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Abstract: By applying robust control the decision maker wants to make good decisions when 

his model is only a good approximation of the true one. Such decisions are said to be robust 

to model misspecification. In this paper it is shown that the application of the usual robust 

control framework in discrete time problems is associated with some interesting, if not 

unexpected, results. Results that have far reaching consequences when robust control is 

applied sequentially, say every year in fiscal policy or every quarter (month) in monetary 

policy. This is true when unstructured uncertainty à la Hansen and Sargent is used, both in 

the case of a “probabilistically sophisticated” and a non-“probabilistically sophisticated” 

decision maker, or when uncertainty is related to unknown structural parameters of the 

model. 
 

JEL classification: C61, C63, D81, D91, E52, E61 

 

Keywords: Linear quadratic tracking problem, optimal control, robust control, time-varying 

parameters. 

 

 

1. Introduction 

 

Robust control has been a very popular area of research in the last three decades and shows 

no sign of fatigue.1 In recent years a growing attention has been devoted to its continuous 

time version  (see, e.g., Hansen and Sargent, 2011, 2016). A characteristic “feature of most 

robust control theory”, observes Bernhard (2002, p. 19),  “is that the a priori information on 

                                                
* Dipt. Economia Politica e Statistica, Università di Siena, 53100 Siena, Italy. Tel.: +39-0577-232620; fax +39-
0577-232661. E-mail address: tucci@unisi.it (M.P. Tucci). 
1 See, e.g., Giannoni (2002, 2007), Hansen and Sargent (2001, 2003, 2007a, 2007b, 2010, 2016), Hansen et al. 
(1999, 2002), Onatski and Stock (2002), Rustem (1992, 1994, 1998), Rustem and Howe (2002) and Tetlow and 
von zur Muehlen (2001a,b). However the use of the minimax approach in control theory goes back to the 60’s 
as pointed out in Basar and Bernhard (1991, pp. 1-4). 
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the unknown model errors (or signals) is nonprobabilistic in nature, but rather is in terms of 

sets of possible realizations. Typically, though not always, the errors are bounded in some 

way. ... As a consequence, robust control aims at synthesizing control mechanisms that 

control in a satisfactory fashion (e.g., stabilize, or bound, an output) a family of models.” 

Then “standard control theory tells a decision maker how to make optimal decisions when his 

model is correct (whereas) robust control theory tells him how to make good decisions when 

his model approximates a correct one” (Hansen and Sargent, 2007a, p. 25). In other words, by 

applying robust control the decision maker makes good decisions when it is statistically 

difficult to distinguish between his approximating model and the correct one using a time 

series of moderate size. “Such decisions are said to be robust to misspecification of the 

approximating model” (Hansen and Sargent, 2007a, p. 27).  

 

Concerns about the “robustness” of the standard formulation of robust control have 

been floating around for some time. Sims (2001, p. 52) observes that “once one understands 

the appropriate role for this tool (i.e. robust control or maxmin expected utility), it should be 

apparent that, whenever possible, its results should be compared to more direct approaches to 

assessing prior beliefs.”  Then he continues, “the results may imply prior beliefs that 

obviously make no sense … (or) they may … focus the minimaxing on a narrow, convenient, 

uncontroversial range of deviations from a central model.” In the latter case “the danger is 

that one will be misled by the rhetoric of robustness to devoting less attention than one should 

to technically inconvenient, controversial deviations from the central model.”2  

 

Tucci (2006, p. 538) argues, “the true model in Hansen and Sargent (2007a) … is 

observationally equivalent to a model with a time-varying intercept.” Then he goes on 

showing that, when the same “malevolent” shock is used in both procedures, the robust 

control for a linear system with an objective functional having desired paths for the states and 

controls set to zero applied by a “probabilistically sophisticated” decision maker is identical 

to the optimal control for a linear system with an intercept following a “Return to Normality” 

model and the same objective functional only when the transition matrix in the law of motion 

of the parameters is zero.3  He concludes that this robust control is valid only when “today’s 

malevolent shock is linearly uncorrelated with tomorrow’s malevolent” shock” (p. 553). 

