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Abstract: Growing interest in universal influenza vaccines and novel administration routes has led 
to the development of alternative serological assays that are able to detect antibodies against 
conserved epitopes. We present a competitive ELISA method that is able to accurately determine 
the ratio of serum immunoglobulin G directed against the different domains of the hemagglutinin, 
the head and the stalk. Human serum samples were treated with two variants of the hemagglutinin 
protein from the A/California/7/2009 influenza virus. The signals detected were assigned to different 
groups of antibodies and presented as a ratio between head and stalk domains. A subset of selected 
sera was also tested by hemagglutination inhibition, single radial hemolysis, microneutralization, 
and enzyme-linked lectin assays. Pre-vaccination samples from adults showed a quite high presence 
of anti-stalk antibodies, and the results were substantially in line with those of the classical 
serological assays. By contrast, pre-vaccination samples from children did not present anti-stalk 
antibodies, and the majority of the anti-hemagglutinin antibodies that were detected after 
vaccination were directed against the head domain. The presented approach, when supported by 
further assays, can be used to assess the presence of specific anti-stalk antibodies and the potential 
boost of broadly protective antibodies, especially in the case of novel universal influenza vaccine 
approaches. 

Keywords: hemagglutinin; stalk domain; HA2-antibody; competitive ELISA; universal influenza 
vaccine 

 

1. Introduction 

Influenza continues to have a significant impact on public health and is still responsible for high 
morbidity and mortality in humans, with annual attack rates estimated to be up to 10% in adults and 
30% in children [1]. Vaccination is still the most effective method of preventing the morbidity and 
mortality caused by influenza infection, especially in groups at high risk of dangerous complications, 
such as young children and the elderly [2], although the effectiveness of influenza vaccination is 
strictly dependent on the age-group and vaccine formulation [3,4]. Influenza A and B viruses, which 
are responsible for annual epidemics in humans, undergo antigenic changes within the antibody-
binding sites of the hemagglutinin (HA) and neuraminidase (NA) antigens; these changes are able to 
render the new strains different enough to at least partially avoid the immunity induced by previous 
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infection or vaccination (antigenic drift) [5,6]. Consequently, the composition of vaccines needs to be 
updated every year in response to changes in HA antigens. Current inactivated 
intramuscular/intradermal vaccines (IIVs) or live attenuated influenza vaccines (LAIVs) are made 
with a carefully standardized amount of HA from three (trivalent influenza vaccine—TIV) or four 
(quadrivalent influenza vaccine—QIV) seasonal strains on the basis of recommendations by the 
World Health Organization (WHO) [7,8]. Despite the efforts of the WHO Collaborating Centers and 
the new mathematical modelling approach [6,9] to monitor antigenic drift, an intrinsic uncertainty 
concerning the match between the circulating viruses and the vaccine strains remains [10].  

Another important consideration is the fact that the currently available influenza vaccines are 
not able to protect against emerging pandemic-like influenza viruses [11]. Moreover, with today’s 
manufacturing technologies, it would take at least six-to-eight months to prepare a new vaccine; in 
the event of urgent necessity, this may be too long, as demonstrated by the 2009 H1N1 pandemic 
[12,13]. 

The development of a universal influenza vaccine would avoid potential mismatches of 
recommended vaccine strains and the need for the annual re-formulation and re-administration of 
vaccines; it would also enable timely intervention in the event of a pandemic, and it might result in 
the eradication of influenza B virus in humans. Several candidate target antigens could be considered 
for use in universal influenza vaccines, such as the M2 ion channel [14], NA [15], and conserved 
regions of the head domain (HA1) [16] and stalk domain (HA2) of HA [17]. The stalk domain is the 
most conserved region of HA in the influenza A and B viruses. Its main function is to mediate the 
fusion of the viral and endosomal membranes once the virus has been internalized by endosomes in 
order to permit the release of the viral genome into the cytosol [18]. In order to carry out this function, 
the stalk domain has to undergo considerable structural rearrangements; this is why all possible 
mutations that could potentially interfere with this process are not permitted [17].  

