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This paper presents a method to grasp objects that cannot be picked directly from a

table, using a soft, underactuated hand. These grasps are achieved by dragging the

object to the edge of a table, and grasping it from the protruding part, performing

so-called slide-to-edge grasps. This type of approach, which uses the environment to

facilitate the grasp, is named Environmental Constraint Exploitation (ECE), and has been

shown to improve the robustness of grasps while reducing the planning effort. The paper

proposes two strategies, namely Continuous Slide and Grasp and Pivot and Re-Grasp,

that are designed to deal with different objects. In the first strategy, the hand is positioned

over the object and assumed to stick to it during the sliding until the edge, where the

fingers wrap around the object and pick it up. In the second strategy, instead, the sliding

motion is performed using pivoting, and thus the object is allowed to rotate with respect

to the hand that drags it toward the edge. Then, as soon as the object reaches the

desired position, the hand detaches from the object and moves to grasp the object from

the side. In both strategies, the hand positioning for grasping the object is implemented

using a recently proposed functional model for soft hands, the closure signature, whereas

the sliding motion on the table is executed by using a hybrid force-velocity controller. We

conducted 320 grasping trials with 16 different objects using a soft hand attached to

a collaborative robot arm. Experiments showed that the Continuous Slide and Grasp

is more suitable for small objects (e.g., a credit card), whereas the Pivot and Re-Grasp

performs better with larger objects (e.g., a big book). The gathered data were used to

train a classifier that selects the most suitable strategy to use, according to the object

size and weight. Implementing ECE strategies with soft hands is a first step toward their

use in real-world scenarios, where the environment should be seen more as a help than

as a hindrance.

Keywords: soft robotic hands, environmental constraints exploitation, sliding, edge grasp, grasp planning

1. INTRODUCTION

Robust grasping of objects in unstructured environments is an intrinsically complex task to be
executed by an autonomous robot. Recently, a novel generation of soft and compliant grippers and
hands has been proposed that are able to adapt to the grasped objects and to safely interact with
the environment. Several devices exist with passively compliant joints (Dollar and Howe, 2006;
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Catalano et al., 2014), whereas recently advancements in the field
of soft robotics has led to the design of devices completely made
of soft materials (Deimel and Brock, 2016; Hughes et al., 2016).

However, alongside with the hardware development of
soft robotic hands, there is the need of a paradigm shift
for what concerns grasp planning and control strategies.
Insights from how humans usually grasp objects suggest that
constraints present in the environment, i.e., environmental
constraints (EC), should not be considered as obstacles. On the
contrary, contact interactions with them can be exploited to
achieve robust grasps (Eppner et al., 2015; Brock et al., 2016;
Sarantopoulos and Doulgeri, 2018). In Eppner et al. (2015), it
was shown that “humans increase their use of an environmental
constraint in response to perceptual uncertainty.” In the same
work, different robotic hands are used to perform grasps
exploiting contacts with surfaces, edges, and walls, showing that
also “robotic grasping benefits from environmental constraint
exploitation.” Environmental Constraints Exploitation (ECE)
with soft hands has the potential of providing robotic systems
with grasping and manipulation abilities that were inconceivable
with rigid end-effectors.

One of the simplest examples of human ECE is
surface-constrained grasp from the top. Consider, as example,
when we want to grasp an object from a table. We tend to cage
the object within the hand and then slide the fingers on the table
surface to establish contact with the object. A general strategy
for top grasps with soft hands has been presented by Pozzi et al.
(2018), where a functional model of the closure motion of a
robotic hand is used to properly align soft robotic hands with
the object to be grasped. However, there are several objects that
cannot be grasped from the top when lying on a hard surface,
e.g., flat or small objects. In these cases, other strategies are
needed to robustly grasp them. Observing how humans grasp
these types of objects indicates that we typically grasp them
with a flip or a slide-to-edge grasp (Puhlmann et al., 2016). Both
these strategies require rather complex motions, and there are
still few works addressing the problem of performing them with
robots. Flip-and-pinch grasps were achieved with an open-loop
control strategy using an underactuated gripper in Odhner
et al. (2013). In Babin and Gosselin (2018) and Salvietti et al.
(2019), instead, flat objects were picked up by using dedicated
tools that, similarly to a scoop, can slide under the object and
lift it.

