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Abstract: The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-
activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises 
distinct structural and functional properties. Here, we sought to elucidate the significance of 
phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 
acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and 
transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry 
approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding 
interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of 
metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic 
analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently 
of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly 
establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-
translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer 
cells where ERK5 has be found to be hyperphosphoryated.  
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1. Introduction 

Mitogen-activated protein kinase (MAPK) pathways are evolutionarily conserved signaling 
cascades involved in the regulation of a variety of fundamental cellular processes such as cell 
proliferation, differentiation, survival and migration [1]. These pathways comprise a three-tier 
protein kinase cascade which results from the sequential activation of a MAPK kinase kinase 
(MAPKKK), a MAPK kinase (MAPK) and a MAPK, to relay, amplify and integrate many different 
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stimuli, including mitogens, cytokines and various environmental stresses. MAPKs mediate 
responses to these extracellular cues mainly by regulation of gene expression, but also by post-
translational mechanisms involving cytoplasmic targets [1]. The best-characterized members of the 
MAPK family are the extracellular signal-regulated protein kinases (ERK) 1 and 2, the c-Jun N-
terminal protein kinases (JNK) and the p38 MAPKs. In contrast, ERK5 is much less understood 
despite compelling genetic evidence that ERK5 exerts non-redundant and important function during 
development and in various diseases [2]. ERK5 was first identified in 1995 by two independent 
research groups who immediately recognized the comparatively large size of this novel MAPK [3,4]. 
Specifically, ERK5 exhibits an apparent molecular weight of approximately 100 kDa due to a unique 
C-terminal extension not present in other members of the MAPK family. The C-terminal tail of ERK5 
contains two proline-rich domains (PR1 (aa 434-464) and PR2 (aa 578-701)), a myocyte enhancer-
binding factor 2 (MEF2)-interacting domain (aa 440-501), a nuclear localization signal (NLS (aa 505-
539)) and a transactivation domain (TAD (aa 664-789)) [5].  

In quiescent cells, ERK5 exists in a “closed” folded conformational state defined by an 
intermolecular interaction between the N- and C-terminal half which constitutes a nuclear export 
signal (NES) [6,7]. In this conformation, the majority of ERK5 is sequestered in the cytoplasm. In 
response to stimulation, the MAPK/ERK kinase 5 (MEK5) phosphorylates the canonical MAPK 
activation motif Thr218-Glu-Tyr220 in the N-terminal domain of ERK5. This disrupts the intermolecular 
interaction and subsequently induces a conformational change to an “open” state, and exposure of 
the NLS [6,7]. In addition to controlling nucleo-cytoplasmic shuttling, the phosphorylation of ERK5 
by MEK5 increases ERK5 catalytic activity, thereby enhancing transcription via the phosphorylation 
and activation of downstream transcription factors, including members of the MEF2 family [5]. More 
surprisingly, ERK5-mediated transcription is also controlled by autophosphorylation at various 
phosphoacceptor sites identified in the C-terminal TAD [8]. This domain was originally identified by 
evidence that C-terminal truncated mutations impaired ERK5 transcriptional activity [9,10]. Recent 
discoveries that the C-terminus of ERK5 was phosphorylated by cyclin-dependent protein kinase 
(CDK) pathways during mitosis [11,12] and by ERK1/2 in response to growth factor stimulation [13] 
revealed unique potential cross talk mechanisms underlying ERK5-mediated transcription, 
independently of MEK5.  

Together, these studies provided strong evidence that phosphorylation of the C-terminal tail of 
ERK5 was functionally important. This finding is of particular significance in human epidermal 
growth factor receptor 2 (HER2) over-expressing breast cancer cells which exhibit a 
hyperphosphorylated form of ERK5 [14]. Remarkably, over-expression of ERK5 in this breast cancer 
subtype correlates significantly with poor prognosis [15]. Additionally, C-terminal phosphorylation 
of ERK5 was shown to be enhanced in melanoma cells expressing oncogenic BRAFV600E [16]. In light 
of this knowledge, this study details our elucidation of the mechanism underlying ERK5-dependent 
transcription via post-translational modification of its C-terminal tail. Given the paucity of 
information on molecular interactions underpinning ERK5 signaling, our approach was based on 
high throughput comparative analyses of C-terminal phospho-ERK5 mutants created by site-directed 
mutagenesis. Our results identified a gatekeeper residue in the C-terminal portion that modulates 
the signaling function of ERK5 by influencing the binding selectivity of ERK5 with downstream 
targets.  

2. Results 

2.1. Thr732 is Critical for C-Terminal Phosphorylation of ERK5 

Detailed phosphomapping analysis of ERK5 provided the first evidence that ERK5 could 
autophosphorylate its tail [17]. Further studies confirmed that the TAD in the C-terminal region of 
ERK5 contained several putative phosphoacceptor sites, including: Ser706, Ser719, Ser730, Thr732, Ser753, 
Ser769, Ser773 and Ser775 [8,11–13]. Importantly, the data showed that C-terminal phosphorylation 
controlled the ability of ERK5 to translocate to the nucleus and to regulate transcription [11–13]. To 
address the fundamental basis of this unique feature, we generated various ERK5 mutants using a 
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site-directed mutagenesis approach. cDNAs encoding Flag epitope-tagged human ERK5 full length 
(ERK5-FL), truncated and phospho-mutants, were subsequently integrated into the genome of HeLa 
cells using the Flp-In T-Rex system to create isogenic inducible stable recombinant cell lines (Figure 
1A). ERK5 expression was induced by incubating the cells with tetracycline.  