Classically, antibody-mediated immune responses after influenza vaccination or natural 
infection are assessed by standard serological assays such as hemagglutination inhibition (HI), single 
radial hemolysis (SRH), and micro-neutralization (MN) [19]. These methods are recommended by 
regulatory authorities and are considered the gold standard in detecting the immune response in 
serum samples. The HI assay detects antibodies that bind to the viral HA and prevent the 
agglutination of red blood cells (RBCs) by blocking the receptor binding site. The MN assay identifies 
functional neutralizing antibodies, including those that recognize epitopes in the stalk region of HA, 
which are conserved among different subtypes of influenza A viruses. The SRH assay may recognize 
not only antibodies against the surface glycoproteins but also those against the internal antigens [20]. 
However, these assays are generally insufficient to detect the immune response after immunization 
with LAIVs or conserved epitope-based vaccines. Moreover, HI titers are not always able to predict 
the right degree of protection from a disease, especially in children [21], the elderly [22] and obese 
subjects [23]. 

The growing interest in developing a universal influenza vaccine has led to the need for 
alternative serological assays that are able to detect different classes of antibodies, such as anti-stalk, 
anti-NA, and secretory immunoglobulin A (s-IgA) ones [24]. Stalk-specific antibodies can be detected 
mainly by enzyme-linked immunosorbent assays (ELISAs) by using purified chimeric (cHA) 
proteins, such as cH6/1 (which contains an H6 head domain from A/mallard/Sweden/81/02 combined 
with an H1 stalk domain of A/California/04/09) [25]. 

ELISAs, including the competitive assay described in the present study, are not able to predict 
whether the antibodies detected are functional. In order to support the results of ELISA, other assays 
can be adapted on the basis of some functions that anti-stalk antibodies can exert through various 
mechanisms, such us neutralization, Fc receptor activation, and NA inhibitory activity [26]. 

In this paper, we present a potential method of indirectly detecting specific anti-stalk serum 
immunoglobulin G (IgG) antibodies against conserved epitopes among group 1 and group 2 
influenza A viruses by measuring the difference between the HA head and total HA response; this 
method, based on a re-adaptation of a competitive ELISA, allows for the discrimination and the 
quantification of antibodies that are directed against the head and stalk subunits. The construction of 
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a stable headless HA would be an important step both for universal vaccine studies and serological 
assay use. There have been several studies [27–29] that were animated by the quest to find a stable 
form of an HA stalk without the head domain, but the correct stabilization and folding of the 
constructs remain to be evaluated in more detail. In this study, we evaluate the performance of the 
assay by measuring anti-head and anti-stalk responses in a small panel of human serum samples 
(adults and children) taken before and after vaccination in the 2009/2010 season. 

2. Materials and Methods 

2.1. Virus Antigen 

The virus antigen and infectious influenza virus was the seasonal influenza strain 
A/California/7/2009 H1N1 (15/252), grown in eggs and obtained from NIBSC, UK. 

2.2. Pseudotype Production 

Lentiviral pseudo-virus particles (PVs) were produced by co-transfecting Human Embryonic 
Kidney (HEK) 293T/17 (ATCC® CRL-11268™) cells with phCMV1-H11 (H11 from A/ruddy 
turnstone/New Jersey/650653/2002 (H11N9)) and pI.18-N1Cal/09, as previously described. The H11 
plasmid was added to make the NA more stable and to increase PV release and production. Briefly, 
1 µg of HA, 1 µg of NA and 1.5 µg pNLLuc4.3 plasmids were transfected into HEK293T/17 cell lines 
by means of Endofectin™ Lenti (3µL/µg). The medium was changed 24 hours after transfection, and 
PVs were harvested after 48 hours. The titration of the NA activity of each PV was performed in an 
enzyme-linked lectin assay (ELLA), as in the protocol reported by Biuso et al. [30]. 

2.3. Serum Samples  

Human serum samples (n = 48; obtained before and after vaccination) were kindly provided by 
the Laboratory of Molecular Epidemiology, Department of Molecular and Developmental Medicine, 
University of Siena, where they had been stored in compliance with Italian ethics law. The following 
information was available for each serum sample: adult (18+ years) or child (3–9 years) age-group, 
year of sampling (2009–2010), and pre- and post-vaccination withdrawal. 

2.4. Hemagglutination Inhibition Assay  

Serum samples were pre-treated with a receptor-destroying enzyme (RDE—Denka Seiken) for 
18 hours at 37 °C in a water bath and then heat-inactivated for 1 hour at 56 °C in a water bath. At the 
end of incubation, all serum samples were treated with a 10% turkey RBCs (TRBCs) solution in order 
to remove non-specific inhibitors, and they were run in the HI assay by using the A/California/7/2009 
H1N1pdm09 influenza strain, as described elsewhere [31]. HI titers below 10 were assigned a titer of 
5 and considered negative. 

