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Endoglin/CD105 is well acknowledged as being the most reliable marker of proliferation of endothelial cells, and it is overexpressed on
tumour neovasculature. Our current knowledge of its structure, physiological role, and tissue distribution suggests that targeting of endo-
glin/CD105 is a novel and powerful diagnostic and therapeutic strategy in human malignancies, through the imaging of tumour-associated
angiogenesis and the inhibition of endothelial cell functions related to tumour angiogenesis. Among biotherapeutic agents, monoclonal anti-
bodies have shown a major impact on the clinical course of human malignancies of different histotypes. Along this line, the potential efficacy
of anti-endoglin/CD105 antibodies and their derivatives for clinical purposes in cancer is supported by a large body of available pre-clinical in
vitro and in vivo data. In this review, the main findings supporting the translation of antibody-based endoglin/CD105 targeting from pre-clinical
studies to clinical applications in human cancer are summarized and discussed.
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1. Introduction
A large amount of experimental evidence has shown that endoglin/
CD105 is expressed on endothelial cells of both mature and imma-
ture blood vessels,1 –3 and that it is overexpressed in vascular endo-
thelial cells of tissues undergoing angiogenesis such as regenerating
and inflamed tissues or tumours.3 –6 Furthermore, levels of endo-
glin/CD105 positively correlate with the extent of endothelial cell
proliferation4,5 and with the expression of proliferation markers in
tumour endothelia.6 In addition, endoglin/CD105 has been suggested
to be the most suitable marker available to quantify tumour angiogen-
esis.1,3,5,7,8 Lastly, intratumour microvessel density (IMVD) assessed by
endoglin/CD105 staining strongly correlates with prognosis in cancer
patients.1,3,9,10 Altogether, these findings support the role of endoglin/
CD105 as an optimal marker of proliferation of endothelial cells and
its emerging clinical potential as prognostic, diagnostic, and thera-
peutic vascular target in human cancer.1,4,11,12

2. Structure
Endoglin/CD105 is a disulphide-linked homodimeric transmembrane
protein13– 15 of 180 kDa16,17 with short intracellular and

transmembrane domains and a large extracellular region.13– 15 The
latter consists of an orphan and a zona pellucida (ZP) domain, with
an arginine-glycine-aspartic acid (RGD) binding motif,15,18,19 while
the intracellular region presents several potential phosphorylation
sites.20 Four potential N-linked glycosylation sites and a region of
O-linked glycosylation rich in serine and threonine have been
described.15

A high amino acid sequence homology was observed among
human, porcine, and murine endoglin/CD105 proteins21,22 with
major differences in the extracellular domain.22 The RGD tripeptide
was detected only in the human protein. Furthermore, endoglin/
CD105 shows homology with the TGF-b receptor (TbR) type III
betaglycan in the transmembrane and cytoplasmic domains.2,23

The analysis of the three-dimensional structure of the extra-cellular
region of endoglin/CD105 by single-particle electron microscopy
identified three well-defined domains for each monomer region,
including the two ZP regions and one orphan domain.19

The gene coding for endoglin/CD105 maps on human chromo-
some 9q34�qter24 and cloning of its promoter demonstrated a
strong and selective activity in endothelial cells.25,26,27 Alternative
spliced transcript variants encoding two different isoforms of endo-
glin/CD105 (L- and S-CD105) have been described.28,29 The two
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forms differ in the length of the cytoplasmic domain and show a differ-
ent pattern of tissue distribution.27,28,29 L-CD105, the longer variant,
is predominantly expressed in endothelial cells29 and consists of 658
amino acids residues15,21 with a higher extent of phosphorylation
compared with S-CD105.29