These results are shown to be valid, in a more general setting with arbitrary desired paths, 

                                                
2 See also Hansen and Sargent (2007a, pp. 14−17). 
3 By probabilistic sophistication is meant that “in comparing utility processes, all that matters are the induced 
distortions under the approximating model” (Hansen and Sargent, 2007a, p. 406). 
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both for a “probabilistically sophisticated” and a non-“probabilistically sophisticated” 

decision maker and in the presence of a structural model with uncertain parameters in Tucci 

(2009). 

 

Indeed, it may be pointed out that “the fact that the transition matrix does not appear 

in the relevant expression in Tucci (2006, 2009) does not mean that the decision maker does 

not contemplate very persistent model misspecification shocks.” For instance, the robust 

control in the worst case may not depend upon on transition matrix simply because the 

persistence of the misspecification shock does not affect the worst case! Again the robust 

decision maker accounts for the possible persistence of the misspecification shocks, and that 

persistence may affect the evolution of the control variables in other equilibria, but it happens 

that transition matrix does not play a role in the worst case equilibrium. Moreover, as 

commonly understood, “the robust control choice accounts for all possible kinds of 

persistence of malevolent shocks, which again may take a much more general form than the 

VAR(1) assumed in Tucci (2006, 2009). It just happens that in the worst-case 

misspecification shocks are not persistent. While for many possible ‘models’, these 

misspecification shocks may be very persistent, such models happen to result in lower welfare 

losses than the worst-case model.” To shed some light on these issues, this paper will further 

investigate the characteristics of the most common specification of robust control in discrete 

time in Economics by explicitly considering the welfare loss associated with the various 

controls. 

 

The remainder of the paper is organized as follows. Section 2 reviews the standard 

robust control problem with unstructured uncertainty à la Hansen and Sargent, i.e. a 

nonparametric set of additive mean-distorting model perturbations. In Section 3 the linear 

quadratic tracking control problem where the system equations have a time-varying intercept 

following a ‘Return to Normality’ model is introduced and the solution compared with that in 

Section 2. Section 4 reports some numerical results obtained using a ‘robustized’ version of 

MacRae (1972) problem. Then the permanent income model, a popular model in the robust 

control literature (see, e.g., Hansen and Sargent 2001, 2003, 2007a; Hansen et al. 1999, 2002) 

is considered (Section 5). The main conclusions are summarized in Section 5. 

 

 

2. Robust control à la Hansen and Sargent in discrete time 
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Hansen and Sargent (2007a, p. 140) consider a decision maker “who has a unique explicitly 

specified approximating model but concedes that the data might actually be generated by an 

unknown member of a set of models that surround the approximating model.”4 Then the 

linear system 

 

    yt+1= Ayt + But + Cε t+1     for t = 0, ..., ∞,  (2.1) 
 

with   yt  the n×1 vector of state variables at time t,   ut  the m×1 vector of control variables and 

  ε t+1  an l×1 identically and independently distributed (iid) Gaussian vector process with mean 

zero and an identity contemporaneous covariance matrix, is viewed as an approximation to 

the true unknown model 

  

    yt+1= Ayt + But + C(ε t+1 +ω t+1)    for t = 0, ..., ∞.  (2.2) 
 

The matrices of coefficients A, B and C are assumed known and   y0  given. 5 

 

In Equation (2.2) the vector   ω t+1  denotes an “unknown” l×1 “process that can feed 

back in a possibly nonlinear way on the history of y, (i.e.)    ω t+1 = gt (yt ,yt−1,  ...)  where    {gt}  

is a sequence of measurable functions” (Hansen and Sargent, 2007a, pp. 26-27). It is 

introduced because the “iid random process ...   (ε t+1)  can represent only a very limited class 

of approximation errors and in particular cannot depict such examples of misspecified 

dynamics as are represented in models with nonlinear and time-dependent feedback of    yt+1  

on past states” (p. 26).6 To express the idea that (2.1) is a good approximation of (2.2) the ω’s 

are restrained by  

 