The strategy that is considered in this paper is the so-called
slide-to-edge grasp, where the object is dragged toward the table
limit through sliding and is then grasped from the edge (Eppner
et al., 2015; Heinemann et al., 2015). Implementing it with robot
hands poses several challenges. Eppner et al. (2015) devised two
possible strategies, depending on the used hand. The Barrett
Hand, that is rigid, first cages the object and then moves it toward
the edge. The pneumatic RBOHand 1 is instead placed so to have
the palm pressing against the edge and the fingers free to interact
with the object and drag it toward the palm. Sarantopoulos and
Doulgeri (2018) considered different strategies depending on
whether object was laying on the edge of a shelf (or a table),
with void space just under it, or of a closed obstructing cupboard,
without empty space beyond the edge. Hang et al. (2019) used

one of the two fingers of a compliant gripper to stick to the
object and drag it toward the edge. The motion was planned
using an extended Constrained Bi-directional Rapidly-Exploring
Random Tree (CBiRRT). Then, the protruding part of the object
was grasped with a separate robot action (regrasp).

In this paper, we propose to exploit the compliance of soft
hands differently from the strategies suggested by Eppner et al.
(2015) and Hang et al. (2019). The softness and deformability of
the hand allow us to have large contact areas and generate enough
friction forces to slide the object to the edge of the table. We
implement two different strategies to slide and grasp the object,
and test them with different objects. Then, through an analysis
of results, we find the criteria that allow us to choose the best
strategy for each object.

2. MATERIALS AND METHODS

2.1. Slide-to-Edge Grasps
We devise two strategies for edge-grasp, implement them on a
robotic system and evaluate their suitability concerning different
categories of objects. Both of these strategies rely strongly
on passive compliance of the robotic hand as well as on
the friction properties of the table-object-hand system. They
are also similar in the fact that they are composed of three
phases: first the hand approaches the object, then it slides
the object toward an edge in a non-prehensile fashion, and
finally the object is grasped by the hand. The sliding part bears
similarity to pushing experiments (Lynch et al., 1992; Zhou et al.,
2017). However, it is best described by the model presented in
Ghazaei Ardakani et al. (2019).

Let us consider a flat object placed on a table as in Figure 1A.
The first strategy (section 2.3, Figure 1B) consists of placing
the palm of the hand on the object, creating a large contact
patch between the hand and the object and such that the fingers
extend out of the object as shown in Figure 2A. The object is
then moved to the edge of the table, reaching a desired position
and orientation where the fingers can close under the object
(Figure 2C). We call this strategy Continuous Slide and Grasp.
In this strategy, it is assumed that the object does not move with
respect to the robotic hand. A complete sequence performed by
the robot is shown in Figure 1D.

The second strategy (section 2.4, Figure 1C) places a part of
the hand in contact with the object (Figure 5B), which allows
the object to pivot with respect to the hand. Then, the object
is moved and rotated toward the edge following a pre-defined
trajectory. The amount of rotation is controlled by regulating
the amount of normal force exerted on the object, i.e., pressing
harder to slow down or stop the rotation of the object while
releasing the pressure to allow for faster rotation. A snapshot of
this strategy performed by the robot is shown in Figure 1E. We
refer to this strategy as Pivot and Re-Grasp. Compared to the
first strategy, it demandsmoremodeling effort andmore accurate
feedback control.

Before presenting the details for each of these strategies, in
section 2.2 we recall a methodology to obtain the positioning of
the hand with respect to the object so to improve grasp success
rate and quality.
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FIGURE 1 | First row: Sketches of (A) the object to be grasped and its dimensions, (B) Strategy 1: Continuous Slide and Grasp, and (C) Strategy 2: Pivot and

Re-Grasp. Second and third rows: real-world implementation of (D) Strategy 1: Continuous Slide and Grasp, and (E) Strategy 2: Pivot and Re-Grasp.

FIGURE 2 | Strategy 1 Continuous Slide and Grasp–overview. (A) Hand placement, (B) desired final pose, (C) example trajectory (blue: object CoM; red: end-effector;

green: object orientation).

