar invariant manifolds (for Q
(R)
0 = −6 and

Q
(R)
0 = 0) and state trajectories for the circuit obtained

connecting the passive circuit of Fig. 3(b) with a charge-
controlled memristor (Example 4.2). Initial conditions are
marked with a green ◦ symbol, while stable equilibrium points
are marked with a red ∗ symbol.

where α0 = −1.02 and α1 = 0.1. According to
Table 3, the state space solutions (qM (t), vC(t),
iL(t)) evolve on planar manifolds. This property is
highlighted by the trajectories illustrated in Fig. 10,
which have initial conditions (qM (0) = 0.5, iL(0) =
−0.5, vC(0) = −7) and (qM (0) = 0.5, iL(0) = −0.5,
vC(0) = −1). They correspond to Q

(R)
0 = −6 and

Q
(R)
0 = 0, respectively, and, therefore, evolve on

different planar manifolds parallel to the iL axis,
as emphasized in the figure. Figure 11 shows the
limit sets for several solutions of the circuit with
initial conditions belonging to different invariant

Fig. 11. Limit sets and planar invariant manifolds (for val-

ues of Q
(R)
0 between −8 and 6) for Example 4.2. Stable equi-

librium points are marked with a red ∗ symbol.

Fig. 12. Limit sets and nonplanar invariant manifold (cor-

responding to Q
(R)
0 = 0) for Example 4.3. Initial conditions

are marked with a green ◦ symbol.

manifolds. It can be noted that, depending on the
initial conditions, the circuit shows both station-
ary and oscillatory solutions, thus it undergoes the
so-called Hopf bifurcation “without parameters”
[Fiedler et al., 2000].

Example 4.3. Let us consider the interconnection
between the active circuit of Fig. 3(e) (with R1 =
0.6, R2 = 1, R3 = 0.5, R4 = 0.3, C1 = 1 and
C2 = 0.6) and a charge-controlled meminductor
MLq with a cubic charge-flux momentum charac-
teristic given by

ρM = ρ̂(qM ) = α0qM +
α1

3
q3
M , (125)

where α0 = −1.02 and α1 = 0.1. Figure 12 shows
the state evolution starting from initial conditions

Fig. 13. Nonplanar invariant manifolds corresponding to

Q
(R)
0 = −15 and Q

(R)
0 = 15 for Example 4.3.
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qM (0) = 0.2, vC1(0) = −0.2, vC2(0) = 0.028 and
the associated invariant manifold corresponding to
Q

(R)
0 = 0, whose expression is reported in the last

line of Table 3. Figure 13 shows two of such invari-
ant manifolds, corresponding to Q

(R)
0 = −15 and

Q
(R)
0 = 15, respectively.

5. Extension to the Case of
Nonautonomous Classes
of Circuits

In this section, we show how the structure of the
canonical input–output system Σ of Fig. 6 can be
suitably modified to incorporate also the case where
L contains voltage or current generators. For the
sake of simplicity, the analysis is limited to the case
of a single generator w(t), but the extension to the
case of more generators is straightforward and it
will be illustrated by an example.

The current–voltage model MLi,v and the
voltage–current model MLv,i are assumed to be
described by the following input–output relation

vL(t) = Li(D)iL(t) + Li(D)w(t) (126)

and

iL(t) = Lv(D)vL(t) + Lv(D)w(t), (127)

respectively. The rational function Li(D) (resp.,
Lv(D)) is as in (2) [resp., (5)], while

Li(D) =
Ri(D)
Pi(D)

, Lv(D) =
Rv(D)
Pv(D)

(128)

with Pi(D) (resp., Pv(D)) as in (3) [resp., (6)] and

Ri(D) = rniDni + rni−1Dni−1 + · · · + r1D + r0,

Rv(D) = rnvDnv + rnv−1Dnv−1 + · · · + r1D + r0.

(129)

The dynamics of MLi,v is thus governed by the
nonautonomous linear differential equation

Pi(D)vL(t) − Ri(D)iL(t) = Ri(D)w(t), (130)

while that of MLv,i by

Pv(D)iL(t) − Rv(D)vL(t) = Rv(D)w(t). (131)

Let us now consider the six interconnections of
Fig. 5 with MLi,v and MLv,i modeled by (130)
and (131), respectively. Each one of these intercon-
nections can be put in the form of the system ΣF

of Fig. 14, according to the next result.

Fig. 14. System ΣF : canonical input–output representation
of the nonautonomous class of circuits.