                                                
4  See Hansen and Sargent (2007a, Ch. 2 and 7) for the complete discussion of robust control in the time 
domain. 
5 Matrix C is sometimes called the “volatility matrix” because, given the assumptions on the ε’s, it “determines 
the covariance matrix C′C of random shocks impinging on the system” (Hansen and Sargent, 2007a, p. 29). It is 
furthermore assumed, see e.g. page 140 in the same reference, that the pair (  β

1/ 2A,B ) is stabilizable. 
6 When Equation (2.2) “generates the data it is as though the errors in ... (2.1) were conditionally distributed as 

    N (ω t+1,I l )  rather than as     N (0,I l )  ...  (so) we capture the idea that the approximating model is misspecified 
by allowing the conditional mean of the shock vector in the model that actually generates the data to feedback 
arbitrarily on the history of the state” (Hansen and Sargent, 2007a, pp. 27). 
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E0 β t+1 ′ω t+1ω t+1

t=0

∞

∑⎡
⎣
⎢

⎤

⎦
⎥ ≤ η0     with 0 < β < 1  (2.3) 

 

where   E0  denotes mathematical expectation evaluated with respect to model (2.2) and 

conditioned on   y0  and  η0  measures the set of models surrounding the approximating model.7  

 

“The decision maker’s distrust of his model ... (2.1) makes him want good decisions 

over a set of models ... (2.2) satisfying ... (2.3)” write Hansen and Sargent (2007a, p. 27). The 

solution can be found solving the multiplier robust control problem formalized as8  

 

 
   
max

u
 min

ω
 − E0 β t

t=0

∞

∑ r(yt ,ut ) −  θβ ′ω t+1ω t+1
⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

,    (2.4) 

 

where    r(yt ,ut )  is the one-period loss functional, subject to (2.2) with θ,  0 < θ* < θ ≤∞, a 

penalty parameter restraining the minimizing choice of the   {ω t+1}  sequence and  θ
*  “a lower 

bound on θ that is required to keep the objective ... (2.4) convex in ... (  ω t+1 ) and concave in 

  ut ” (p. 161).9 This problem can be reinterpreted as a two-player zero-sum game where one 

player is the decision maker maximizing the objective functional by choosing the sequence 

for u and the other player is a malevolent nature choosing a feedback rule for a model-

misspecification process ω  to minimize the same criterion functional.10 For this reason, the 

multiplier robust control problem is also referred to as the multiplier game.11  

 

The Riccati equation for problem (2.4) “is the Riccati equation associated with an 

ordinary optimal linear regulator problem (also known as the linear quadratic control 

problem) with controls    ( ′ut   ′ω t+1 ′)  and penalty matrix on those controls appearing in the 

                                                
7 See Hansen and Sargent (2007a, p. 11). 
8 Alternatively the constraint robust control problem, defined as extremize    −E0[Σt=0

∞ β t r(yt ,ut )]  subject to 

(2.2)-(2.3), can be solved. When  η0
 and θ are appropriately related the two “games have equivalent outcomes.” 

See p. 32 and Chapters 6−8 in Hansen and Sargent (2007a) for details.  
9 As noted in Hansen and Sargent (2007a, p. 40) “this lower bound is associated with the largest set of 
alternative models, as measured by entropy, against which it is feasible to seek a robust rule ... This cutoff value 
of θ ... is affiliated with a rule that is robust to the biggest allowable set of misspecifications.” See also Ch. 7 in 
the same reference and Hansen and Sargent (2001). 
10 See Hansen and Sargent (2007a, p. 35). 
11 Analogously, the constraint robust control problem is sometimes referred to as the constraint game. 
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criterion functional of diag(  R,    −βθI l )” (Hansen and Sargent, 2007a, p. 170).12 Then, when 

the one-period loss functional is13 

 