3. Expression
Studies on the cellular and tissue distribution of endoglin/CD105
suggest its profound functional involvement in angiogenesis, vascular
development, and homeostasis. Concerning the role of endoglin/
CD105 in the development of the cardiovascular system, endoglin/
CD105 was exclusively found on vascular endothelia of human
embryos at 4–8 weeks of gestation, and it was transiently
up-regulated during heart septation and heart valves formation.30 Fur-
thermore, an altered expression of endoglin/CD105 is observed in
human foetuses with cardiac defects.31 The involvement of endo-
glin/CD105 in vascular development is enforced by the observation
that endoglin/CD105 null mice die during early gestation, due to struc-
tural alterations in the primitive vascular plexus of the yolk sac that
prevents the formation of normal mature vessels, as reported for
transforming growth factor (TGF)-b1, TGF-b receptor (TbR) type I
activin receptor-like kinases (ALK)-1, and ALK-5 null mice.32

In human adult tissues, endoglin/CD105 expression is mainly
restricted to vascular endothelial and stromal cells,1,4 while it is
weakly detectable on activated monocytes, macrophages, erythroid
precursors, fibroblasts, mesangial cells, follicular dendritic cells, and
melanocytes,1,33 but it is highly expressed on syncytiotrophoblasts
of term placenta.34

In cultured endothelial cells, the highest levels of endoglin/CD105
were detectable in cells showing levels of RNA, DNA, and proteins
consistent with cellular proliferation and activation.4 Consistently,
levels of endoglin/CD105 expression correlated with the rate of cel-
lular proliferation and density in cultures of human umbilical vein
endothelial cells (HUVEC),1,5 and high levels of endoglin/CD105
associated with other markers of proliferation such as cyclin A and
Ki-67 in tumour endothelium.6 Supporting these in vitro data, and
highly suggestive for its involvement in tumour angiogenesis, an
up-regulated expression of endoglin/CD105 was found on endothelia
of angiogenetic blood vessels within tumour tissues4,5,7,8 where, at
variance with the pan-endothelial markers CD31 and CD34, it was
also detected in neovessels with strong remodelling activity and in
immature neovessels.3,35 Among tumours of different histotype, stain-
ing of endoglin/CD105 was invariably observed in peri- and intratu-
moural blood vessels and on tumour stromal components;1,5,36 and,
on the other hand, only a weak expression of endoglin/CD105 was
detected in the cytoplasm of neoplastic cells of selected
histotypes.1,5,36

4. Functions
Biochemical and biological functions of endoglin/CD105 are under
active investigation, and new data continue to emerge on its functional
role within the TGF-b receptor complex, on its modulation of cellular
responses to TGF-b, and on its involvement in vascular physiology
and angiogenesis.12,14

As reported for betaglycan, endoglin/CD105 is a TbR type III auxili-
ary receptor12,16,37 that modulates the signalling response to TGF-b, a
pleiotropic cytokine involved in tumour development and

angiogenesis through the regulation of cellular functions including pro-
liferation, differentiation, and migration.14,37 Endoglin/CD105 binds
different components of the TGF-b superfamily such as activin-A,
bone morphogenetic protein (BMP)-7, and BMP-2.17 In particular,
endoglin/CD105 binds TGF-b1 and TGF-b3 with high affinity but,
at difference with betaglycan, it does not bind TGF-b216,17,23 and
only a fraction of endoglin/CD105 expressed on endothelial cells
binds TGF-b.16

It has been demonstrated that endoglin/CD105 requires the associ-
ation with TbR type II to bind ligands,17,23,38 and that it can interact
with TbR type I or type II in the absence of ligand.38 Based on differ-
ent experimental data, it has been proposed that through its inter-
actions with the TbR type I and type II, endoglin/CD105 regulates
their phosphorylation status and subsequently their signalling
ability.38 However, endoglin/CD105 can also act independently of
the TGF-b signalling pathway.12

In endothelial cells, two TbR type I pathways with opposite effects
have been identified: the ALK-5 that induces Smad 2/3 phosphoryl-
ation and the ALK-1 that induces Smad 1/5 phosphorylation.39,40

The latter is known to promote endothelial cell proliferation,
migration, and tube formation, while the first inhibits these cellular
responses to TGF-b.40 Evidence suggests that endoglin/CD105 is
required for TGF-b/ALK1 signalling and indirectly inhibits TGF-b/
ALK5 signalling.40,41