 

Figure 1. Extracellular signal-regulated protein kinase 5 (ERK5) phosphorylation at Thr732 is a pre-
requisite for C-terminal phosphorylation. (A) A schematic illustration and nomenclature of ERK5-FL, 
truncated N-terminal (ERK5-∆N) and C-terminal (ERK5-∆C) mutants, and various mutants in which 
specific serine and/or threonine residues were replaced by alanines or glutamic acids. (B−F) 
Recombinant Flp-In HeLa cells were incubated with Tet (+) for 24 h. Mock treated cells with DMSO 
(−) were used as controls. Where indicated, the cells were transfected with a construct encoding HA-
tagged MEK5D 24 h before Tet induction, or stimulated for 25 min, unless indicated otherwise (panel 
F), with EGF (20 ng/mL) before harvesting. In panel E, cells were pre-incubated with XMD8-92 (5 µM) 
for 1 h prior to epidermal growth factor (EGF) stimulation. Cell lysates were analyzed by immunoblot 
using a specific antibody to the Flag-tagged epitope (M2). Antibodies to β actin or vinculin were used 
to monitor protein loading. 



Int. J. Mol. Sci. 2020, 21, 929 4 of 16 

 

Initially, we confirmed that ERK5-FL induced in cells expressing a dominant active mutant form 
of MEK5 (MEK5D) or in cells stimulated with epidermal growth factor (EGF), exhibited a mobility 
shift by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) characteristic of post-translational 
modification by phosphorylation (Figure 1B). ERK5 mutants lacking the C-terminal tail (ERK5-ΔC) 
did not display this striking electrophoretic behavior (Figure 1B,C). In contrast, the analysis of a C-
terminal fragment, namely ERK5-ΔN, comprising the PR1, PR2 and NLS, revealed distinct mobility 
shifts under basal or stimulated conditions, indicative of multiple constitutively phosphorylated 
residues in the C terminus of ERK5 (Figure 1C). We further analyzed the migration pattern of two 
phosphomutants, ERK5-4xAi and ERK5-4xAii, in which four conserved putative phosphoacceptor 
sites in the TAD (i.e., Ser706, Thr732, Ser753 and Ser773, or Thr732, Ser769, Ser773 and Ser775) were replaced by 
non-phosphorylatable alanines (Figure 1A). ERK5-4xA mutants migrated with a slightly accelerated 
mobility compared with ERK5-FL due to the lower molecular weight of Ala compared with that of 
Ser/Thr residues. The demonstration that these substitutions caused the disappearance of the slow 
migrating band in EGF-treated cell extracts confirmed that C-terminal phosphorylation was 
responsible for the electrophoretic migratory shift (Figure 1D). Likewise, the shifted ERK5-FL band 
was not detected in EGF-treated cells pre-incubated with XMD8-92, supporting the idea that 
activated ERK5 autophosphorylates its tail (Figure 1E) [8,17]. Thr732 is the only proline-directed 
phosphoacceptor site in the TAD of ERK5 that has been consistently found phosphorylated [8,11–
13,17]. Remarkably, single substitution of Thr732 by alanine (T732A) caused the disappearance of the 
electrophoretic shift upon EGF stimulation (Figure 1D,E). Kinetic analysis of EGF treatment 
confirmed that T732A mutation impaired, rather than delayed, ERK5 C-terminal tail phosphorylation 
(Figure 1F). Collectively, these data indicated that phosphorylation at Thr732 was a critical step in the 
post-translational modification of ERK5.  

2.2. Phosphorylation at Thr732 Promotes ERK5 Nuclear Translocation 

Previous studies have demonstrated that C-terminal phosphorylation of ERK5 was important 
for controlling the subcellular localization of ERK5 [11–13]. Initially, we confirmed that, under basal 
conditions, ERK5-FL predominantly resided in the cytoplasm, whereas ERK5-∆C (1-575) was mainly 
detected in the nucleus (Figure 2A,B). This was consistent with the nuclear export-dependent activity 
previously defined by an intermolecular interaction between the N- and C-terminal half of the 
protein, and the presence of a functional NLS (aa 505-539) in the C-terminal region [6,7,18]. 
Accordingly, the constitutively phosphorylated ERK5-ΔN (411-816) fragment displayed an exclusive 
nuclear localization (Figure 3). Interestingly, the ERK5-∆C (1-408) and ∆C (1-503) mutants which lack 
both the nuclear export-dependent activity and the NLS (Figure 1A), remained strongly nuclear 
(Figure 3). To explain this observation, we propose that the C-terminal tail of ERK5 might comprise 
a cytoplasmic retention function, possibly through protein association, that contributes to controlling 
the dynamic shuttling of ERK5 between the nucleus and cytoplasm. 