Proposition 15. The dynamics of the interconnec-
tions of MLi,v in (130) with MRϕ, MCϕ, MLρ,
and of MLv,i in (131) with MRq, MCσ, MLq are
described by the canonical system ΣF where r is
assumed to be any constant value (i.e. r(t) = X0,
X0 ∈ R), ŵ is defined as

ŵ(t) = D−1w(t) =
∫ t

−∞
w(σ)dσ (132)

and for each memelement L1(D), L2(D), y, n(·),
n(y) are as in Table 1 and L3(D) is given in
Table 4.

Proof. Let us focus on the interconnection between
MLi,v and MRϕ. From (130) and (27) it can be

Table 4. Canonical system ΣF :
expression of the rational function
L3(D) related to each ME.

ME L3(D)

MRϕ Li(D)

MRq Lv(D)

MCϕ Li(D)

MCσ
1

DLv(D)

MLρ
1

DLi(D)

MLq Lv(D)
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readily verified that the corresponding dynamics
obeys

Pi(D)DϕM (t) + Ri(D)Dq̂(ϕM (t)) = Ri(D)w(t).
(133)

Now, since w = Dŵ, (133) can be equivalently
written as

D(Pi(D)ϕM (t) + Ri(D)q̂(ϕM (t)) − Ri(D)ŵ(t))

= 0 (134)

and hence the scalar variable

X(t) .= Pi(D)ϕM (t) + Ri(D)q̂(ϕM (t))

−Ri(D)ŵ(t) (135)

is constant over time, i.e.

X(t) = X(t0)
.= X0 ∀ t ≥ t0. (136)

By reasoning as in the proof of Proposition 2, it can
be shown that the family of reduced order nonau-
tonomous differential equations

Pi(D)ϕM (t) + Ri(D)q̂(ϕM (t))

= Ri(D)ŵ(t) + X0, X0 ∈ R (137)

generates all the solutions of the original differential
equation (133). Clearly, the above family admits an
equivalent representation in terms of the following
input–output relation

ϕM (t) = −Li(D)q̂(ϕM (t)) + Li(D)ŵ(t)

+
1

Pi(D)
X0, X0 ∈ R. (138)

This implies that the dynamics of the considered
interconnection is described by ΣF once L3(D) =
Li(D) and r = X0. Quite a similar argument applies
to the other interconnections. �

Remark 5.1. Proposition 15 makes it clear that volt-
age and current generators can be incorporated
in the canonical representation ΣF as feedforward
blocks driven by their time integrals and whose
rational function depends on either Li(D) or Lv(D)
(see Example 5.3), as reported in Table 4. Also, it
follows that each one of the six interconnections
admits a first integral, i.e. a scalar variable (X(t)
in the proof) is constant over time and its value
(X0 in the proof) is indeed the value of the input r
in ΣF .

Some illustrative examples are reported next.
In particular, the third one shows how to deal with
the presence of two generators.

Example 5.1. Consider again the well-known
Murali–Lakshmanan–Chua oscillatory memristive
circuit of Fig. 15(a) (see, e.g. [Ahamed & Laksh-
manan, 2017]) where w(t) is a voltage generator. It
can be readily verified that L is described by (126)
with Li(D) as in (10) and

Li(D) =

1
LC

D2 +
R

L
D +

1
LC

. (139)

Moreover, (130) boils down to(
D2 +

R

L
D +

1
LC

)
vL(t) −

(
1
C
D +

R

LC

)
iL(t)

=
1

LC
w(t). (140)

Hence, Proposition 15 ensures that the circuit of
Fig. 15(a) admits the canonical representation of
Fig. 14 with y = ϕM , n̂(·) = q̂(·) and

L1(D) =

1
C
D +

R

LC

D2 +
R

L
D +

1
LC

,

L2(D) =
1

D2 +
R

L
D +

1
LC

,

L3(D) =

1
LC

D2 +
R

L
D +

1
LC

.

(141)

Example 5.2. Consider the forced circuit of
Fig. 15(b) composed of the two-terminal element
of Fig. 3(b), MRq as ME and a current generator
w(t) in parallel to the resistor. In this case, L is
described by (127), with Lv(D) as in (12) and

Lv(D) = −
R

L
D

D2 +
R

C
D +

1
LC

. (142)

The differential equation (131) reduces to(
D2 +

R

L
D +

1
LC

)
iL(t) − 1

L
DvL(t)

= −R

L
Dw(t), (143)

which implies that the circuit of Fig. 15(b) admits
the canonical representation of Fig. 14 with y = qM ,
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(a)

(b)

(c)

Fig. 15. Nonautonomous circuits: (a) Example 5.1, (b) Example 5.2 and (c) Example 5.3.

n̂(·) = ϕ̂(·) and

L1(D) =

1
L
D

D2 +
R

C
D +

1
LC

,

L2(D) =
1

D2 +
R

C
D +

1
LC

,

L3(D) = −
R

L
D

D2 +
R

C
D +

1
LC

.