2.5. Single Radial Hemolysis Assay 

Serum samples were heat-inactivated at 56 °C for 30 minutes in a water bath before testing. Then, 
6 µL of each serum sample was tested in SRH plates that were prepared in accordance with the 
protocol described by Trombetta and colleagues [32] in which the virus antigen was diluted at 2000 
hemagglutinin units per milliliter in a TRBC suspension and guinea pig complement. The diameters 
of hemolysis were read in millimeters by a dedicated calibrating viewer. 

2.6. Micro-Neutralization Assay 

The MN assay was performed as described previously [33]. Briefly, heat-inactivated serum 
samples were mixed and incubated for 1 hour at 37 °C and 5% CO2 in a humidified atmosphere with 
a standardized amount of live A/California/7/2009 H1N1 influenza virus (100 tissue culture infective 
dose 50% (TCID50)). After the incubation period, the serum–virus mixtures were transferred to a 
plate that contained 90% confluent pre-seeded Madin–Darby canine kidney (MDCK) (ATCC® CCL-
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34™) cells that were monolayered in an UltraMDCK serum-free medium (Lonza, Milano, Italy) with 
7 µg/ml of acetylated trypsin (Sigma, St. Louis, MO, USA). The plates were then incubated for 5 days 
at 37 °C and 5% CO2 in humidified atmosphere before being inspected by an inverted optical 
microscope for the presence/absence of a cytopathic effect (CPE). 

2.7. Enzyme-Linked Lectin Assay  

Anti-NA antibodies were also determined by the ELLA assay in accordance with the protocol 
described by Couzens and colleagues [34]. Briefly, inactivated and 2-fold diluted serum samples were 
mixed with a standardized amount of influenza pseudotypes bearing N1 from A/California/7/2009, 
and incubated for 16–18 hours in a fetuin- (Sigma, St. Louis, MO, USA) coated plate. After the 
incubation period, the plates were washed, and peanut agglutinin (PNA) that was conjugated to 
horse-radish peroxidase (HRP) (Sigma, St. Louis, MO, USA) was added to all wells. After 2 hours of 
incubation, the plates were washed, and an o-phenylenediamine dihydrochloride (OPD) (Sigma, St. 
Louis, MO, USA) substrate was added. The reaction was stopped, and the absorbance was read at 
490 nm. 

2.8. Competitive ELISA for Anti-HA2 Antibody Detection 

The competitive ELISA procedure described here (Figure 1) utilized the ELISA Starter Accessory 
Kit (Bethyl Laboratories, Montgomery, TX, USA). ELISA plates were coated with purified 
recombinant HA (aa 18–529) (eEnzyme, Gaithersburg, MD, USA); serum samples were incubated 
with purified recombinant HA (aa 18–529) and head (aa 18–345) proteins from the 
A/California/7/2009 H1N1 influenza virus (eEnzyme, Gaithersburg, MD, USA). A solution of 5% non-
fat dried milk (NFDM; Euroclonelone, Pero, Italy) in 0.05% Tris buffered saline-Tween 20 (TBS-T) 
(Thermo Scientific, Rodano, Italy) was used for plate blocking. ELISA 96-well plates were coated with 
the HA protein at a concentration of 1 µg/mL and incubated overnight at 4 °C. For each serum sample 
tested, three incubation conditions were prepared: 1) the HA recombinant protein in serial dilutions; 
2) the head recombinant protein in serial dilutions; and 3) the TBS-T buffer without a protein, which 
was used for treatment control. Series of two-fold dilutions of HA and head proteins in TBS-T were 
prepared in rows of dedicated 96-well dilution plates. The starting concentration of the protein was 
75 µg/mL in the first well, each well containing a volume of 20 µL of the solution. For each sample 
tested, one control row of wells containing 20 µL of the buffer (without HA or head proteins) was 
prepared. Serum samples that were designated for treatment were pre-diluted in TBS-T (1:250) and 
subsequently added to the prepared incubation rows in a 1:1 ratio; the protein concentration in each 
incubation well was halved in order to obtain a final serum dilution of 1:500. Reaction plates were 
incubated for 2 hours at 37 °C. Next, 60 µl of the TBS-T buffer were added to each well containing 40 
µL of the serum solution. At the end of this step, each well contained 100 µL of serum that were 
diluted to 1:1250. Coated plates were washed three times with 300 µL/well of an ELISA washing 
solution. Plates were blocked and incubated at 37 °C for 2 hours. Blocked plates were washed 3 times 
with 300 µL/well of washing solution. Subsequently, 95 µL of prepared serum samples from 
incubation plates were transferred into the corresponding wells of the ELISA plate by means of a 
multichannel pipette. Experimental plates were covered and incubated at 37 °C for 1 hour. Next, the 
plates were washed as previously stated, and 100 µL/well of goat, anti-human IgG-Fc HRP-
conjugated antibody (Bethyl Laboratories, Montgomery, TX, USA) was added. Plates were incubated 
at 37 °C for 1 hour. Following incubation, the plates were washed, and 100 µL/well of 3,3′,5,5′-
tetramethylbenzidine (TMB) substrate (Bethyl Laboratories, Montgomery, TX, USA) was added and 
incubated in the dark at room temperature for 30 minutes. The reaction was stopped by adding 100 
µL of an ELISA stop solution (Bethyl Laboratories, Montgomery, TX, USA), and then it was read 
within 20 minutes at 450 nm. Optical density (OD) values were used to draw a graph that confirmed 
the saturation of the samples with the protein (values reaching the lower plateau of the plot should 
have been seen in the samples that were treated with the highest concentration of the recombinant 
protein). Next, a blank OD was subtracted from all raw data results. The results from each serum 
sample in the three conditions (HA, head and no protein) were selected for stalk OD calculation. For 
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these calculations, only 4 wells (at the lower plateau OD level) were used (e.g., the first four wells 
with the highest head (HA1) and HA protein concentrations). Results were calculated as follows: 