Similar to ERK5-FL, ERK5-4xAi and ERK5-T732A mutants preferentially localized in the 
cytoplasm (Figure 2A,B). In contrast, mimicking phosphorylation at the C-terminal tail caused a 
notable increased proportion of ERK5 in the nucleus (Figure 2A,B). Interestingly, we found no 
significant advantage of multiple phosphorylation at Ser706, Thr732, Ser753 and Ser773 versus single 
T732E substitution (Figure 2A,B; compare ERK5-4xEi and ERK5-T732E). As expected, a small, but 
nonetheless significant, proportion of ERK5-FL moved in the nucleus of cells stimulated with EGF 
(Figure 2C,D). Likewise, we observed a slightly higher proportion of nuclear ERK5-T732E in EGF-
treated compared to unstimulated cells (Figure 2C and D). On the contrary, Ala732 mutation blocked 
the nuclear translocation of ERK5 in response to EGF stimulation (Figure 2C,D). Together, these 
observations confirmed an important regulatory role of Thr732 phosphorylation in ERK5 nuclear 
shuttling. 
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Figure 2. Phosphorylation at Thr732 promotes the nuclear translocation of ERK5. Recombinant Flp-In 
HeLa cell lines were grown on glass coverslips and incubated with tetracycline for 24 h before fixation. 
Where indicated, the cells were stimulated with EGF (20 ng/mL) for 25 min. (A,C) Subcellular 
localization of ectopically expressed ERK5-FL, ERK5-∆C and specific phospho-deficient or 
phosphomimetics mutants were visualized using an antibody to the Flag-tagged epitope (M2, green). 
Phallodin staining (red) was used to detect actin. Nuclei were detected with DAPI (blue). Scale bars: 
10 µM. (B,D) The immunofluorescent signal of the Flag epitope was quantitated with ImageJ. The 
data expressed as percent of signal in the nucleus correspond to the mean ± SD (n = 30 cells). * p < 0.05; 
*** p < 0.001 and **** p < 0.0001 indicate significant differences. ns indicates no statistical difference. 
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Figure 3. Subcellular localization of C- and N-terminal truncated ERK5 mutants. Recombinant Flp-In 
HeLa cell lines were grown on glass coverslips and incubated with tetracycline for 24 h before fixation. 
Subcellular localization of ectopically expressed ERK5-ΔC and ERK5-ΔN truncated mutants was 
visualized using an antibody to the Flag-tagged epitope (M2, green). Phallodin staining (red) was 
used to detect actin. Nuclei were detected with DAPI (blue). Scale bars: 10 μM. 

2.3. Phosphorylation at Thr732 Enhances ERK5 Transcriptional Activity 

Previous studies have found that mimicking phosphorylation at multiple sites in the C terminus 
was required for maximal ERK5 transcriptional activity [8,11,13]. To establish the specific 
requirement of Thr732 in ERK5-mediated transcription, we tested the ability of various ERK5 mutants 
to increase transcription using a MEF2-dependent luciferase reporter construct. We verified by 
immunoblot analysis that tetracycline induced expression of all mutants to a similar level for 
comparison (Figure 4). We found that induced expression of ERK5-FL or ERK5-ΔC (1-575) caused a 
small, nonetheless noticeable, increase in MEF2-luc activity (Figure 4A). We further analyzed the 
transcriptional activity of phosphodeficient forms of full-length ERK5, alongside two 
phosphomimetics in which Ser706, Thr732, Ser753 and Ser773 (ERK5-4xEi), or Thr732 alone (ERK5-T732E), 
were replaced by Glu residues. We observed that the phosphomimetics enhanced transcription by 
around 3-fold over the phosphodeficient mutants which displayed a similar activity as that of ERK5-
FL or ERK5-ΔC (Figure 4A). In agreement with our previous observation (Figure 2A,B), we found no 
marked difference between the substitution of four Glu residues versus single Glu mutation at Thr732. 
The critical importance of phosphorylation at Thr732 was further demonstrated by evidence that 
enhanced MEF2-luciferase activity could not be produced by mimicking phosphorylation at three 
serine residues (Ser706, Ser753 and Ser773, or Ser769, Ser773 and Ser775) in the context of an 
unphosphorylatable Ala732 residue (Figure 4B; 3xEi-T732A and 3xEii-T732A mutants). 

Subsequently, we generated another set of T732A and T732E substitutions in a kinase-dead 
mutant form of ERK5 unable to bind ATP (D200A) [9], in order to dissociate the functional 
requirement of Thr732 phosphorylation from ERK5 catalytic activity (Figure 1A). We found that the 
loss of catalytic function blocked the two-fold increase in MEF2-luciferase activity caused by induced 
expression of ERK5-T732A (Figure 4C). In contrast, D200A mutation only partially reduced the 
transcriptional activity of ERK5-T732E, indicating that phosphorylation at Thr732 alone could induce 
transcription (Figure 4C). Remarkably, the C-terminal fragment of ERK5 (aa 411−816) was a more 
potent inducer of MEF2-luciferase activity than ERK5-FL or any of the nuclear ERK5-∆C mutants 
comprising the kinase domain (Figure 4D). Collectively, these results indicated that the C-terminal 
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tail of ERK5 functioned as a non-catalytic inducer of ERK5-mediated transcription. More specifically, 
we propose that phosphorylation at Thr732 enhances transcriptional activation, not only by allowing 
ERK5 to enter the nucleus, but through positive regulation of the TAD (aa 664-789).  