   �

r(yt ,ut ) =

yt − yt
d
t( )′ Q yt − yt

d( ) + 2 yt − yt
d( )′ W ut − ut

d( ) + ut − ut
d( )′ R ut − ut

d( )
 (2.5) 

 

with Q a positive semi-definite matrix, R a positive definite matrix, W an n×m array,   yt
d  and 

  ut
d  the desired state and control vectors, respectively, the robust control rule is derived by 

extremizing, i.e. maximizing with respect to   ut  and minimizing with respect to ω t+1 , the 

objective functional 

  

 
    
−E0 β tr(yt , ut )

t=0

∞

∑⎡
⎣
⎢

⎤

⎦
⎥         (2.6) 

 

with 

    

r(yt , ut ) =

yt − yt
d( )′ Q yt − yt

d( ) + 2 yt − yt
d( )′ W ut − ut

d( ) + ut − ut
d( )′ R ut − ut

d( )
 (2.7) 

 
subject to  

 

     yt+1 = Ayt + B ut + Cε t+1     for t = 0, ..., ∞  (2.8) 
 

where 

 

   

R =
R O
O −βθI l

⎡

⎣
⎢

⎤

⎦
⎥ , 

    

!ut =
ut

ω t+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ,  !B = B C⎡
⎣

⎤
⎦ ,  !ud

t =
ut

d

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (2.9) 

 

and    
W = [W O] with O and 0 null arrays of appropriate dimension.  

                                                
12 This is due to the fact that the “Riccati equation for the optimal linear regulator emerges from first-order 
conditions alone, and that the first order conditions for (the max-min problem (2.4) subject to (2.2)) match those 
for an ordinary, i.e. non-robust, optimal linear regulator problem with joint control process {ut  , ω t+1 }” 
(Hansen and Sargent, 2007a, p. 43). 
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Setting ε t+1 = 0 and writing the optimal value of (2.6) as    − ′ytPtyt − 2 ′ytpt , 14 the 

Bellman equation looks like15 

 

    

− ′ytPtyt − 2 ′ytpt = ext
u
− ′ytQtyt
⎡⎣ + ′utR tut − βθ ′ω t+1ω t+1 + 2 ′ytWtut + 2 ′ytqt

+2 ′utrt + ′yt+1Pt+1yt+1 + 2 ′yt+1pt+1⎤⎦
 (2.10) 

 

with    Pt+1 = βPt ,   Qt = β tQ ,    Wt = β tW ,    R t = β tR ,    qt = −(  Qtyt
d + Wtut

d )  and     rt = −(R tut
d   

   + ′Wtyt
d ) .16 Then expressing the right-hand side of (2.10) only in terms of yt  and    ut  and 

extremizing it yields the optimal control for the decision maker 

 

   
ut = − R t + B′Pt+1B( )−1

B′Pt+1A + Wt
′( )yt + B′Pt+1Cω t+1 + B′pt+1 + rt

⎡
⎣⎢

⎤
⎦⎥

 (2.11) 

 

and the optimal control for the malevolent nature 

 

    ω t+1 = (βθI l − C′Pt+1C)−1(C′Pt+1Ayt + C′Pt+1But + C′pt+1).    (2.12) 
 

It follows that the θ-constrained worst-case controls are17 

 

   
ut = − R t + B′Pt+1

* B( )−1
B′Pt+1

* A + ′Wt( )yt + B′pt+1
* + rt

⎡
⎣

⎤
⎦    (2.13) 

 

and18 

   

ω t+1 = βθI l − C′Pt+1C( )−1
C′Pt+1 A − B R t + B′Pt+1

* B( )−1
B′Pt+1

* A + ′Wt( )⎡
⎣⎢

⎤
⎦⎥

yt{
−B R t + B′Pt+1

* B( )−1
B′pt+1

* + rt( ) + Pt+1
−1pt+1}

(2.14) 

 