𝐎𝐎𝐎𝐎.𝐇𝐇𝐇𝐇𝐇𝐇 = 𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇𝐇𝐇 − 𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇 

𝐎𝐎𝐎𝐎.𝐇𝐇𝐇𝐇 = 𝐎𝐎𝐎𝐎����𝐍𝐍𝐍𝐍 − 𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇 

𝐎𝐎𝐎𝐎.𝐇𝐇𝐇𝐇𝐇𝐇 = (𝐎𝐎𝐎𝐎����𝐍𝐍𝐍𝐍 − 𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇) − (𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇𝐇𝐇 − 𝐎𝐎𝐎𝐎����𝐇𝐇𝐇𝐇) 

Where OD����HA1 is the average OD of samples incubated with the head (HA1) protein, OD����HA is the 
average OD of samples incubated with the HA protein, and OD����NT is the average OD of samples 
incubated with the buffer (non-treated samples). 
 

 

Figure 1. Schematic overview of the competitive ELISA method. (A) ELISA plates were coated with a 
purified hemagglutinin (HA) recombinant protein from A/California/7/2009 (H1N1) influenza strain. 
(B) A 1:250 pre-diluted serum sample is treated and incubated with different HA and HA1 
concentrations. (C) The resulting OD difference between the highest head domain (HA1)-treated and 
the HA-treated sample can be attributed to the stalk domain (HA2) response. Two examples of 
treatment are reported, with appreciable pre-vaccination differences in the HA2 response between 
adults and children. OD����HA1 is the average optical density (OD) of the samples that were incubated 
with the head protein (HA1); OD����HA is the average OD of the samples that were incubated with the 
HA protein; and OD����NT is the average OD of the samples that were incubated with the buffer (non-
treated samples). 

2.9. Statistical Analysis 

Data were analyzed by GraphPad Prism. The ELLA, SRH and MN results were normalized by 
applying the Z-Score. Significant differences between pre- and post-vaccination OD signals (a value 
of 4 at the lower plateau level) for the head and stalk were evaluated with a paired T-test. The 
homogeneity of variances was previously verified through an F-test. A significance level of 5% was 
considered for all the statistical tests. 