 
Figure 4. Phosphorylation at Thr732 enhances ERK5-mediated transcription. Recombinant Flp-In HeLa 
cell lines were transfected with a construct encoding a MEF2 luciferase reporter. (A–D) 24 h later, the 
cells were incubated with tetracycline for 48 hours to induce expression of ERKFL, ERK5-∆C and 
ERK5-∆Ν fragments, or specific phospho-deficient or phosphomimetics mutants, as indicated. Non-
induced (NI) cells were used as controls. Efficiency of transfection was controlled by co-transfecting 
a Renilla firefly encoding construct. Immunoblot analyses of the cell lysates demonstrate similar level 
of expression of ERK5-FL and the various mutants. The MEF2 luciferase activity normalized to that 
of Renilla luciferase is expressed as fold to compare relative transcriptional activity under basal 
condition. The data represent the mean ± SD of three independent experiments performed in 
duplicate. ** p < 0.01 and *** p < 0.001 indicate significant differences. ns indicates no statistical 
difference. 

2.4. Phosphorylation at Thr732 Confers Binding Interaction Specificity  

To further understand the mechanism underpinning ERK5-mediated transcription, we utilized 
a mass spectrometry-based quantitative proteomics approach to globally investigate the impact of 
phosphorylation of the C-terminal half of ERK5 on molecular interactions and potentially identify 
binding partners implicated in genomic interactions. We compared M2-pull down purifications from 
ERK5-FL non-induced Flp-In HeLa cells (–Tetracycline) and from Flp-In HeLa cells induced 
(+Tetracycline) to express ERK5-FL or ERK5-T732E (Figure 5A). 
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Figure 5. Quantitative mass spectrometry analysis of M2 immunecomplexes. (A) Illustration of the 
workflow to analyze the interactomes of non-induced, ERK5-FL and ERK5-T732E pull downs. 
Recombinant Flp-In HeLa cell lines were lysed in RIPA buffer 24 h after tetracycline induction. Mock 
treated cells with DMSO were utilized as non-induced controls. (B) Pearson correlation coefficients 
demonstrating the reproducibility of pull downs analyzed by mass spectrometry in the different 
conditions. (C) Quantification of mean total number of proteins in each pull down. (D) Signal 
intensities of MEK5 and ERK5 proteins, and phosphorylated Ser730 and Thr732 residues, detected by 
mass spectrometry in the non-induced and induced ERK5-FL, or ERK5-T732E precipitates. The data 
represent the median normalized intensity values ± SD of three independent experiments. nd indicates 
that the protein or the phosphorylated residue was not-detectable in the corresponding 
immunoprecipitate. 

We confirmed that the biological triplicates were similar with a Pearson correlation between 0.85 
and 0.95 (Figure 5B). Moreover, although a similar number of proteins were detected in M2 immune 
complexes from induced and non-induced cells (Figure 5C), MEK5 and ERK5 were significantly 
enriched in the precipitates from induced conditions (Figure 5D). This initial analysis confirmed that 
we could utilize non-induced samples as negative controls to rule out non-specific binding 
interactions. Furthermore, consistent with the absence of stimulation, no phosphorylation was 
detected on the MAPK activation motif Thr218-Glu-Tyr220 in the N-terminal domain of ERK5. In 
contrast, we were able to identify phosphorylated ERK5-FL at Thr732, corroborating the biological 
significance of this phosphoacceptor site (Figure 5D). Interestingly, the phospho-Thr732 ERK5 peptide 
was also phosphorylated at Ser730. This site is the second most phosphorylated C-terminal site after 
Thr732 found in unbiased high through put phosphoproteomic screens 
(https://www.phosphosite.org/homeAction.action). Together, these observations confirmed with 
high confidence that our methodology was robust and the bioinformatics analysis of the data was 
highly reliable for discovering novel and relevant ERK5 binding partners. 

Hierarchical clustering was subsequently performed on 2368 proteins associated with immune 
complexes (Figure 6A and Table S1). Proteins interacting selectively with ERK5-FL were found in 
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cluster 1. Cluster 2 included proteins exhibiting similar binding interaction with ERK-FL and ERK5-
T732E and cluster 3 was comprised of proteins exhibiting enhanced affinity for ERK5-T732E. Overall, 
ERK5-FL had significantly more interacting partners (231) than ERK5-T732E (45). Interestingly, the 
most significantly enriched interactor identified in the ERK5-FL after MEK5 was the scaffold protein 
SHC1 which links cell surface growth factor receptors to signaling pathways. Moreover, several 
proteins involved in metabolism, e.g., UGDH, ATP5A1, NAMPT, ATP6V1H, PHGDH, ALDH, were 
reproducibly detected with higher signal intensities in ERK5-FL than in ERK5-T732 pull downs. In 
contrast, various histones and several small nuclear ribonucleoproteins implicated in pre-mRNA 
splicing were highly represented in the top most enriched proteins detected in the M2 immune 
complexes isolated from ERK5-T732, compared with ERK5-FL, expressing HeLa cells. Functional 
network analysis within each cluster was subsequently performed in STRING and visualized with 
Cytoscape to reveal more global differences between ERK5-FL and ERK5-T732 immunoprecipitates 
(Figure 6B–D). Together, these findings demonstrated for the first time that phosphorylation at Thr732 

affected selective binding affinity of ERK5 with specific downstream partners. 