Down-regulation of endoglin/CD105 expression through small
interfering RNA demonstrated that endoglin/CD105 promotes
TGF-b-induced Smad 1/5 phosphorylation, and proliferation and
migration of murine endothelial cells via ALK-1 receptor. In fact, it
has been shown that loss of endoglin/CD105 abrogates ALK-1 signal-
ling and endothelial cells proliferation, while endoglin/CD105 haploin-
sufficiency leads to a down-regulation of surface ALK-5 expression,
probably as an adaptation mechanism.39 These results suggest that
endoglin/CD105 is required for efficient TGF-b/ALK-1 signalling and
that it acts as a modulator factor of the balance between TGF-b/
ALK-1 and TGF-b/ALK-5 signalling pathways39 (Figure 1).

Available data on the interaction of endoglin/CD105 with TbR type
I and type II suggest that the extracellular and the cytosolic domains of
endoglin/CD105 play a distinct role in the TGF-b receptor signal-
ling,14,17,23,38 and that the association of CD105 with ALK-1 is
crucial for the response of endothelial cells to TGF-b.39,42,43 Along
this line, distinct levels of endoglin/CD105 differentially modulate cel-
lular responses to TGF-b including: cellular proliferation, adhesion
and migration, homotypic cell aggregation, and expression of selected
matrix components (i.e. plasminogen activator inhibitor-1, collagen,
fibronectin, lumican).1,23,37,44– 48 In particular, the deletion of endo-
glin/CD105 enhances the ability of TGF-b1 to suppress growth,
migration, or microvessels formation in HUVEC and smooth muscle
cells, as well as apoptosis induced by hypoxia or TGF-b1 in endo-
thelial cells.37,45,49 Consistently, reduced proliferation and migration,
increased basal or TGF-b1-mediated collagen synthesis, impaired
capillary tube formation, and vascular endothelial growth factor
(VEGF) secretion are reported in endothelial cells derived from endo-
glin/CD105+ adult mice.50

Supporting its role in vascular homeostasis and integrity, endoglin/
CD105 was identified as a component of endothelial nitric oxide
synthase (eNOS) activation pathway and a modulator of COX-2
expression and activity.51–54 Thus, endoglin/CD105 can also regulate
the vascular tone by maintaining the fine balance between eNOS and
COX-2 in endothelial cells.54 Mutations in the endoglin/CD105 gene
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are associated to hereditary hemorrhagic telangiectasia (HHT) type
1,19,55,56 an hereditary disease characterized by arteriovenous malfor-
mations and recurrent bleeding. It was in fact reported that endoglin/
CD105 haploinsufficiency is the cause of defective vascular repair in
HHT type 1 that may in part explain the heterogeneity of symptoms
observed among members of the same family.57

Inhibition of endothelial cell apoptosis is crucial during angiogenesis
and vasculogenesis, and it is well-known that pro-angiogenetic factors
also promote survival of endothelial cells. In this setting, endoglin/
CD105 was shown to protect hypoxic endothelial cells from apopto-
sis either in the presence or absence of TGF-b1.49 Supporting this
finding, an inverse correlation between the extent of apoptosis and
IMVD assessed by anti- endoglin/CD105 antibodies was reported in
non-small cell lung cancer patients.58 Thus, in tumour angiogenesis,
endoglin/CD105 may also play a role in activating anti-apoptotic
signals in hypoxic endothelial cells.

At variance with the extensive knowledge on the activity of endo-
glin/CD105 in endothelial cells, limited and conflicting data are avail-
able on the functional role of endoglin/CD105 on neoplastic cells.
In vitro studies reported that overexpression of endoglin/CD105 on
metastatic prostate cancer59,60 and oesophageal squamous carcinoma
cells61 decreased their invasiveness, while this ability was improved by
the up-regulation of endoglin/CD105 in breast cancer cells.62 These
findings, and its overall limited expression on neoplastic cells,1,5,36

clearly suggest that additional studies are required to unveil the

possible functional significance of endoglin/CD105 on tumour cells
of different histotype.