3. Results 

3.1. Serum Samples Were Selected Based on HI Titers 
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Human serum samples that were obtained before and after vaccination were used in this study. 
As a proof-of-concept to evaluate the performance of ELISA in distinguishing between head- and 
stalk-specific differences, a total of 16 pairs of serum samples (pre-/post-vaccination) from adult 
subjects and eight pairs of serum samples (pre-/post-vaccination) from children were selected on the 
basis of their HI titers. In the first run of experiments, we selected eight adults and four children. 
Among the adults, we selected: one subject in whom the HI assay gave negative results both pre- and 
post-vaccination (5/5); three subjects with negative pre-vaccination HI titers and seroprotective post-
vaccination HI titers (5/40); three subjects with very high boost (5/1280) of HI titers after vaccination; 
and one subject with a pre-existing HI titer of 160 which only marginally increased to 320 after 
vaccination. These selected samples were titrated by serological assays that are generally used in 
order to evaluate the immunogenicity of an influenza vaccine (MN, SRH and ELLA), along with the 
competitive head/stalk-specific ELISA described here (Table 1 and Figure 2A). The above-described 
serological analysis was repeated on the four samples from children, who had a pre-vaccination HI 
titer of 5 and post-vaccination HI titers of 80, 226.3, 320 and 380 (Table 2 and Figure 3A). We decided 
to investigate the immune response and the accuracy of the new ELISA method in a small number of 
children, too, because we expected to find significant differences in the stalk response between the 
two age-groups (adults and children) as a result of the previous exposure and/or vaccination of the 
adults. In the second run of experiments, to broaden our view of the variation in anti-head/stalk 
responses in individual subjects, we evaluated the performance of the head/stalk-specific ELISA on 
another eight pairs of samples from adults and four pairs of samples from children with different 
pre- and post-vaccination HI titers (Figures 2B and 3B).  
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Figure 2. (A) Serum samples from adult subjects tested by ELISA, hemagglutination inhibition (HI), 
single radial hemolysis (SRH), micro-neutralization (MN) and enzyme-linked lectin (ELLA) assays; 
(B) Serum samples from adults tested by ELISA and HI assays. The HI titer of each sample is indicated 
below the x-axis. Blue bars = head signal, and green bars = stalk signal. Asterisks indicate statistical 
significance; a black asterisk indicates a significant increase in the HA signal; a blue asterisk indicates 
a significant increase in the head signal; a green asterisk indicates a significant increase in the stalk 
signal. Error standard bars are reported both for the head and stalk signals. 

3.2. Different Levels of Anti-HA2-specific Antibody Responses Were Found in Pre-Vaccination Samples from 
Adults, but Not in Children 

We investigated the presence of anti-stalk antibody response in pre- and post-vaccination serum 
samples from adults and young children. All pre-vaccination samples from adults presented 
detectable stalk-specific antibodies (green bars in Figure 2A, B). The highest pre-vaccination levels 
assigned to the stalk antibodies were found in adult subjects 8 and 13, but they were completely 
independent from the measured HI titers of 5 and 160, respectively, which still correlated with the 
specific head response. In contrast to the results obtained in adults, no antibody responses against 
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the stalk domain were detected in pre-vaccination pediatric serum samples when using the 
competitive ELISA, with the exception of subject 8 (Figures 3A and 3B); moreover, in both children 
and adults, the increased post-vaccination OD signal arose mainly from the head response (blue bars 
Figures 2–3). Heterogeneous levels of anti-head antibody signals were detected in all samples; no 
head signals were found in samples 2 and 14 (adults) and sample 1 (children). The magnitude of the 
head response detected by ELISA after vaccination generally agreed with the increase that was 
registered by the HI assay, apart from three cases that were observed in adult subjects 1, 7 and 14. In 
subject 1, a post-vaccination increase in head antibodies was seen in the ELISA, but this was not seen 
in the HI assay, which remained negative after vaccination. Interestingly, we identified two adult 
subjects with positive HI titers of 1280 after vaccination (subject 7) or of 40 before vaccination (subject 
14), though they had very low, or even undetectable head responses. These quite striking 
observations can most likely be attributed to the high level of antibodies against conserved epitopes, 
a response that may be able to result in an effective steric hindrance of hemagglutination activity. 

 

 

Figure 3. (A) Serum samples from children tested by ELISA, HI, SRH, MN and ELLA assays; (B) 
Serum samples from children tested by ELISA and HI. The HI titer of each sample is indicated below 
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the x-axis. Blue bars = head signal, and green bars = stalk signal. Asterisks indicate statistical 
significance; a black asterisk indicates a significant increase in the HA signal; a blue asterisk indicates 
a significant increase in the head signal; a green asterisk indicates a significant increase in the stalk 
signal. Error standard bars are reported both for head and stalk signal. 