2.2. Functional Modeling for Soft Hands
During grasping tasks, the actual behavior and final configuration
of a soft robotic hand can be difficult to predict, as they depend

not only on the chosen actuation inputs, but also on the complex
interaction between hand, object, and environment. The number
of different soft hand designs makes it even more challenging
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to find a general framework to treat them. For these reasons,
Pozzi et al. (2018) proposed a first step toward a general method
for modeling soft hands. In particular, the authors presented a
soft hand representation, called the closure signature (CS), that
focuses on the hand functional aspects rather than the specific
hand actuation and kinematic structure. Given a certain robotic
hand, the CS models a closure motion that the hand can perform.

To compute the closure signature, a set of suitable reference
points has to be defined on the hand, and then they must
be tracked from the initial position of the chosen motion,
until the final position of the closing. To describe the average
motion of all the reference points, a homogeneous matrix can
be used, and from the analysis of the transformation a preferred
closing direction can be retrieved. Such direction (vCS) and its
application point (oh) constitute the closure signature. In Pozzi
et al. (2018), the CS describing the full closure (i.e., from
completely open to completely closed) of the Pisa/IIT SoftHand
was computed. Fingertips were chosen as reference points. The
closure signature was found to be useful for planning power
grasps, approaching objects from the top and aligning a pre-
computed direction on the object with the CS of the hand
(CS-alignment). In this paper, the same CS-alignment is used
either for placing the hand over the object before starting a
continuous motion including sliding and edge grasp (Strategy 1,
Figure 1B, top), or for approaching the object from the side to
grasp the part protruding from the table edge after the sliding
phase (Strategy 2, Figure 1C, right).

2.3. Strategy 1: Continuous Slide and Grasp
2.3.1. Overview
The first strategy for slide-to-edge grasp that is considered in
this paper is Continuous Slide and Grasp (Figure 1B). It uses a
continuous motion in which the object is dragged toward the
edge and then is grasped. Details on the strategy implementation,
including the hand placement over the object, the choice of the
final pose of the object, and the trajectory and grasp planning are
given in what follows.

2.3.2. Hand Placement
Using the CS method described in 2.2, we find a candidate
grasping direction. This direction is then aligned with the object’s
shortest side, similarly to what was done in Pozzi et al. (2018).
The application point oh is placed above the object’s edge and in
the direction of its center of mass. An example of hand placement
is shown in Figure 1B, top.

2.3.3. Desired Final Pose
In this strategy, we choose to orient the object with its longest
side parallel to the edge of the table, i.e., the desired final angle
θf = k · π , k ∈ Z. The object final orientation and the hand
placement described above allow the four fingers of the hand to
be free to wrap around the object side. To decide the size of the
protruding part of the object, we consider that the center of mass
of the object has to lie on the support surface with a sufficient
safety margin. For instance, considering a homogeneous mass
distribution, we assumed that the object protrudes out of the table
edge of about one third of its length (see Figure 2B).

2.3.4. Trajectory Planning and Control
The trajectory planning of the robot assumes that once the object
is pressed by the hand it does not move with respect to it. The
robot end effector follows the minimum distance to the selected
table edge. The linear and angular velocities are calculated such
that, when the robot approaches the desired location near the
edge of the table, the rotation of the hand and hence the object
reaches the desired orientation.

EνH = α

[

ν̂

ω

]

, ω =
1θ

1x
ν̂x, (1)

where 1θ = θf − θi and 1x = xf − xi are the desired amount of
rotation and translation, respectively, from the initial pose to the
final pose qf = [xf , yf , θf ]

T , α is a gain for the velocity (the path

is invariant to scaling of the velocity), ν̂ = [ν̂x, ν̂y]T is the unit
vector in the direction of the hand velocity, and ω denotes the
angular velocity. For the coordinate system, we assume that it is
placed at the edge of the table with the y-axis parallel to the edge.