 
Figure 6. Hierarchical clustering demonstrates distinct interactomes for ERK5-FL and ERK5-T732. 
Hierarchical clustering was performed on 2368 proteins detected in immune complexes using the 
software Perseus. (A) The dendrogram shows clustering of proteins mostly enriched in ERK5-FL 
(cluster 1), in ERK5-T732E (cluster 3), or in both (cluster 2) immune complexes. (B-D) The proteins in 
each cluster were visualized in Cytoscape after analysis in the STRING software to provide known 
interactions among proteins. MCODE enrichment was utilized to identify more interconnected nodes, 
i.e., groups of proteins exhibiting higher probability to interact with each other. 
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3. Discussion 

This study aimed at elucidating the functional relevance of post-translational modification of the 
C terminus of ERK5. We identified Thr732 as a gatekeeper residue involved in controlling C-terminal-
mediated nuclear translocation and in enhancing transcription. Importantly, the detection of Thr732 
phosphorylation by mass spectrometry indicated that this phosphoacceptor site was biologically 
relevant. We propose that single phosphorylation at Thr732 stabilizes ERK5 in an open conformation 
where the NLS is exposed to facilitate nuclear entry. This is functionally important given that T732A 
mutation blocked the nuclear import of ERK5 caused by activating phosphorylation of ERK5 by 
MEK5 in response to EGF stimulation. Previous studies had observed that mimicking C-terminal 
phosphorylation increased ERK5 transcriptional activity through AP-1 and Nur77 [8,11]. The finding 
that phosphorylation at Thr732 was a more potent inducer of MEF2 activity than any of the nuclear 
ERK5-∆C mutants provided further compelling evidence supporting the functional requirement of 
the TAD. Accordingly, we previously found that ectopic expression of ERK5-∆C (1−575) failed to 
enhance STAT3 activity to the same level as that observed with overexpressing ERK5-FL [19].  

To further understand the mechanism underpinning the transcriptional function of the C-
terminal tail, we searched potential ERK5 binding partners by utilizing a mass spectrometry-based 
quantitative proteomics approach. Interestingly, no transcription factors known to be 
phosphorylated by ERK5 were detected in our proteomic screen of ERK5 immunecomplexes. This 
may not be surprising given that enzyme-substrate complexes are known to be very short lived. 
Nonetheless, we discovered that Thr732 phosphorylation increased the affinity of ERK5 for histones. 
Interestingly, MAPKs have been shown to interact with chromatin and chromatin-associated 
substrates [20]. For example, ERK2 was found directly interacting with DNA [21], p38 associated with 
chromatin remodelling complexes (SWI/SNF) [22] and JNK in complex with the acetyltransferase 
complex (ATAC) [23]. Therefore, we postulated that Thr732 phosphorylation might enhance 
transcription by facilitating chromatin association of ERK5, thereby bringing the TAD in the vicinity 
of promoter regions. 

Accordingly, we found a clear enrichment of chromatin-bound ERK5-T732E over ERK-FL and 
ERK5-ΔC (data not shown). However, an initial chromatin immunoprecipitation experiment 
followed by high throughput sequencing (ChIP-Seq) failed to convincingly demonstrate that ERK5 
interacted with the genome. Interestingly, the yeast homolog of ERK5, Mpk1, allowed transcriptional 
elongation of stress-induced genes by preventing prematured termination through direct interactions 
with the RNA polymerase associated factor 1 (PAF1) complex at promoters and coding regions of 
target genes [24]. Likewise, ERK5 in a complex with cofilin, an actin-severing protein required for 
actin cytoskeleton reorganization, facilitated PAF1 recruitment at genomic loci to permit estrogen-
induced expresion of genes associated with breast cancer cell proliferation [25]. Although, we did not 
detect any interaction of ERK5 with PAF1, ERK5-T732E exhibited increased affinity for a number of 
small nuclear ribonucleoproteins involved in pre-mRNA splicing and components of the RNA 
polymerase II holoenzyme. Together, these findings suggested that phosphorylation at Thr732 might 
enhance gene expression by enabling mRNA elongation at specific genomic loci.  