3.3. Correlation between Anti-HA1 ELISA and SRH- and MN-Antibody Responses 

Given that serological assays such as MN and SRH are not able to distinguish between 
antibodies against the head and stalk subunits of the HA, we compared the results yielded by the 
ELISA with those obtained with the aforementioned methods. The SRH data appeared to be more in 
line with the anti-head response detected by the ELISA and HI assay than with the titers measured 
by the MN assay. In all adults and children assessed by the SRH assay (yellow dot in Figures 2A and 
3A), we were able to detect a post-vaccination increase in the hemolysis area, apart from adult subject 
3, who showed no increase in SRH but did show an HI seroconversion and an increase in the head 
response. By contrast, the MN assay seemed to be more specific than the SRH assay; it was possible 
to detect at least a two-fold increase in the neutralizing titer only in subjects that showed a greater 
increase in head response in the ELISA (adult subjects 5–8 and child subjects 1–4). For a more 
comprehensive overview on the immunological characterization of each subject, we also evaluated 
the anti-NA antibody response by using the ELLA test. We found that the NA response, as expected, 
generally did not correlate with the anti-head or the anti-stalk response. This was clearly seen in adult 
subjects 4 and 6. Subject 4 showed an eight-fold increase in ELLA but no increase in MN or stalk 
antibody responses and only quite low increases in HI and head responses. However, subject 6 did 
not show a post-vaccination increase in the NA antibody titer, despite high responses in the HI, MN 
and head ELISA tests. These results confirmed that the immunological responses against NA could 
not be related to or predicted by the HA responses. 

Table 1. Samples from adult subjects tested by the HI, ELISA, ELLA, SRH and MN assays. 

Subject Dose HI Titer 

Competitive ELISA 
ELLA 

Titer 

SRH Area 

[mm2] 
MN Titer OD Stalk 

(HA2) 

OD Head 

(HA1) 
OD HA 

1 
Pre 5 0.187 0.133 0.320 10 10.2 40 

Post 5 0.182 0.295 0.477 15 17.3 40 

2 
Pre 5 0.133 −0.018 0.116 5 11.3 20 

Post 40 0.220 0.069 * 0.289 10 19.6 30 

3 
Pre 5 0.281 0.022 0.303 10 2.256 20 

Post 40 0.391 * 0.255 * 0.647 80 2.256 20 

4 
Pre 5 0.238 0.032 0.269 80 2.256 20 

Post 40 0.211 0.159 0.370 640 60.8 20 

5 
Pre 160 0.723 1.164 1.887 160 38.5 40 

Post 320 * 1.041 * 1.834 * 2.875 320 50.2 80 

6 
Pre 5 0.341 0.059 0.400 5 2.256 40 

Post 1280 0.485 * 1.464 * 1.949 40 63.6 320 

7 
Pre 5 0.452 0.039 0.491 20 2.256 20 

Post 1280 * 1.499 0.113 *1.612 160 63.6 40 

8 
Pre 5 0.816 0.131 0.947 40 2.256 40 

Post 1280 * 0.987 * 2.371 * 3.359 1280 107.5 640 
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In the ELLA, HI and MN assays, titers below 10 were assigned a value of 5 and considered negative. 
In an SRH assay, samples which did not show hemolysis were assigned an area value of 2.256 mm2. 
Statistically significant increases in OD stalk or OD head post-vaccination are marked with an 
asterisk. 

Table 2. Samples from children tested by the HI, ELISA, ELLA, SRH and MN assays. 

Subject Dose HI Titer 

Competitive ELISA 
ELLA 

Titer 

SRH Area 

[mm2] 
MN Titer OD Stalk 

(HA2) 

OD Head 

(HA1) 
OD HA 

1 
Pre 5 0.006 0.007 0.014 5 2.256 40 

Post 80 0.039 * 0.179 * 0.219 120 21.2 80 

2 
Pre 5 −0.016 0.023 0.007 5 2.256 20 

Post 226.3 * 0.040 * 0.461 * 0.501 10 38.5 80 

3 
Pre 5 0.015 0.037 0.051 5 12.6 10 

Post 320 0.009 * 0.521 * 0.530 160 59.4 80 

4 
Pre 5 0.016 0.044 0.060 5 2.256 40 

Post 380 * 0.251 * 0.824 * 1.075 20 50.2 160 
In the HI, ELLA and MN tests, titers below 10 were assigned a value of 5 and considered negative. In 
SRH, samples which did not show hemolysis were assigned an area value of 2.256 mm2. Statistically 
significant increases in OD stalk or OD head post-vaccination are marked with asterisk. 