To perform this motion, a hybrid force-velocity controller was
implemented that maintains a constant force in the direction
normal to the surface while moving the end-effector at a constant
speed parallel to the surface and rotating it with the axis
of rotation perpendicular to the plane. An example of object
trajectory when performing this strategy and the corresponding
interaction forces are shown in Figure 3. The upper plot shows
the forces in the robot base frame, whereas the lower plot shows
the two-dimensional position of the object in the coordinate
system defined at the edge of the table.

2.3.5. Grasp
For the grasp in this strategy, we assume that the object and
the hand have moved together, i.e., there has been no relative
movements between them. Thus, the object arrives at the desired
pose with the hand placed as shown in Figure 4A. Then, the
hand is closed with a grasping force that is linearly dependent
on the object weight: heavier objects are grasped more tightly
than lighter ones. We assume that the object weight is known
a priori. In section 3, an analysis on the dependency on object
features is reported. In case of small and thin objects like the
wrench shown in Figure 4B, the thumb slides first on the table
and then grasps the object. Note that this is possible since we
are using a soft hand that can passively comply with the table
surface. Figure 4C shows a limitation of this strategy, when
the object is higher than the fingers’ length, the fingers of the
robot hand cannot wrap around the object, resulting in an
unsuccessful grasp.

2.4. Strategy 2: Pivot and Re-Grasp
2.4.1. Overview
As introduced in section 2.3, some objects cannot be wrapped
by the hand fingers once the edge is reached. A solution could
be implemented where the object is dragged to the edge of the
table and then re-grasped from the side. Depending on the weight
and frictional properties of the object, the hand may not be able
to stick to the object during the sliding motion considering the
possible force limitations. So that, we propose a new strategy,
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FIGURE 3 | Strategy 1 Continuous Slide and Grasp–contact forces and object trajectory.

FIGURE 4 | Strategy 1 Continuous Slide and Grasp–Object grasp. (A) Grasp of a book, (B) grasp of a wrench, (C) limitations of the strategy: it does not work with

objects with a large height.

which we call Pivot and Re-Grasp. In this strategy, the robot hand
drags the object toward the edge while allowing it to reorient with
respect to the hand until a desired final pose on the edge of the
table is reached. The sliding part of this strategy stems from some
of the findings observed by the authors in Ghazaei Ardakani
et al. (2019), where the planar sliding of objects controlled by
a friction patch was modeled. One of the main results was the
fact that the angular velocity of an object pressed down by a soft
finger can be controlled by the amount of the normal force. This
effect is mainly due to changes in the center of pressure of the
object sliding on the table, and to the deformation of the friction
patch (in our case, the part of the soft hand in contact with the
object). When the normal force is increased, the torsional friction
between the soft hand and the object increases faster than the
torsional friction between the object and the surface, slowing
down the rotation of the object. This approach for reorienting
the object seems also more in line with what is observed in
humans and is particularly useful when the robot is kinematically

constrained, i.e., it cannot rotate the wrist as it was required by
the previous strategy.

In Strategy 2, we start by planning the motion of the object
using a simplified model described below for the sliding motion.
Then, we rely on visual feedback to control the normal force in
order to rotate the object to the desired pose. Finally, we re-orient
the hand to perform the grasp from the side of the object. The
details of the model, the choice of the contact point, and the grasp
are given in what follows.

2.4.2. Object Motion Model
Consider the configuration shown in Figure 5A. Our goal is to
describe, from a kinematic point of view, the sliding motion
of a flat object with respect to a surface. Let us denote by {O}
the body-fixed frame placed at its center of pressure and let P
denote the contact point between the soft hand and the object.
We suppose that the contact point P moves with a velocity Eν and
it remains unchanged with respect to {O}. Defining Er as the vector
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FIGURE 5 | Strategy 2 Pivot and Re-Grasp–overview. (A) Coordinates and symbols, (B) hand placement, (C) desired final pose and grasp.