The demonstration that XMD8-92 treatment blocked the appearance of the slow migrating ERK5 
band caused by EGF stimulation was consistent with the idea that C-terminal phosphorylation could 
occur as a consequence of auto-phosphorylation following ERK5 activation [8,17]. Nonetheless, we 
found that the Ser730-Glu-Thr732-Pro motif in the C-terminal region was phosphorylated in the absence 
of phosphorylation at Thr218-Glu-Tyr220 in the activation loop, thereby demonstrating that C-terminal 
phosphorylation could also occur independently of MEK5 [11–13,16]. Interestingly, Thr732 has 
recently been implicated in cross-talk signaling mechanisms between ERK1/2, CDK1 and ERK5 
during mitosis and in response to oncogenic RAS and BRAF activation [11–13,16]. Collectively, these 
studies highlighted the potential clinical relevance of C-terminal phosphorylation in melanoma and 
HER2 over-expressing breast cancer growth. Therefore, future work should focus on understanding 
the interdependency of Ser730 and Thr732 phosphorylation and test the impact of dual phosphorylation 
at these residues on nuclear localization and transcriptional function, in the context of tumorigenesis 
and cancer resistance to therapy. These studies will require the generation of additional mutants in 
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which Ser730 is replaced by Ala or Glu residues together with T732E and T732A mutations. 
Additionally, D200A kinase-dead mutation and the utilization of ERK1/2 or CDK1 inhibitors will aid 
establishing the requirement of ERK5 activation for autophosphorylating its tail. Overall, we 
anticipate that understanding the mechanism responsible for phosphorylation of the Ser730-Glu-
Thr732-Pro motif might, not only advance our molecular understanding of ERK5-mediated signaling, 
but also reveal potentially important novel cancer targeted strategies based on blocking the oncogenic 
function of ERK5.  

4. Materials and Methods  

4.1. Generation of Isogenic Tet-Inducible ERK5 Expressing HeLa Cell Lines 

N-terminal Flag epitope-tagged full length (human) ERK5 (ERK5-FL) cDNA [3], and C- and N-
terminal truncated mutants were sub-cloned into a pCDNA5/FRT/TO vector (ThermoFisher 
Scientific, Waltham, MA, USA) modified to contain a 5’ Lamin UTR using Not1 and BamH1 digestion 
[26]. The various ERK5 phosphomutants were created by site-directed mutagenesis (QuikChange, 
Agilent technologies, Santa Clara, CA USA) and sub cloned into the pCDNA5/FRT/TO vector (Table 
1). Primer sequences are indicated in (Table 2). All constructs were confirmed by sequencing. The 
pcDNA5/FRT/TO expression vectors containing ERK5-FL or ERK5 mutants were subsequently co-
transfected with pOG44 into the Flp-In Hela host cell line using the jetPEI transfection reagent 
according to manufacturer’s instructions (Polyplus, Illkirch, France). The Flp recombinase expressed 
from pOG44 catalyzed homologous recombination between the FRT sites in the host cells and the 
pcDNA5/FRT/TO expression vectors. Stable recombinant Flp-In Hela cells were selected in 
hygromycin (2 mg/mL, ThermoFisher Scientific) for 2 weeks. Resistant colonies were pooled and 
expanded in DMEM supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich, Dorset, UK), 
1% penicillin/streptomycin (Sigma-Aldrich). Expression of the constructs was induced by incubating 
the cells with 1 ug/mL tetracycline (Sigma-Aldrich) for 24 h prior to being harvested.  

Table 1. ERK5 and MEK5 constructs utilized in this study. 

Mutant Details  Reference 
ERK5-FL  [3] 
ERK5-ΔC Deletion of amino acids 576-816 (-TAD) [9,10] 

ERK5-ΔC (1-503) Deletion of amino acids 504-816 (-PR2) [4] 
ERK5-ΔC (1-408) Deletion of amino acids 409-816 (-NLS) [18] 
ERK5-ΔN (411-

816) 
Deletion of amino acids 1-410  

ERK5-T732A Substitution of Thr732 to Ala [8,11–13,17] 
ERK5-T732E Substitution of Thr732 to Glu [8,11–13,17] 
ERK5-4xAi Substitution of Ser706, Thr732, Ser753, Ser773 to Ala [11] 
ERK5-4xAii Substitution of Thr732, Ser769, Ser773, Ser775 to Ala [8] 
ERK5-4xE Substitution of Ser706, Thr732, Ser753, Ser773 to Glu [11] 
ERK5-4xEii Substitution of Thr732, Ser769, Ser773, Ser775 to Glu [8] 

ERK5-3xEi-T732A Substitution of Ser706, Ser753, Ser774 to Glu and Thr732 to Ala [11] 
ERK5-3xEii-T732A Substitution of Ser769, Ser773, Ser775 to Glu and Thr732 to Ala [8] 

ERK5-D200A-
T732E Substitution of Asp200 to Ala and Thr732 to Glu [9] 

ERK5-D200A-
T732A 

Substitution of Asp200 to Ala and Thr732 to Ala [9] 

MEK5DA Substitution of Ser311 and Thr315 to Asp [27]  
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Table 2. Primer sequences used for mutagenesis and subcloning. 