5. Tumour angiogenesis
A number of studies have reported that the assesment of IMVD by
endoglin/CD105 staining represents a good prognostic indicator in
different malignancies. Endoglin/CD105-positive blood vessels count
negatively correlated with overall survival, disease-free survival, or
presence of distant metastases in a wide range of human
tumours.9,10,12,36,63,64 Additionally, IMVD score by anti-endoglin/
CD105 mAb was shown to positively correlate with Gleason score
in prostate cancer patients3 and with the tumour stage in squamous
cell carcinomas of the oral cavity.65 These studies also indicated
that blood vessels count by endoglin/CD105 staining is a more infor-
mative marker of prognosis as compared with staining by other
pan-endothelial markers.1,9,10,12 Consistently, an increase in IMVD
was assessed by endoglin/CD105 mAb during progressive stages of
colorectal carcinogenesis from low- to high-grade dysplasia, and
from high-grade dysplasia to carcinoma.66 This evidence provided
indirect support to the role of endoglin/CD105 in tumour angiogen-
esis and to the usefulness of endoglin/CD105 targeting for anti-
angiogenetic therapy of cancer.1,12

To specifically investigate the role of endoglin/CD105 in tumour
angiogenesis and growth, endoglin/CD105 haploinsufficient

Figure 1 A schematic hypothetical role of endoglin/CD105 in TGF-b/ALK-1 and TGF-b/ALK-5 signalling pathways in endothelial cells. Available
data in literature suggest that the levels of expression of endoglin/CD105 on endothelial cells (ECs) can affect the response of endothelial cells to
TGF-b modulating their proliferation. In endothelial cells, TGF-b can activate two type I receptor pathways with opposite effects: ALK-5 inducing
Smad 2/3 phosphorylation and ALK-1 promoting Smad 1/5 phosphorylation. Endoglin/CD105 binds TGF-b by associating with TGF-b signalling recep-
tors type (TbR)-II. This association results in an altered phosphorylation state of TbR-II promoting endothelial cells proliferation via TGF-b/ALK-1
signalling pathway and inducing an indirect inhibition of ALK-5 signalling pathway. Upon activation, phosphorylated Smads form heteromeric com-
plexes with the common mediator Smad 4, which in the nucleus act as transcription factor complexes regulating the transcriptional activity of
target genes.
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(endoglin/CD105+/2) and control littermates (endoglin/CD105+/+)
mice were subcutaneously inoculated with Lewis lung carcinoma
cells. The results of these studies indicated that endoglin/CD105
deficiency decreased tumour vascularization and growth in mice,
further supporting the idea that endoglin/CD105 is involved in
tumour angiogenesis.67 In addition, a significant decrease in the
levels of eNOS and of phosphorylated eNOS was reported in endo-
glin/CD105+/2 mice compared with control mice, suggesting that
this deficiency might be responsible of the decreased angiogenesis-
dependent tumour growth in endoglin/CD105+/2 mice.67 Instead,
the lower tumour vascularization in endoglin/CD105+/2 mice was
not associated with lower levels of the major angiogenetic factors,
such as hypoxia inducible factors and VEGF, advising that the involve-
ment of endoglin/CD105 in tumour angiogenesis occurs downstream
of these factors.67

Unexpectedly, an increased number of endoglin/CD105-positive
vessels and an up-regulation of endoglin/CD105 gene expression
within tumours were reported in mice following anti-angiogenetic
treatment with anti-VEGF mAb68 or with anti-VEGF Receptor-269

mAb, respectively, likely as a consequence of increased hypoxia
induced by the treatment.