                                                                                                                                                  
13 In Hansen and Sargent (2007a, Ch. 2 and 7) the desired state and control vectors and W are null arrays. 
14 Using the deterministic counterpart to (2.6) and (2.8) allows to simplify some formulas by dropping constants 
from the value function without affecting the formulas for the decision rules (Hansen and Sargent, 2007a, p. 33). 
15 The constant term appearing on the right-hand side and on the left-hand side of the equation have been dropped 
because they do not affect the solution of the optimization problem. See, e.g., Eqt. (2.5.3) in Hansen and Sargent 
(2007a, Ch. 2). 
16 When the desired paths for the states and controls are set to 0,    pt = qt = rt = 0 .  
17 See, e.g., Eqs. (7.C.18)−(7.C.19) in Hansen and Sargent (2007a, p. 169).  
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with19 

 

 
   
Pt+1

* =  In + Pt+1C(βθI l −  C′Pt+1C)−1C′⎡⎣ ⎤⎦Pt+1      (2.15a) 

 
   
pt+1

* =  In + Pt+1C(βθI l −  C′Pt+1C)−1C′⎡⎣ ⎤⎦pt+1 .     (2.15b) 
 
The “robust” Riccati arrays    Pt+1

*  and    pt+1
*  are always greater than, or equal to, Pt+1  and    pt+1,  

respectively, because it is assumed that, in the “admissible” region, the parameter θ is large 

enough to make    (βθI l −  C′Pt+1C)  positive definite.20 They are equal when θ =  ∞.21  

 

 

3. Optimal control of a linear system with time-varying parameters 

 

Tucci (2006, pp. 538-539) argues that the model used by a “probabilistically sophisticated’ 

decision maker to represent dynamic misspecification, i.e. Eqt. (2.2), is observationally 

equivalent to a model with a time-varying intercept. When this intercept is restricted to follow 

a ‘Return to Normality’ or ‘mean reverting’ model,22 and the symbols are as in Section 2, the 

latter takes the form 

  

    yt+1 = A1yt + But + Cα t+1     for t = 0, ..., ∞,  (3.1) 
 

with 

 

    α t+1 = a + νt+1       for t = 0, ..., ∞,   (3.2a) 

   νt+1 = Φνt + ε t+1      for t = 0, ..., ∞,   (3.2b) 

                                                                                                                                                  
18 See, e.g., Eqt. (7.C.9) in Hansen and Sargent (2007a, p. 168). 
19 See, e.g., Eqs. (2.5.6) on p. 35 and (7.C.10) on p. 168 in Hansen and Sargent (2007a) where the quantity 

   β
−1Pt+1

*  is denoted by D(P).   
20 See, e.g., Theorem 7.6.1 (assumption v) in Hansen and Sargent (2007a, p. 150). The parameter θ  is closely 
related to the risk-sensitivity parameter, say σ , appearing in intertemporal preferences obtained recursively. 
Namely, it can be interpreted as minus the inverse of σ . See, e.g., Hansen and Sargent (2007a, pp. 40−41, 45 
and 225), Hansen et al. (1999) and the references therein cited. 
21 The first order conditions for problem (2.10) subject to (2.8) imply the Riccati equations 

    
Pt = Qt + ′A Pt+1

* A − ′A Pt+1
* B + Wt( ) R t + B′Pt+1

* B( )−1
′A Pt+1

* B + Wt( )′  

 
   
pt = qt + ′A pt+1

* − ′A Pt+1
* B + Wt( ) ′B Pt+1

* B + R t( )−1
′B pt+1

* + rt( )  

(Hansen and Sargent, 2007a, p. 11). 
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where a is the unconditional mean of   α t +1,  Φ  the l×l stationary transition matrix and   ε t+1  a 

Gaussian iid vector process with mean zero and an identity covariance matrix. Matrix   A1  is 

such that    A1yt + Ca  in (3.1) is equal to Ayt  in (2.2).23 In this case, a decision maker 

insensitive to robustness but wanting to control a system with a time-varying intercept can 

find the set of controls ut which maximizes24  

 

J =
   
E0 − Lt yt ,  ut( )

t=0

∞

∑⎡

⎣
⎢

⎤

⎦
⎥        (3.3) 

 

subject to (3.1)-(3.2) using the approach discussed in Kendrick (1981) and Tucci (2004). 