ERK5 mutant Sequence 

ERK5-FL 
GAGAGGATCCATGGCCGAGCCTCTG 

GAGAGCGGCCGCTCAGGGGTCCTGGAG 

ERK5- ΔC 
GAGAGGATCCATGGCCGAGCCTCTG 

GAGAGCGGCCGCGGCCATTCGAGTCCA 

ERK5-ΔC (1-503) 
GAGAGGATCCATGGCCGAGCCTCTG 
GAGAGCGGCCGCAGCCACAGGCTG 

ERK5-ΔC (1-408) GAGAGGATCCATGGCCGAGCCTCTG 
GAGAGCGGCCGCAGGCTCAGGAGC 

ERK5-ΔN (411-816) 
GAGAGGATCCGGCTGTCCAGAT 

GAGAGCGGCCGCTCAGGGGTCCTGGAG 
ERK5-T732A CACTGCCCTTTGGTGCGCCTGAGAACACAGG 
ERK5-T732E CCCCACTGCCCTTTGGCTCGCCTGAGAACACAGGG 

ERK5-4xAi 

CACTGCCCTTTGGTGCGCCTGAGAACACAGG 
CAAGCAGGGAGGCTGCGAGAGAGGCTGAATC 
CCTGTGTTCTCAGGCGCACCAAAGGGCAGTG 
GATTCAGCCTCTCTCGCAGCCTCCCTGCTTG 

ERK5-4xAii 
CAGCAAGCAGGGCGGCTGCGAGAGAGGCTGA 

CAGGATGGCCAGGCAGATGCAGCCTCTCT 
CACTGCCCTTTGGTGCGCCTGAGAACACAGG 

ERK5-4xE 

GTCAGCAAGCAGGGAGGCCTCGAGAGAGGCTGAATCTGC 
ATCAGCCACGCCCATGTCGAACTCCTGGTTTAAGAATTCCTCCAG 

CCCTGTGTTCTCAGGCGAGCCAAAGGGCAGTGGGG 
CCCCACTGCCCTTTGGCTCGCCTGAGAACACAGGG 

ERK5-4xEii 
CCCCACTGCCCTTTGGCTCGCCTGAGAACACAGGG 
CCAGTCAGCAAGCAGCTCGGCCTCGAGAGAGGCC 

TCATCTGCCTGGCCATCCTGTGGCCC 

ERK5-3xEi-T732A 

CACTGCCCTTTGGTGCGCCTGAGAACACAGG 
GTCAGCAAGCAGGGAGGCCTCGAGAGAGGCTGAATCTGC 

ATCAGCCACGCCCATGTCGAACTCCTGGTTTAAGAATTCCTCCAG 
CCCTGTGTTCTCAGGCGAGCCAAAGGGCAGTGGGG 

ERK5-3xEii-T732A 
CACTGCCCTTTGGTGCGCCTGAGAACACAGG 

CCAGTCAGCAAGCAGCTCGGCCTCGAGAGAGGCC 
TCATCTGCCTGGCCATCCTGTGGCCC 

ERK5-D200A-T732E 
CACGAGCCATACCAAAGGCACCAATCTTGAGCTCA 
CCCCACTGCCCTTTGGCTCGCCTGAGAACACAGGG 

ERK5-D200A-T732A CACGAGCCATACCAAAGGCACCAATCTTGAGCTCA 
CACTGCCCTTTGGTGCGCCTGAGAACACAGG 

4.2. Immunoblot Analysis 

Proteins were extracted from cells in radioimmunoprecipitation assay (RIPA) buffer (Sigma) 
containing EDTA-free protease inhibitor cocktail (Roche, Basel, Switzerland). Extracts (50 μg) were 
resolved by SDS-PAGE and electrophoretically transferred to an Immobilon-P membrane (Merck 
Millipore, West Lothian, UK). The membranes were saturated in 3% nonfat dry milk and probed 
overnight at 4 oC with a primary antibody (1:2000) to the Flag-epitope (M2, Sigma-Aldrich). Anti-β 
actin (1:2000, Sigma-Aldrich) and anti-vinculin (1:2000, Abcam, Cambridge, UK) antibodies were 
used to monitor protein loading. Immunocomplexes were detected by enhanced chemiluminescence 
with IgG coupled to horseradish peroxidase as the secondary antibody (GE Healthcare, Little 
Chalfont, UK).  

4.3. Luciferase Reporter Assays 

The MEF2 reporter luciferase plasmid [28] was transiently transfected into Flp-In HeLa cell lines. 
A pRL-Tk plasmid encoding Renilla luciferase was co-transfected to monitor transfection efficiency. 
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Aliquots of cell lysates were assayed for firefly and Renilla luciferase activities using the Dual-
luciferase reporter assay kit (Promega, Wisconsin, UK) on an Orion microplate luminometer.  

4.4. Immunofluorescence 

Flp-In HeLa cell lines cultured on glass coverslips for 72 h in presence of tetracycline were fixed 
in 4% paraformaldehyde for 20 min and permeabilized for 25 min with 0.1% Triton X-100 in PBS. 
After saturation with 1% BSA for 1 h, cells were incubated with the M2 antibody (1:200) for 1 h at 
room temperature. After 3 washes with PBS, the cells were exposed to a secondary antibody (1:1000) 
conjugated to Alexa-488 (ThermoFisher Scientific) in addition to Phalloidin (Sigma-Aldrich) for 1 h. 
Nuclei were stained with DAPI (ThermoFisher Scientific). Fluorescence images were viewed with a 
Z1 inverted Axio Observer microscope from ZEISS. Fluorescent intensity of nuclear and cytoplasmic 
signals was quantified using ImageJ software.  