6. Targeting of endoglin/CD105 for
cancer imaging
Solid malignancies are generally highly vascularized, and endothelial
cells lining the tumour vasculature proliferate much faster than
endothelial cells of blood vessels in normal tissues.70,71 Thus, an
ideal target for the imaging of tumour vasculature should be over-
expressed in actively proliferating endothelial cells but it should be
weakly expressed or undetectable in quiescent endothelial cells;
additionally, it should be expressed in a large amount on the
luminal surface of the blood vessels. Based on these notions, the
evidence that levels of endoglin/CD105 expression correlate with
the proliferation rate of endothelial cells,4 – 6 and that it is overex-
pressed in endothelia within neoplastic tissues compared with
those of normal tissues, prompted investigations on endoglin/
CD105 as a potential target for the diagnostic imaging of solid
tumours.5,72 The feasibility of endoglin/CD105 targeting for diag-
nostic applications was addressed in two distinct animal models
and utilizing two different radio-labelled anti-endoglin/CD105
mAb. The results indicated that targeting of endoglin/CD105 is a
useful and safe procedure for tumour imaging,5,72 regardless of
tumour histotype and independently from endoglin/CD105
expression on neoplastic cells.5 In particular, the intravenous injec-
tion of the 125I-labelled anti-endoglin/CD105 mAb MAEND3 effi-
ciently imaged spontaneous mammary canine adenocarcinomas.
The up-take of the mAb into the tumour areas was described as
rapid and intense, without systemic side effects in injected
animals during a 3-month follow-up after imaging procedures.5

Consistent with these initial findings, the intravenous administration
of the 111In-labelled anti-endoglin/CD105 mAb MJ7/18 effectively
imaged allografts of melanoma in C57BL/6 mice.72 The autoradiog-
raphy and the subsequent immunohistology showed that the
highest levels of mAb were concentrated in the periphery of the
tumour mass where vessel density is prominent, with a hetero-
geneous distribution in the tumour centre. The blood half-life of
the antibody was reported to be less than 1 min.72

Important clinical implications of endoglin/CD105 targeting in
improving cancer diagnosis were further shown by an ex vivo study
in human renal carcinoma.73 The 99Tcm-labelled anti-endoglin/
CD105 mAb E9 was perfused in the renal artery of freshly excised
kidneys from seven patients diagnosed with renal carcinoma. The scin-
tigraphy identified hot spots of radioactivity, which matched with the
position of the neoplastic lesions. The specificity of the localization of
the labelled anti-endoglin/CD105 mAb into the tumour mass was
confirmed by the observation that a previous perfusion of unlabelled
mAb completely blocked the localization of 99Tcm-conjugated mAb.
Noteworthy, the anti-endoglin/CD105 mAb identified two tumour
masses previously undetected by pre-surgery magnetic resonance
imaging scan.73 Altogether, these imaging studies clearly indicate
that in vivo anti-endoglin/CD105 mAb specifically and strongly target
the tumour vasculature, and provide support to their usefulness
also for therapeutic anti-angiogenic approaches in human cancer.

Targeting of endoglin/CD105 has also been suggested as a possible
strategy to monitor the response to cancer therapy. Microbubbles are
suitable contrast agents for the enhancement of ultrasound images,
and avidin can be incorporated into the shell of microbubbles,
acting as a direct ligand for biotinylated mAb. Utilizing this approach,
microbubbles conjugated with the anti-endoglin/CD105 mAb MJ7/18
specifically bound in vitro to murine brain capillary endothelial cells
expressing high levels of endoglin/CD105, but not to murine fibro-
blasts expressing low levels of endoglin/CD105.74 Being ultrasound
a powerful non-invasive diagnostic tool, microbubbles conjugated to
mAb MJ7/18 were also utilized to image and quantify vascular
effects of cytotoxic therapy in a mouse model of pancreatic adenocar-
cinoma.75 The results obtained showed a significantly decreased ultra-
sound signal in tumours treated with gemcitabine.75 Thus,
microbubbles conjugated with anti-endoglin/CD105 mAb may rep-
resent a foreseeable non-invasive tool for the imaging of tumour
angiogenesis and for monitoring vascular effects of anti-cancer
therapy.