(144)

Example 5.3. Consider the circuit of Fig. 15(c)
which has the same structure as that of Example 5.1

with an additional current generator. In this case
the current–voltage model of L is described by the
following input–output relation

vL(t) = Li(D)iL(t) + Li1(D)w1(t)

+ Li2(D)w2(t), (145)

where Li(D) is given in (10), while Li1(D) = Li(D)
and Li2(D) = RLi(D) with Li(D) as in (139). The
corresponding differential equation is(

D2 +
R

L
D +

1
LC

)
vL(t) −

(
1
C
D +

R

LC

)
iL(t)

=
1

LC
w1(t) +

R

LC
w2(t). (146)
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Fig. 16. Example 5.3: block representation of the feedfor-
ward system which replaces that driven by ŵ in Fig. 14.

Hence, according to Remark 5.1, the circuit of
Fig. 15(c) admits the canonical representation of
Fig. 14, once the feedforward subsystem driven by
ŵ is substituted by the system of Fig. 16 given by
the parallel interconnection of two linear subsys-
tems driven by the input signals ŵ1 and ŵ2, which
are defined according to (132). Specifically, we have
y = ϕM , n̂(·) = q̂(·), L1(D) and L2(D) as in (141),
L31(D) = L3(D) and L32(D) = RL3(D) with L3(D)
as in (141).

6. Conclusions

A novel input–output approach to investigate the
dynamical properties of a class of circuits with
memelements has been proposed. The circuits are
given by the interconnection of a linear time-
invariant two-terminal (one-port) element and an
ideal memelement. The two-terminal element can
be either passive or active, while the memelement
can be a (flux- or charge-controlled) memristor, a
(flux- or σ-controlled) memcapacitor or a (charge-
or ρ-controlled) meminductor.

It is first shown that the dynamics of any circuit
of the class admits a first integral, thus implying
that the circuit can be represented via a reduced-
order input–output system. In particular, the two-
port element must be active in the case of a flux-
controlled memcapacitor and a charge-controlled
meminductor, while it can be also passive in all the
other cases. Interestingly, the reduced-order system
enjoys a structure which is quite popular in the area
of control systems, i.e. it is composed of an internal
feedback interconnection between a linear dynami-
cal subsystem and a nonlinear memoryless one, plus
a feedforward linear dynamical system driven by an
external constant input. Moreover, it turns out that

the dynamics of the reduced-order system is exactly
the same as that displayed by a circuit with a stan-
dard nonlinear resistor/capacitor/inductor in place
of the memristor/memcapacitor/meminductor and
an additional constant generator. It is also shown
that the existence of the first integral, and hence
of the reduced-order system, implies the presence
of invariant manifolds in the state space repre-
sentation of the circuit. An explicit expression of
the invariant manifolds in the voltage–current state
space is developed for any circuit, also pointing
out cases where the invariant manifolds are linear.
Finally, it is shown how the case of circuits forced
by external generators can be readily encompassed
within the proposed approach. Several examples
are considered throughout the paper for illustrative
purposes.

Future research issues are the extension of
the developed input–output approach to circuits
containing more than one memelement and the
exploitation of the structure of the reduced-order
system for tackling analysis and control problems
in the emerging area of multistability control.
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Appendix

Proof of Proposition 10. We first need the following
preliminary result.

Lemma A.1. Consider the nonlinear state trans-
formation T (I) : R

N+1 → R
N+1 from (ξ1, x)� ∈

R
N+1 to η ∈ R

N+1 defined as

T (I) :

⎧⎪⎨
⎪⎩

η1 = ξ1,

ηi = xi−1 + pN+1−iξ1 + rN+1−if(ξ1),

i = 2, . . . , N + 1.
(A.1)

Then, T (I) is invertible on R
N+1 and S(I) admits

the following equivalent representation

S(I)
eq :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN−1(t)

DηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN−1(t)

ηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− Bf(η1(t)) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

ηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

DηN+1(t) = 0.

(A.2)
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Proof. Observe that the N + 1 equations of S(I)

in (103) can be rearranged as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dξ1(t) = x1(t)

Dx1(t)+ pN−1x1(t)+ rN−1f
′(ξ1(t))x1(t)= x2(t)

...

DxN−2(t)+ p2x1(t)+ r2f
′(ξ1(t))x1(t)= xN−1(t)

DxN−1(t)+ p1x1(t)+ r1f
′(ξ1(t))x1(t)= xN (t)

DxN+1(t) + p0x1(t) + r0f
′(ξ1(t))x1(t) = 0.

(A.3)

By taking into account that

f ′(ξ(t))x1(t) = f ′(ξ(t))Dξ(t) = Df(ξ(t))

and exploiting (A.1), (A.3) can be equivalently
rewritten as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t) = x1(t)

Dη2(t) = x2(t)
...