When the same objective functional used by the robust regulator is optimized,  Lt  is simply 

the one-period loss functional in (2.5) times  β
t .  

 

 This control problem can be solved treating the stochastic parameters as additional 

state variables. When the hyper-structural parameters a and Φ  are known, the original 

problem is restated in terms of an augmented state vector zt as: find the controls ut 

maximizing25  

 

   
J = E0 − Lt zt ,  ut( )

t=0

∞

∑⎡

⎣
⎢

⎤

⎦
⎥        (3.4) 

   

subject to26 

 

    zt+1 = f (zt ,ut ) + ε t+1
*      for t = 0, ..., ∞,   (3.5) 

 

                                                                                                                                                  
22  See, e.g., Harvey (1981). 
23  When a is a null vector,   A1≡ A. If a is not zero,   A1  is identical to A except for a column of 0’s associated with 
the intercept and Ca is identical to the column of A associated with the intercept. It is apparent that, when 

  ω t+1 ≡ Φνt , the robust control formulation and model (3.1)-(3.2) coincide. 
24 Kendrick (1981, Ch. 10) analyzes the case where a = 0 and the hyperstructural parameter Φ  is known. Tucci 
(2004) deals with the case where a and Φ  are estimated. 
25 See Kendrick (1981, Ch. 10) or Tucci (2004, Ch. 2). 
26 When the error term is assumed iid it is equivalent to write the system equations as in (3.5) or as in Tucci 
(2004, Ch. 2). 
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with27     

 

   
zt =

yt

α t+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, f zt , ut( ) = A1yt + But + Cα t+1

Φα t+1 + I l − Φ( )a
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  and  ε t
* =

0
ε t

⎡

⎣
⎢

⎤

⎦
⎥.   (3.6) 

 

and the arrays zt and f(zt, ut) having dimension n+l, i.e. the number of original states plus the 

number of stochastic parameters. For this ‘augmented’ control problem the L’s in Eqt. (3.4) 

are defined as 
 

 

   

Lt zt ,ut( ) =
zt − zt

d( )′ Qt
* zt − zt

d( ) + 2 zt − zt
d( )′ Wt

* ut − ut
d( ) + ut − ut

d( )′ R t ut − ut
d( )

 (3.7)  

 

with    Qt
* = β tQ* ,    Q

* = diag (   Q,  − βθI l ),    Wt
* = β t[ ′W ′O ′]  and   R t = β tR .  

 

 By replacing A1yt + Cα t+1 with Ayt + Cν t+1 in (3.6), defining   νt+1 = ω t+1
c + ε t+1  with 

  ω t+1
c ≡ Φνt  and using the deterministic counterpart to (3.4)-(3.7),28 namely 

 

    zt+1 = A*zt + B*ut      for t = 0, ..., ∞,   (3.8) 
 

with 

 

   
zt =

yt

ω t+1
c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

  
A* =

A C
O Φ
⎡

⎣
⎢

⎤

⎦
⎥   and  B* =

B
O
⎡

⎣
⎢

⎤

⎦
⎥  ,     (3.9) 

 

the optimal value of (3.4) can be written as    − ′ztK tzt − 2 ′ztk t  and it satisfies the Bellman  

equation29 

 

                                                
27 Equations (3.2) are rewritten as α t – a = Φ(α t-1 –a) + ε t in (3.6). In Tucci (2006, p. 540), the symbol  α t  should 

be replaced by   α t+1 and  ω t  by   ω t+1 . 
28 These preparatory steps are needed to keep the following discussion as close as possible to that carried out in 
section 2 and 3. 
29 As in the previous sections, the constant term appearing on the right-hand side and on the left-hand side of the 
Bellman equation have been dropped because they do not affect the solution of the optimization problem. 
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− ′ztK tzt − 2 ′ztk t = max
ut