7. Targeting of endoglin/CD105 for
cancer treatment
The well-acknowledged notion that angiogenesis supports primary
tumour growth and its metastatic progression has prompted the
investigation of different anti-cancer strategies aimed to inhibit the
formation of new blood vessels and/or to disrupt tumour-associated
blood vessels.76,77 In principle, these therapeutic modalities bear the
advantage of overcoming several limitations commonly related to
the targeting of transformed cells such as their inherent drug resist-
ance, the poor delivery of drugs to neoplastic cells, and the need to
target a biologically highly heterogeneous malignant cell
population.76,78

Among antibodies with anti-angiogenetic activity so far tested in
cancer patients, only the humanized anti-VEGF mAb bevacizumab
has received approval by Regulatory Agencies, though for selected
clinical indications.79 –81 Thus, different novel agents are currently
under active clinical investigation for cancer treatment, with the
intent to starve neoplastic cells by blocking their tumour blood
supply. In this setting, targeting of proliferating endothelial cells is gen-
erally considered the most promising therapeutic strategy to control
tumour angiogenesis.
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Strong experimental support to the possible use of anti-endoglin/
CD105 mAb for therapeutic vascular targeting in cancer derives
from in vitro studies demonstrating that different anti-endoglin/
CD105 antibodies inhibit proliferation, migration and adhesion of
endothelial cells33,82,83 and/or induce apoptosis in human umbilical
vein endothelial cells.67 Moreover, selected anti-endoglin/CD105
mAb showed a synergistic activity with TGF-b in the inhibition of
endothelial cells proliferation.82

Diverse engineered antibodies directed to endoglin/CD105 have
also been generated and utilized to target or to deliver pharmacologi-
cal agents to endothelial cells in vitro. A bispecific antibody directed to
endoglin/CD105 and CD3 was utilized to mediate killing of endoglin/
CD105-positive endothelial cells by cytotoxic T lymphocytes.84

Single-chain Fv fragments directed to endoglin/CD105 were used to
generate immunoliposome of encapsulated therapeutic drugs to
target endothelial cells;85 these complexes were able to internalize
into and kill endothelial cells.85 Nanobodies against endoglin/CD105
have also been recently described86 and represent another promising
tool for therapeutic applications of endoglin/CD105 since they are
small, non-immunogenic, stable, highly soluble, and easy to produce.

The therapeutic potential of endoglin/CD105 targeting has been
already extensively investigated at pre-clinical level also in vivo.
Several studies demonstrated a long-lasting regression/suppression
of tumour growth and metastasis in SCID mice by the immunotoxin-
conjugated,87,88 radiolabelled,89 or naked anti-endoglin/CD105
mAb90– 93 termed SN6f, SN6j, and SN6 k, likely mediated by the inhi-
bition of tumour-associated angiogenesis, and/or by the destruction of
tumour-associated vasculature. Furthermore, utilizing a human skin/
SCID mouse chimera model, the naked human anti-endoglin/CD105
mAb SN6f, SN6j, and SN6 k suppressed human blood vessels but
poorly inhibited murine vessels in established tumours.92 Interestingly,
this study also showed that the in vivo anti-tumour efficacy of tested
anti-endoglin/CD105 mAb was not proportional to their antigen-
binding avidities, and that the combined administration of SN6f and
SN6 k, directed to non-overlapping epitopes of endoglin/CD105,
showed an additive anti-tumour effect.92 Furthermore, the
co-administration of mAb SN6j and cyclophosphamide had a synergis-
tic anti-tumour efficacy and completely suppressed tumours in some
chimeras.92

Growth suppression of established tumours of colon-26 murine
colon carcinoma cells and of 4T1 murine mammary carcinoma cells
by systemic administration of unconjugated anti-endoglin/CD105
mAb SN6j was also reported in immunocompetent tumour bearing
BALB/c mice.91 Differences in tumour growth rate and therapeutic
response were found to depend on the tumour location both in
immunocompetent BALB/c mice and in immunodeficient SCID
mice.91 The anti-endoglin/CD105 mAb was more effective against
skin tumours with a low growth rate, as compared with rapidly
growing intramuscular tumours.91 Consistent with these studies, the
anti-tumour activity of a recently characterized anti-endoglin/CD105
mAb was also demonstrated in BALB/c and C57BL mice inoculated
with H22 or Hepa1–6 hepatoma cells, respectively.94 In both
models, the administration of the mAb induced a significant inhibition
of tumour growth and increased the survival rate.94 The analysis of
the tumour tissues excised from treated mice showed an increase
in apoptotic cells and a decrease in microvessels, compared with
those removed from control mice.94