4. Discussion 

Along with vaccination coverage, which remains unsatisfactory [35], one of the main drawbacks 
of the current influenza vaccines is the need for an annual reformulation and consequent global re-
administration, owing to the antigenic drift of the influenza virus. In the last two decades, growing 
interest in the possibility of developing a universal vaccine has given new impetus to influenza 
research. Several studies have focused on the extracellular domain of the M2 protein [36,37]. The 
ectodomain sequence has proven to be highly conserved among human and avian influenza viruses. 
However, antibodies that are elicited against this conserved portion are not neutralizing, but, due to 
the high expression of M2 on the surface of infected cells, they can promote protection through the 
effector function of their Fc region [38]. NA, the second most abundant glycoprotein that is present 
on the surface of the influenza virus, is another important target. Previous murine studies that were 
conducted with virus-like particles bearing the N1 antigen showed protection against lethal infection 
by homologous and heterologous strains [39]. Compared with the immunodominant globular head, 
the stalk domain is far less variable and is able to induce broadly neutralizing antibodies. The first 
description of a mouse monoclonal antibody that was specific for the stalk domain (C179) dates back 
to 1993 [40]. This antibody showed no HI activity; however, it was capable of neutralizing group 1 
viruses (H1 and H2). In recent years, promising research has been carried out with a view to 
developing a stalk-based universal influenza vaccine; this research has mainly been based on a novel 
approach involving the construction of cHA molecules. Repeated vaccination with these constructs 
has been highly effective in boosting the antibody response against conserved regions of the stalk 
domain, resulting in high anti-stalk titers and a reduction of viral titers in lungs and nasal turbinates 
in mice and ferrets [16]. A universal influenza vaccine that is able to stimulate stalk-specific antibodies 
has the potential to avoid the need for the annual vaccine reformulation of the H1, H3 and B strains; 
moreover, it would confer greater protection against new emerging influenza viruses, particularly 
those that pose a pandemic threat [41]. In this paper, we present a possible approach that allows for 
head- and stalk-specific antibody responses to be clearly distinguished through the specific re-
adaptation of a competitive ELISA. Unlike the HI, SRH, MN assays or the ELLA, which detect 
functional antibodies, this adapted ELISA only detects binding antibodies. Nevertheless, it can 
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support studies of the immunogenicity of influenza vaccines by detecting and quantifying specific 
immune responses against mainly continuously changing epitopes in the head domain of the HA 
molecule (antigenic drift) and mainly conserved epitopes in the stalk region. This approach will be 
particularly helpful for the study of the immune responses that are induced by next-generation 
influenza vaccines, such as those based on conserved epitopes from the stalk domain of the HA 
protein [28,42,43]. 

The classical serological assays listed above are not able to detect and distinguish specific 
antibodies directed against the stalk region. Though, since February 2017, the new European 
Medicines Agency (EMA) guidelines have withdrawn the concept of the traditional correlates of 
protection for influenza, the HI titer is still considered the gold standard, and the correlates of 
protection based on this are still used in many countries, such as the U.S., Japan and Australia [44,45]. 