FIGURE 6 | Strategy 2 Pivot and Re-Grasp–predicted rotation obtained for each contact point when EνH = [1, 0] adding the conditions under which, due to torsional

friction, the angular velocity ω = 0. (A) Example motions of a rectangular object on a table. (B) Trajectories for different velocities. (C) Rotation of the object.

joining pointO (origin of the object frame) to the point P (contact
point), the following relation for the velocities hold

EνO = Eν + Er × ω. (2)

To obtain the velocity of the object, we decompose vector Ev in its
parallel and orthogonal components with respect to Er:

Eν‖ =
Er · Eν

Er · Er
· Er, (3)

Eν⊥ = Eν − Eν‖. (4)

We assume that the linear velocity of the object gives rise
to Ev‖, while Ev⊥ is the result of the angular velocity of the
object. Accordingly,

EνO = Eν‖, (5)

ω =
rxν⊥,y − ryν⊥,x

rTr
. (6)

These relations can be derived from the pushing result in Zhou
et al. (2017) or the approximate solution of Ghazaei Ardakani
et al. (2019) by assuming no torsional friction. Integrating
Equations (3) and (6), we obtain the pose of the object
q =

[

x, y, θ
]

over time. As previously, we fix the reference frame
for the generalized coordinates q at the edge of the table, with the
y-axis along its edge. This model represents an upper limit for
the rotational speed of the object, since the effects of torsional

friction and the displacement of the center of pressure of the
object are likely to reduce the amount of rotation experienced
by the object. Nevertheless, this approximate model is sufficiently
accurate to be used for planning the object trajectory to reach a
desired pose.

2.4.3. Desired Final Pose
The desired final pose of the object for this strategy is such that
the longest edge of the object becomes perpendicular to the edge
of the table, i.e., θf = (k+ 1

2 )π , k ∈ Z. This allows thinner objects
to project outside of the table andmakes it possible to grasp them.

2.4.4. Hand Placement
The motion of the object depends on the location of the contact
between the object and the finger and the direction of the hand
velocity. Figure 6A shows the predicted rotation of the object
for different hand positions, assuming EνH = [1, 0]. Since the
area of the part of the hand in touch with the object is not
negligible, torsional friction can transmit through the contact,
preventing the rotation of the object when the amount of torque
generated is low. This is referred to as a “sticking” behavior
characterized in Ghazaei Ardakani et al. (2019). To approximate
this behavior, we set ω = 0 when the norm of the vector Er is
below a certain threshold or when Er and Ev are almost parallel.
This creates the horizontal blue area in the middle of Figure 6A.
Other considerations can also be made, such as not having the
contact point close to the border of the object, or that the contact
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FIGURE 7 | Strategy 2 Pivot and Re-Grasp–optimal object trajectory. (A) object coordinates, (B) trajectory visualization.

point should stay above the supporting surface when the object
reaches the edge.

2.4.5. Trajectory Planning and Control
The motion model presented in section 2.4.2 allows us to plan
the motion of the object such that it reaches the desired pose.
Figures 6B,C show how different final poses are reached, starting
from the same initial object pose and contact point, when the
robot moves in different directions. It can be observed that,
depending on the direction of the velocity, not only the final
position of the object along the edge of the table will be different,
but also the amount of rotation of the object. Obtaining a desired
motion of the object is then posed as an optimization problem,
where we need to choose the hand placement P, and the velocity
v. Since we choose to move the hand in a straight line, and
the path of the object is invariant to scaling of the velocity, our
decision variables are reduced to Px, Py, and yf , which are the
components of P and the final position of the object along the
edge of the table, respectively. These variables are bounded by
the constraints on the hand placement stated in section 2.4.4 and
the reach of the robot. We need to ensure that, when the object
arrives at its final pose at the edge of the table, the robot is able
to reach the side of it and grasp it. We then define the following
cost function:

k1
∥

∥θd − θf
∥

∥ + k2‖xd − xf ‖ + k3
tθ

tx
. (7)

This function is composed of three parts weighted by the
constants k1, k2 and k3 ∈ R

+. First, the object should achieve
the desired rotation angle θd. Secondly, the object should be
able to reach the position where it is projecting outside of the
table. Finally, the object should reach the desired rotation before
the desired translation, in order to better control the trajectory
once we reach the desired angle. This is obtained minimizing
the ratio tθ/tx, where tθ and tx are the time instants when
the object reaches, respectively the desired rotation and the
desired translation along the x axis. The minimum of this cost

function results in the optimal contact placement of the hand and
velocity direction.