DηN−1(t) = xN−1(t)

DηN (t) = xN (t)

DηN+1(t) = 0.

(A.4)

By inverting the nonlinear transformation T (I) we
can obtain x1, . . . , xN in terms of η1, . . . , ηN+1 and
rewrite (A.4) as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t) = −pN−1η1(t) + η2(t) − rN−1f(η1(t))

Dη2(t) = −pN−2η1(t) + η3(t) − rN−2f(η1(t))
...

DηN−1(t) = −p1η1(t) + ηN (t) − r1f(η1(t))

DηN (t) = −p0η1(t) + ηN+1(t) − r0f(η1(t))

DηN+1(t) = 0,

(A.5)

thus completing the proof. �

Now, from the last equation of (A.2) it fol-
lows that each solution η(t) ∈ R

N+1 of S(I)
eq is such

that:

ηN+1(t) = ηN+1(t0), ∀ t ≥ t0. (A.6)

This implies that the hyperplane ηN+1 = K
(I)
0 , with

K
(I)
0 = ηN+1(t0), is an invariant manifold of S(I)

eq .
Now, the last equation of (A.1) ensures that

xN + p0ξ1 + r0f(ξ1) = K
(I)
0

is indeed an invariant manifold of S(I). Hence, it fol-
lows the solution (ξ(t), x(t))� with initial condition
(ξ(t0), x(t0))� is such that

xN (t) + p0ξ1(t) + r0f(ξ1(t))

= xN (t0) + p0ξ1(t0) + r0f(ξ1(t0)), ∀ t ≥ t0,

(A.7)

thus proving (104).
To complete the proof we observe that the

dynamics on the invariant manifold M(I)
0 can be

obtained by first determining the dynamics on the
invariant hyperplane ηN+1 = K

(I)
0 in terms of

η1(t), . . . , ηN (t) and then by inverting the nonlinear
transformation T (I) to get ξ1(t), x1(t), . . . , xN (t).
Indeed, the dynamics of the invariant hyperplane
is described by S(I)

R since its equations are exactly
equal to the first N equations of (A.5) once ηN+1 =
K

(I)
0 . Also, Eqs. (106) are exactly those obtained

by solving (A.1) with respect to ξ1, x1, . . . , xN with
ηN+1 = K

(I)
0 , thus completing the proof. �

Proof of Proposition 12. The proof is based on the
following preliminary result.

Lemma A.2. Consider the nonlinear state trans-
formation T (II ) : R

N+1 → R
N+1 from (ξ1, x)� ∈

R
N+1 to η ∈ R

N+1 defined as

T (II ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η1 = ξ1,

η2 = x1 + pN−1ξ1 + rN−2f(ξ1),

ηi = xi−1 + pN+1−iξ1 + rN−if(η1)

+ rN+1−if
′(ξ1)x1, i = 3, . . . , N,

ηN+1 = xN + p0ξ1 + r0f
′(ξ1(t))x1.

(A.8)
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Then, T (II ) is invertible on R
N+1 and S(II ) admits the following equivalent representation

S(II )
eq :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN−1(t)

DηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN−1(t)

ηN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− B0f(η1(t)) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

ηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

DηN+1(t) = 0.

(A.9)

Proof. The proof parallels that of Lemma A.1 once
T (I) is replaced by T (II ). �

Given Lemma A.2, the proof Proposition 12 fol-
lows by reasoning as in Proposition 10. �

Proof of Proposition 14. The proof is based on the
following preliminary result.

Lemma A.3. Consider the nonlinear state trans-
formation T (III ) : R

N+2 → R
N+2 from (ξ1, ξ2, x)� ∈

R
N+2 to η ∈ R

N+2 defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η1 = ξ1,

η2 = pN−1ξ1 + ξ2 + rNf(ξ1),

ηi = xi−2 + pN+1−iξ1 + pN+2−iξ2

+ rN+2−if(ξ1), i = 3, . . . , N + 1,

ηN+2 = xN + p0ξ2 + r0f(ξ1).
(A.10)

Then, T (III ) is invertible on R
N+2 and S(III ) admits

the following equivalent representation

S(III )
eq :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dη1(t)

Dη2(t)
...

DηN (t)

DηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
A 01×N

0N×1 0

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1(t)

η2(t)
...

ηN (t)

ηN+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
(

D

B

)
f(η1(t)) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

ηN+2(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

DηN+2(t) = 0.

(A.11)

Proof. The proof parallels that of Lemma A.1 once T (I) is replaced by T (III ). �

Given Lemma A.3, the proof is completed via an argument similar to that used in Proposition 10. �
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