4.5. Mass Spectrometry and Raw Data Analysis  

Proteins extracted in RIPA (10 mg) were precleared with an anti-mouse IgG (10 µg/mg; Sigma-
Aldrich) supplemented with Protein G-Sepharose beads (ThermoFisher Scientific) and inversion 
rotated for 5 h at 4 °C. After centrifugation at 1000× g for 5 min, cleared lysates were incubated with 
an anti-Flag M2 affinity gel (Sigma-Aldrich) (10 µg/mL) for 90 min at 4 °C. Immune complexes were 
washed three times with ice-cold lysis buffer supplemented with 500 nM NaCl, followed by two 
washes with 150 nM NaCl and analyzed by SDS-PAGE. The gel was then digested with trypsin, as 
previously described [29]. Digested samples were analyzed by LC-MS/MS using an UltiMate® 3000 
Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA, USA) coupled to a QE HF 
(ThermoFisher Scientific) mass spectrometer. Mobile phase A was 0.1% formic acid in water and 
mobile phase B was 0.1% formic acid in acetonitrile and the analytical column utilized was a 75 mm 
× 250 μm inner diameter, 1.7 µm CSH C18 (Waters). Specifically, purified samples were concentrated 
and desalted on C18 StagTips, as previously described [28] and transferred to a 5 µl loop before 
loading on to the column at a flow of 300 nL/min for 5 min at 5% B. The loop was subsequently taken 
out of line and the peptides separated using a gradient that went from 5% to 7% B and from 300 
nL/min to 200 nL/min in 1 min followed by a shallow gradient from 7% to 18% B in 64 min, then from 
18% to 27% B in 8 min and finally from 27% B to 60% B in 1 min. The column was washed at 60% B 
for 3 min before re-equilibration to 5% B in 1 min. At 85 min the flow was increased to 300 nL/min 
until the end of the run at 90 min. Mass spectrometry data was acquired in a data dependent manner 
for 90 min in positive mode. Peptides were selected for fragmentation automatically by data 
dependent analysis on a basis of the top 12 peptides with m/z between 300 to 1750 Th and a charge 
state of 2, 3 or 4 with a dynamic exclusion set at 15 s. The MS Resolution was set at 120,000 with an 
AGC target of 3e6 and a maximum fill time set at 20 ms. The MS2 Resolution was set to 30,000, with 
an AGC target of 2e5, a maximum fill time of 45 ms, isolation window of 1.3Th and a collision energy 
of 28. 

Raw data were analyzed with the MaxQuant software suite, version 1.5.6.5, with the integrated 
Andromeda search engine [30]. Proteins were identified by searching the HCD-MS/MS peak lists 
against a target/decoy version of the human Uniprot database, which consisted of the complete 
proteome sets and isoforms (2016 release) supplemented with commonly observed contaminants 
such as porcine trypsin and bovine serum proteins. Tandem mass spectra were initially matched with 
a mass tolerance of 7 ppm on precursor masses and 0.02 Da or 20 ppm for fragment ions. Cysteine 
carbamidomethylation was searched as a fixed modification. Protein N-acetylation, oxidized 
methionine and deamidation of asparagine and glutamine were searched as variable modifications. 
Label-free parameters were used as described [31]. False discovery rate was set to 0.01 for peptides, 
proteins and modification sites. Minimal peptide length was six amino acids. The dataset were 
filtered by posterior error probability to achieve a false discovery rate below 1% for peptides and 
proteins. Only peptides with Andromeda score >40 were included.  

4.6. Data Analysis  



Int. J. Mol. Sci. 2020, 21, 929 14 of 16 

 

At least two unique peptides and a protein-sequence coverage of 5% were required. Intensity 
values were log2 transformed and normalized using the function “normalizeQuantiles” included in 
the LIMMA package of Bioconductor in R ([32] and 
http://www.ncbi.nlm.nih.gov/pubmed/16646809). All values were centered to the mean. The 
software Perseus was used for integrating missing values with normal distribution and for 
hierarchical clustering using default options [33]. The overview of all the proteins in the three clusters 
was based on STRING database [34] and visualized in Cytoscape depending on the MCODE plug-in 
((https://cytoscape.org/). 

4.7. Statistical Analysis 

To compare values between multiple test groups we performed a one-way ANOVA followed 
by Tukey’s test. Data were analyzed using Prism software (GraphPad, San Diego, USA). The 
quantitative interactomics experiment was performed in triplicates. 

4.8. Data Availability 

The authors declare that all data supporting the findings of this study are available within the 
article and its supplementary information files or from the corresponding authors on reasonable 
request. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD014028. Reviewer 
account details: Project Name: A gatekeeper residue controls transcriptional activity of the 
extracellular signal-regulated protein kinase 5 (ERK5) through molecular interactions with the C-
terminal tail. Username: reviewer86943@ebi.ac.uk, Password: Oouljqxr. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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