Since our motion model represents an upper limit for the
amount of object rotation, we increase the target rotation by a
margin of 20%, in order to ensure that the desired orientation of
the object can be realized. An example of an optimal motion is
shown in Figure 7. As it can be seen, the contact position and the
direction of the velocity ensures that the object will rotate to the
desired pose (θd = π/2), and that it will reach that orientation
before the object reaches the edge, tθ < tx.

To execute the desired trajectory, a hybrid force-velocity
controller was employed. This controller moves the robot arm
at the planned velocity, while the perpendicular force to the
table is adjusted to control the object rotation. As previously
discussed, increasing the normal force results in a slower rotation
of the object because of the increased torsional friction. The
implemented control law is

fn = fU − K sat(θref − θmeas), (8)

where fU is the upper bound of the force, K is a proportional
gain, θref and θmeas are the reference and the measured object
orientation, respectively, sat(·) denotes the saturation function to
ensure that the forces are within a minimum value and fU . These
limits can be defined a priori for each object depending on its
weight and friction, but in practice fU can be set to a large value
to ensure that the hand and object stick.

Figure 8 shows an example trial for the sliding of the object
using the proposed strategy. Given the result of the optimal plan,
the robot will first place the hand patch on the object at point P,
and then press down with a predefined force fU which was chosen
depending on the weight and frictional properties of the object.
In the case of Figure 8, the robot contacts the object at t ≈ 13 s,
with the force fU = 30N. Then, the trajectory for the object
orientation θref is computed using a sigmoid function. The robot
starts moving with velocity νh along the surface at t = 15 s. At
this point, the object should start rotating, and thus the controller

Frontiers in Robotics and AI | www.frontiersin.org 7 December 2019 | Volume 6 | Article 135

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bimbo et al. Edge Grasps With Soft Hands

FIGURE 8 | Strategy 2 Pivot and Re-Grasp. (Above) Forces applied by the controller. (Below) Object coordinates.

starts reducing the normal force fn in order to allow the rotation
to happen. Around t = 20 s, the object has rotated significantly
more than expected, thus the robot increases the normal force
to reduce the angular velocity of the object, while continuing to
move at the constant velocity. The angular velocity of the object
then follows closely the reference trajectory between t = 23 s and
t = 35 s, reaching the desired pose θ = −π/2 before the object
reaching the edge, which happens at t = 45 s. At this point, the
object is at the desired position, projecting out of the edge, with
the correct orientation.

2.4.6. Grasp
Once the object has reached the desired configuration, the hand
is opened and it is moved so to approach the side of the object
projecting outside of the table. The hand approach the part of the
object protruding the table using the Closure Signature described
in section 2.2. The grasping task using the Pivot and Re-Grasp
strategy is completed after the hand is closed and the object is
lifted, as shown in Figure 5C.

3. RESULTS

3.1. Experimental Setup
Testing of the developed strategies to perform edge grasps was
done using a KUKA iiwa7 lightweight robot, with an ATI force-
torque sensor and Pisa/IIT SoftHand attached to the end-effector.
A Kinect One camera was used to track the objects that were
supplied with fiducial markers from Alvar1. Figure 9 shows the
experimental setup and the object set. In these experiments we
chose mostly flat objects that, due to their dimensions, could
not be grasped directly from the table. Table 1 summarizes the

1http://wiki.ros.org/ar_track_alvar

properties of each object. Results are shown for each of the
first seven objects, while the last two objects (the tool case and
the rubber plate) were only used for validating the classifier
described in 4.2. Ten trials were made for each strategy and
object, and the results are detailed in this section. A grasp is
considered successful if the object is lifted from the table and
unsuccessful otherwise.

3.2. Results of Strategy 1
Each trial using Strategy 1 is shown in Figure 10, where we report
the angular trajectories of each object. The time for each trial was
normalized and centered at the time instant when the robot hand
was closed. The lines show the trajectories of the orientation of
the object. Failed trials are illustrated with red lines while green
lines depict successful trials. Figure 10 firstly suggests that each
object is generally rotated to its correct orientation by the time
that the hand starts to grasp it. Moreover, the success of the grasp
does not seem to depend largely on either the initial or the final
orientation, but rather it depends on the object itself. Objects,
such as the Spanner or the smaller book (SBook) are consistently
grasped with success, whereas the Plastic Box, the bigger Book
(BBook), and the Styrofoam Box (StyBox) were not even grasped
a single time.