The anti-tumour activity of anti-endoglin/CD105 mAb was found
improved in immunocompetent compared with immunodeficient

mice.90 Confirming the hypothesis that T cell immunity could play a
role in enhancing the efficacy of anti-endoglin/CD105 antibody-based
therapy, the administration of an immune activator CpG ODN,
enhanced the anti-tumour efficacy of the anti-endoglin/CD105 mAb
SN6j in immunocompetent BALB/c mice, but not in immunodeficient
SCID mice. Supporting the notion that immune mechanisms are
involved in antibody-based endoglin/CD105-targeted tumour
therapy, the anti-tumour efficacy of the SN6j mAb was abrogated
when CD4+ and/or CD8+ T cells were depleted from BALB/c
mice.90

Noteworthy for perspective clinical applications in patients, three
mAb (SN6a, SN6j, and SN6 k) recognizing distinct epitopes of endo-
glin/CD105 showed therapeutic efficacy against tumour metastases in
BALB/c mice inoculated with 4T1 murine mammary carcinoma or
colon-26 murine adenocarcinoma cell lines.93

In order to assess the potential clinical application of anti-endoglin/
CD105 antibodies, the recombinant human/mouse chimeric antibody
of IgG1 isotype designated c-SN6j was generated from mAb SN6j,
based on its strong anti-tumour efficacy in vivo and its strong ability
to inhibit the proliferation of endothelial cells in vitro.95 When adminis-
tered in monkeys, mAb c-SN6j showed pharmacokinetic parameters
comparable to those reported in humans for different therapeutic
mAb.95

In an attempt to construct a novel anti-endoglin/CD105 immuno-
conjugated mAb with limited unspecific toxicity, the type 2 ribosome-
inactivating protein nigrin b was linked to the anti-human endoglin/
CD105 mAb 44G4. This 44G4 nigrin b immunotoxin specifically
killed murine fibroblasts expressing the short isoform of human endo-
glin/CD105 and in a perinuclear region.96

A phase I study, first-in human, with the human/murine chimeric
anti-endoglin/CD105 mAb TRC105 in patients with refractory
advanced or metastatic solid cancer is ongoing. Objectives of the
study are to evaluate safety and tolerability of escalating doses of
the therapeutic mAb, its pharmacokinetics and immunogenicity, as
well as signs of clinical activity. Preliminary data were most recently
reported showing that treatment is well tolerated at doses up to 1
mg/Kg and with evidence of clinical activity. Two dose-limiting toxicity
were observed: a Grade 3 hypersensitivity reaction and a Grade 4
bleeding. Though initial, these findings indicate that anti-VEGF mAb
and anti-endoglin/CD105-based treatment might share bleeding as a
common adverse event.97

8. Conclusions and future directions
In light of its involvement in vascular development, morphogenesis
and physiology, and of its strong expression on blood vessels of
tumour tissues, the potential of endoglin/CD105 as vascular target
for diagnostic and therapeutic anti-angiogenetic strategies in cancer
has been extensively investigated at pre-clinical level both in vitro
and in vivo (summarized in Table 1).

Endoglin/CD105 is overexpressed on proliferating endothelial
cells1 –5 and in the vascular endothelium within tumour tissues,1,4,6–

8,98 but also in endothelia of normal tissues.98,99 This latter notion
raised concerns about potential side effects of clinical applications
of endoglin/CD105 targeting in cancer patients.98–102 However, it
was convincingly argued that most tissue antigens targeted by thera-
peutic antibodies that are successfully employed in the clinic are
not tumour specific.100 Nevertheless, not all available anti-endoglin/
CD105 mAb are likely good candidates for therapeutic applications
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in cancer since differences in their reactivity with the tumour vascula-
ture have been observed.92,98,100