Here, we present the results obtained from a small number of samples selected on the basis of 
their HI titers. The ELISA IgG signal that was obtained against the HA protein agrees with those 
obtained with HI and SRH assays, for which we observed a better correlation (HI–SRH) (R2 = 0.70) to 
HI–MN and MN–SRH with R2 values of 0.55 and 0.3, respectively. Despite the low number of samples 
that were analyzed in the present work, these results seem to confirm previous studies that have 
supported strong agreement between the HI and SRH assays [46,47] in respect to the higher 
correlation found by Wang et al. [48] between the SRH and MN. The MN assay generally suffers from 
high interlaboratory variability due to the lack of common protocols (long vs short/CPE vs. ELISA-
based) and discrepancies in endpoint determination. On the other hand, although ELISAs are not 
officially acknowledged by EMA and other regulatory authorities, they usually provide unbiased 
and precise results. The responses that were obtained in the two age groups support the statement 
that the described ELISA-based assay is able to distinguish between immunological responses against 
head and stalk epitopes in adults and children in a very selective manner. Moreover, inside each 
group (adults and children), the assay is able to reveal subtle differences in HA-specific responses. 
Upon comparing the results obtained in children and in adults, it appears that the immunological 
memory could play an important role in antibody responses after vaccination [49]. Indeed, in 
children, in whom we observed no or very low stalk signals, most of the response after vaccination 
was directed against the globular head domain. This particular ‘conserved’ trend that was observed 
in pediatric samples can be attributed to the low age of children (3–9 years) and the possibility for at 
least some of them of being completely naïve for A/H1N1/California/7/2009 influenza strain at the 
time of blood draw. The high anti-head antibody signal that was observed after vaccination in 
children, in contrast to the low anti-stalk signal, can be explained by different reasons: 1) the head 
domain of the HA is the most immunogenic part of the HA protein, in contrast to the stalk, which 
appears to be less immunogenic; 2) antibodies against the stalk domain are generally difficult to be 
elicited by classical inactivated split and subunit influenza vaccines [50]; and 3) the influenza specific 
B- (and T-) cells repertoires in young children contain a greater frequency of naïve cells. However, 
adults have pre-existing populations of influenza-specific memory cells that can target conserved 
epitopes [51]. This last point seems to validate our results from adult subjects, where we observed a 
boost in both head and stalk responses after vaccination and a more heterogeneous scenario in 
comparison to children. In one adult subject, we detected a particularly high anti-stalk response after 
vaccination and a very low anti-head response, despite a very high HI titer accompanied by increased 
SRH and NA responses. The unpredictability and complexity of immune responses against influenza 
vaccination are illustrated by the fact that this subject did not show an increase in the neutralizing 
antibody response. This peculiar observation can be explained by the interference of a large number 
of antibodies directed against conserved epitopes of the influenza virus, thus causing the steric 
hindrance of the hemagglutination activity. This was confirmed by the high SRH titer and the very 
low MN titer after vaccination, and it supports the superiority of the SRH assay over the HI and MN 
assays to detect a broader range of functional antibodies. This characteristic may not only reflect the 
specific nature of the SRH assay, which detects all antibodies directed against various epitopes of HA 
and NA, it may also reflect the fact that internal influenza virus proteins may be involved in the 
complement fixation reaction. The small increase in the MN titer, along with the low head response 
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detected with the ELISA, seems to confirm this theory. This particular case supports the strategy that 
has been adopted in the last few years by some regulatory agencies, such as EMA [45,52], to take into 
account a combination of different immune responses that are measured by multiple assays for the 
evaluation of the effectiveness of influenza vaccines. In the present study, we also included the 
measurement of the NA antibodies in order to broaden the view of the antibody-mediated immune 
response in both age groups. However, it is important to point out that current licensed influenza 
vaccines are made with a well standardized amount of HA antigens but not of NA antigens. The 
understanding of the NA response could become extremely important for the study of the immune 
response after LAIV administration or natural infection. 

5. Conclusions 

In conclusion, the competitive ELISA described in here, when supported by parallel assays such 
as neutralization, SRH, NA inhibition and antibody-dependent cellular cytotoxicity reporter (ADCC), 
is able to accurately distinguish differences in individual immune responses, thereby allowing the 
mode of action of different (next-generation) influenza vaccine approaches to be interpreted. 
Specifically, as reported in several studies [26,53,54], the ADCC assay can reflect the functionality of 
the antibodies that are detected by ELISA. The results presented here confirm that the classical 
serological assays that are generally used to evaluate the immunogenicity of HA-based 
intramuscular/intradermal seasonal influenza vaccines are still valid. However, they could be 
insufficient in the evaluation of the immune response of next-generation influenza vaccines, 
especially if used alone. 

This preliminary study presents some limitations, mainly based on the small number of samples 
that were analyzed and the use of HA and head subunits from a single influenza strain. Further 
studies will be done with the aim to qualify the assay, both by using a mixture of head and stalk 
reactive monoclonal antibodies as controls and by comparing the results obtained with other assays 
that are based on the use of chimeric HA proteins to directly detect stalk antibodies. Other parameters 
will address the influence of the protein concentration that is used during the treatment of samples 
and the inclusion of conformation-specific monoclonal antibodies to ensure that the head protein 
retains its native conformation after coating. In this first study, we used a quite high protein 
concentration in order to make sure that any serum antibodies were fully adsorbed or competed with 
soluble protein. 
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