3.3. Results of Strategy 2
The results for applying Strategy 2 are shown in Figure 11. As
in the first strategy, the robot attempts to grasp the object once
it reaches the desired final pose. However, the results suggest
an opposite tendency: the objects that were easily grasped using
Strategy 1 presented lower success rates, whereas the objects
that were hard to grasp were now picked up with considerable
success rate.
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FIGURE 9 | Experimental setup and tested objects.

TABLE 1 | Object properties.

Object property

Weight (g) Height

(cm)

Length

(cm)

Width

(cm)

O
b
je
c
t

1 Spanner 110 0.8 18.0 1.5

2 Styrofoam box 141 7.0 33.2 24.3

3 Keyboard box 145 2.9 47.0 14.0

4 Lid of styrofoam box 49 1.5 33.2 24.3

5 Copybook 572 1.5 31.4 21.0

6 Small book 245 1.0 21.6 15.2

7 Plastic box 443 5.8 25.8 12.5

8 Ruler 47 0.2 41.0 4.0

9 Credit card 5 0.08 8.6 5.4

10 Router box 300 7.2 26.9 21.3

11 Long wood 555 1.0 47.6 16.4

12 StyBox (heavy) 661 7.0 33.2 24.3

13 Big book 887 5.0 23.5 15.7

14 Green plastic 5 0.05 11.4 11.4

15 Fabric case 460 3.9 18.2 12.5

16 Rubber plate 502 1 18.5 18

4. DISCUSSION

4.1. Comparison of Strategies
The previously presented results suggest that the two strategies
can be seen as complementary, where one fails the other one
succeeds and vice-versa. In Figure 12, the success rates for each
object and strategy are reported, with the objects being sorted
in an ascending order for each particular property. In the first

plot, the objects are sorted by their width, and the results show
that the success of Strategy 1 does not depend on the width of
the object. The performance of Strategy 2 instead, increases for
wider objects. This comes from the fact that, while all objects
are typically dragged in a correct pose at the edge, objects with
smaller width require that the fingers are placed more accurately,
in order to perform a pinch grasp. Otherwise, small errors in the
placement of the fingers usually result in grasp failures. Similar
results were observed when comparing the two strategies with
respect to the object length (Figure 12, top-right).

With respect to the height of the object (Figure 12,
bottom-left), Strategy 1 is effective for thin objects, but does not
perform well with thicker objects. This is due to the fact that the
hand often cannot wrap its fingers around the object to grasp it, as
seen in Figure 4C. Conversely, Strategy 2 does not depend much
on the object height since the hand is re-positioned according to
the Closure Signature, enabling it to grasp thicker objects. The
dependency of the success rate on the object weight that can
be seen in the last plot of Figure 12 is mostly due to the fact
that thicker objects tend to be also heavier. Besides, grasps in
Strategy 2 are more robust, and thus able to resist heavier objects.

Analyzing the correlation between success and each of
the properties, the strongest dependencies are found between
Strategy 2 and height (Spearman’s ρ = −0.74) and between
Strategy 1 and object width (Spearman’s ρ = 0.92), which
confirm the observations described earlier. It is also interesting
to notice that all correlation coefficients have different
sign for each property, confirming that these strategies are
notably complementary.

4.2. Selecting Strategies
While the correlations presented in the previous section describe
the sensitivity of each strategy to each particular property, it is

Frontiers in Robotics and AI | www.frontiersin.org 9 December 2019 | Volume 6 | Article 135

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bimbo et al. Edge Grasps With Soft Hands

FIGURE 10 | Strategy 1: object orientation angle trajectory for each object and trial. (Top left) Symbol explanation.