− zt − zt
*( )′ Qt

* zt − zt
*( )⎡

⎣
⎢ + ut − ut

*( )′ R t ut − ut
*( )

+2 zt − zt
*( )′ Wt

* ut − ut
*( ) + ′zt+1K t+1zt+1 + 2 ′zt+1k t+1

⎤
⎦
⎥

 (3.10) 

 

with    K t+1 = βK t . Expressing the right-hand side of (3.10) only in terms of   zt  and   ut  and 

maximizing it yields the optimal control in the presence of time-varying intercept (or tvp-

control) , i.e.30  

 

 

   

ut = − R t + ′B K11,t+1B( )−1

× ′B K11,t+1A + ′Wt( )yt
⎡
⎣ + ′B K11,t+1C + K12,t+1Φ( )ω t+1

c + ′B k1,t+1 + rt( )⎤⎦
 (3.11) 

 

with K11 and K12 denoting the n×n North-West block and the n×l North-East block, 

respectively, of the Riccati matrix31  

 

 

   

K t = Qt
* + A*′K t+1A

*

− B*′K t+1A
* + Wt

*( )′ R t + B*′K t+1B
*( )−1

B*′K t+1A
* + Wt

*( )
   (3.12) 

 

and    
k1,t , containing the first n elements of   k t , defined as  

 

 
   
k1,t = qt + A′k1,t+1 − (B′K11,t+1A + ′Wt )′(R t + B′K11,t+1B)−1(B′k1,t+1 + rt ) .  (3.13) 

 
Then the optimal control (3.11) is independent of the parameter θ which enters only the l×l 
South-East block of K, namely    

K 22,t . 
 

 When   ω t+1
c ≡ ω t+1 , i.e. the same shock is used to determine both robust control and 

tvp-control, the latter is 

 

                                                
30 See also, e.g., Kendrick (1981, Ch. 2 and 10) and Tucci (2004, Ch. 2).  
31 See Tucci (2004, pp. 26−27). It should be stressed that     

K12,t = (A′K11,t+1C + A′K12,t+1Φ) − (B′K11,t+1A  

   
+ ′Wt )′(R t + B′K11,t+1B)−1B′(K11,t+1C + K12,t+1Φ),  then even when the terminal condition for   K12  is a null 

matrix, this array will not vanish as long as   K11  is non-zero. Only the last control, i.e. that applied at the ‘final 
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ut =

−(R t + B′K11,t+1
+ B)−1[(B′K11,t+1

+ A + Wt ′)yt + B′K11,t+1
+ K11,t+1

−1 k1,t+1 + rt ]
 (3.14) 

 

with  

 

 
   
K11,t+1

+ = [In + (K11,t+1C + K12,t+1Φ)(βθI l − C′Pt+1C)−1C′]K11,t+1.   (3.15) 
 

The quantity 
   
K11,t+1

+  collapses to the ‘robust’ Riccati matrix    Pt+1
*  when 

   
Pt+1 = K11,t+1  and Φ  is 

a null matrix because the array    
K12,t+1  is generally different from zero. This means that the 

control applied by the decision maker who wants to be “robust to misspecifications of the 

approximating model” implicitly assumes that the ω’s in (2.2) are serially uncorrelated. 

Alternatively put, given arbitrary desired paths for the states and controls, robust control is 

“robust” only when today’s malevolent shock is linearly uncorrelated with tomorrow’s 

malevolent shock.  

 

Before leaving this section it is worth it to emphasize two things. First of all the 

results in (3.14)-(3.15) do not imply that robust control is implicitly based on a very 

specialized type of time-varying parameter model or that one of the two approaches is better 

than the other. Robust control and tvp-control represent two alternative ways of dealing with 

the problem of not knowing the true model ‘we’ want to control and are generally 

characterized by different solutions. In general, when the same objective functional and 

terminal conditions are used, the main difference is due the fact that the former is determined 

assuming for   ω t+1  the worst-case value, whereas the latter is computed using the expected 

conditional mean of   νt+1  and taking into account its relationship with next period conditional 

mean. As a side effect even the Riccati matrices common to the two procedures, named P and 

p in the robust control case and   K11  and   k11  in the tvp-case, are different. The use of 

identical Riccati matrices and of an identical shock in the two alternative approaches in this 

section, i.e. setting    
K11,t+1 ≡ Pt+1 ,    

k11,t+1 ≡ pt+1  and   ω t+1
c ≡ ω t+1  or   

ω t+1
c ≡ [ ′ω1,t+1 ′ω 2,t+1 ′] , has 

the sole purpose of investigating some of the implicit assumptions of these procedures.  