As a whole, the pre-clinical data available undoubtedly point to
endoglin/CD105 as an attractive vascular target to design novel
antibody-based diagnostic and therapeutic strategies shared by

different human malignancies, suggesting that times are mature to
identify the most appropriate therapeutic applications of endoglin/
CD105 targeting in the clinical setting of cancer.103 Along this line,
it has been recently shown that, unlike other pan-endothelial
markers, endoglin/CD105 is overexpressed in hepatic epithelioid
hemangioendothelioma (HEH), a rare neoplasm of endothelial
origin, clearly pointing to endoglin/CD105 as a possible candidate
for the therapeutic targeting of HEH.104

It is finally worth mentioning that, other than on endothelial cells,
endoglin/CD105 is weakly expressed on selected cell types that
indirectly contribute to tumour angiogenesis such as mural, stromal,
and inflammatory cells.1 Thus, it seems reasonable to envisage that
the anti-angiogenetic efficacy of antibodies directed to endoglin/
CD105 might be strengthened by their ability to target multiple cell
types involved in the angiogenetic process besides endothelial cells.

In the last few years significant advances have been made on the
biology of endoglin/CD105 in cancer, allowing to identify potential
advantages and drawbacks associated with its diagnostic and thera-
peutic use (Table 2); altogether, time seems mature to translate the
results emerged from pre-clinical research to the clinical setting.
Along this line, a multicenter clinical trial is in progress97 and its
results are eagerly awaited to validate endoglin/CD105 as a novel
target for cancer treatment.
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Table 1 Pre-clinical studies with different anti-endoglin/CD105 mAb

mAb In vitro In vivo

Activity Cell type Activity Tumour type Host

MJ7/18 Target binding74 EC (M) Cancer imaging72 Melanoma (M) C57BL/6 mice
Vascular imaging75 Pancreatic adenocarcinoma (M) nu/nu mice

MAEND3 – Cancer imaging5 Spontaneous mammary carcinoma Beagle dog, mixed breed
dog

E9 – Cancer imaging73 Renal carcinoma (H) Excised human kidneys

SN6f – Anti-tumour87,89,92 Breast cancer (H) H skin/SCID mouse
chimeras, SCID miceAnti-angiogenetic87,89,92

SN6k – Anti-tumour88,92,93 Mammary carcinoma (M), Colon
adenocarcinoma (M), Breast
cancer (H)

BALB/c mice, H skin/
SCID mouse chimeras,
SCID mice

Anti-angiogenetic88,92

SN6J Inhibition of proliferation82,90 HUVEC Anti-tumour90–93 Mammary carcinoma (M), Colon
adenocarcinoma (M), Breast
cancer (H)

BALB/c mice, H skin/
SCID mouse chimeras,
SCID mice

Induction of apoptosis90 Anti-angiogenetic92,93

ADCC93

SN6 Inhibition of proliferation82 HUVEC –

SN6a Inhibition of proliferation82 HUVEC Anti-tumour93 Mammary carcinoma (M), Colon
adenocarcinoma (M)

BALB/c mice
Anti-angiogenetic93

SN6h Inhibition of proliferation82 HUVEC –

TEC11 Inhibition of proliferation4,83 HUVEC, HDMC,
vascular EC (H)

–
Inhibition of urokinase

production83

44G4 Target binding96 Fibroblasts (M) –

EC, endothelial cells; HUVEC, human umbilical vein endothelial cells; ADCC, antibody-dependent cellular cytotoxicity, HDMC, human dermal microvascular endothelial cells; H, human;
M, murine.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Points to consider about anti-endoglin/CD105
mAb use for imaging and treatment of human tumours

Strenghts Limitations

Optimal accessibility from the
blood stream

Presence of a soluble form

Over-expression in tumour
endothelia compared with
endothelia of normal tissues

Extent of tumour vascularization

Stable expression Limited by tumour size? (imaging)

Limited background (imaging) Presence and extent of tumour
necrosis (imaging)

No tumour-histotype specificity Bleeding as side effect? (therapy)

Independence from the expression
on neoplastic cells

Detectable in mature and immature
neovessels

No major side effects in animal
models

Useful to evaluate the efficacy of
anti-angiogenetic treatments
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Sanità (ISS) and Alleanza Contro il Cancro, and by the Programma
Italia-USA ‘Malattie Rare’ from the ISS (A.C. fellow).
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