FIGURE 11 | Strategy 2: object orientation angle trajectory for each object and trial. (Top left) Symbol explanation.
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FIGURE 12 | Success rate for different objects for each of the considered features, sorted in ascending order.

important to predict which strategy is most likely to succeed
given a novel object. To this purpose, we trained a Naive Bayes
classifier to predict the most successful strategy given the objects
properties. The results of this classifier are shown in Figure 13. In
each plot, we keep two of the features at their median value and
plot the most successful strategy as a function of the other two.

We also tested two novel objects with similar weight
(481± 21 g) and length (18.35 ± 0.15 cm), to predict the most
successful strategy. One object was a fabric tool case, with 3.9
cm height, 12.5 cm width, and 18.2 cm length. The classifier
predicted that the most successful strategy for this object was
Strategy 2: Pivot and Re-Grasp. For the other object, a rubber
plate with dimensions 18× 18.5× 1 cm, Strategy 1: Continuous
Slide and Grasp was predicted to have a higher chance of success.
Figure 14 shows the best strategy as a function of width and
height, with length and weight that approximately correspond
to the ones of the test objects. Both predictions were shown to
be accurate, as in validation (10 trials per object and strategy) the
toolcase was successfully grasped 90% of the times with Strategy 1
vs. 80% with Strategy 2, while the rubber plate had success rates
of 60 and 80%, respectively.

4.3. Conclusions
This paper presented an approach to grasp objects that, due to
their geometric properties, cannot be directly grasped from a
table from the top. Following the approach of Environmental
Constraint Exploitation, where the environment is exploited to
simplify the grasp of objects, we use the edge of a table to
expose the bottom side of the object and grasp it from there. We
presented two strategies to carry out these grasps that are suited
for different types of objects. Each strategy has a different way
of moving the object toward the edge and also different hand
posture when performing the grasp. The first strategy constrains
the object, moving it together with the hand toward the edge,
from where it is directly lifted up. The second strategy reorients
the object by controlling the amount of moment we transmit
through friction while dragging it toward the edge, and then
reorients the hand such that the palm of the robot hand faces
the side of the object. Both strategies rely on the softness of the
hand, particularly during the sliding of the object toward the
edge, where frictional forces are transmitted to the object. The
underactuation of the hand is also harnessed during the grasp, as
the hand conforms to the shape of the object.
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FIGURE 13 | Results of the Naive Bayes classifier for different pairs of features.

FIGURE 14 | Prediction of best strategy for two test objects.

We tested each strategy with objects of different sizes, and we
found the strategies to be complementary to each other, with one
strategy performing well in the cases where the other often fails.
We analyzed the object trajectories and the success rates of each
strategy and found interesting correlations between the success
of a grasp and the object’s geometric properties. We then trained
a classifier to be able to predict the strategy that is most likely to
succeed given the properties of a novel object. The mean success
rate for all experiments when selecting the best strategy for each
was 86%.

4.4. Future Work
The obtained results are encouraging as for every object that
we tested the success rate was always greater or equal to
60% with either the first or the second strategy, but there
are still some limitations for each strategy that prevent better
performance. Strategy 1 requires very high forces to let the
hand stick to the object during sliding, above all with heavy
objects, and limits the robot workspace due to the fact that
the robot must move horizontally while rotating in the vertical
direction. Strategy 2 requires significantly more computation
in the planning step, when compared to Strategy 1. Also,
the force limits need to be chosen a priori for each object.
Very light objects or objects with high friction coefficients in
contact with the robot hand require very accurate control of the
forces such that the object can rotate against the hand without
slipping completely.

Improvements of the current system can be made in the
future to enhance the performance and enable the deployment
of these methods in real-world scenarios. The first issue to tackle
is the implementation of robust object tracking, either using
vision alone or in combination with force or tactile sensing,
as in Bimbo et al. (2012). In the presented experiments we
used fiducial markers, which would not be available in most
real applications. Secondly, in order to increase robustness, a
re-planning mechanism should be implemented that, in case
of recoverable failures, can trigger a re-planning of the task.
Another improvement with respect to Strategy 2 is to estimate
the maximum and minimum forces in (8) to be applied on the
object online, based on the measured object motion. Finally it
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would be interesting to find if these strategies and classification
can be generalized to more objects and other robot hands.
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