 

 

                                                                                                                                                  
period minus 1’ of the planning horizon, will be independent of the transition matrix characterizing the time-
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4. Some numerical results 

 

In this section some numerical results are presented.  The classical MacRae (1972) problem 

with one state, one control and two periods, extensively used in the control literature, has 

been ‘robustized’ in Tucci (2006) to compare robust control with tvp-control. The robust 

version of this problem may be restated as: extremize, i.e. maximize with respect to ut  and 

minimize with respect to   ω t+1 , the objective functional 

 

 
  
J = −  E0  (qt yt

2 + wt−1yt−1ut−1 + rt−1ut−1
2 )

t=1

2

∑ −  θ β tω t
2

t=1

2

∑⎡

⎣
⎢

⎤

⎦
⎥    (4.1) 

 

subject to  

 

   
yt+1= ayt+ but+ c εt+1+ ω t+1( )   for t = 0, 1,   

 (4.2) 

 

with yt  and ut  the state and control variable, respectively, qt  and rt  the penalty weight on the 

state and control variable and their desired path, respectively,  wt the cross penalty, θ the 

robustness parameter, β the discount factor,   εt+1  an iid random variable with mean zero and 

variance 1,   ω t+1  the misspecification process and a, b and c the system parameters. The 

system parameters are assumed perfectly known and in addition   ε t+1 = 0 ,   qt = β tq0 ,   rt = β tr0 , 

  wt = β t w0 ,  β = .99  and  θ = 100 . 

 

 When the parameters are32  

 

 a = .7, b = −.5, c = a.4, q0  = 1, r0  = 1 and   w0 = .5     (4.3) 

 
the control selected by the controller interpreting   cω t+1  as a time-varying intercept following 

a ‘return to normality’ or ‘mean reverting’ model coincides with robust control, 

  u0 = 0.10839 , when the transition parameter φ in (3.2b) is equal to 0. Alternatively the 

                                                                                                                                                  
varying intercept.  
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former is higher (lower) than the latter when the malevolent shocks are assumed positively 

(negatively) correlated. For instance for  φ = 0.1 tvp-control increases to 0.11245. This is 

shown in Fig. 4.1 where the solid line refers to tvp-control and the dashed line to robust 

control. 

 

 
Figure 4.1: Control at time zero determined assuming various φ’s for the ‘return to normality’ model of 
the time-varying intercept (solid line) vs. robust control (dashed line).  
 

The expected costs associated with these controls, given the malevolent shocks determined 

by standard robust control theory (i.e. those corresponding to robust controls), are shown in 

Figue 4.2. In this case nature ‘doesn’t care’ about the actual control applied by the regulator 

in the sense that the malevolent shocks are insensitive to the φ used by the regulator assuming 

a time-varying intercept.33 It is apparent that the tvp control derived assuming  φ = 0 , i.e 

standard robust control, is associated with the maximum of the objective functional. 

 

                                                                                                                                                  
32 This is the parameter set originally used in MacRae (1972).  
33  These are the malevolent shocks associated with the robust control, i.e.  ω1

= 0.02974  and  ω 2
= 0.01279 . 
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Figure 4.2: Expected cost associated with controls at time zero determined assuming various φ’s for the 
‘return to normality’ model of the time-varying intercept (solid line) vs. expected cost associated with 
standard robust control (dashed line).  
 

When the usual malevolent shock generated by the standard robust control framework is 

contrasted with an hypothetically correlated malevolent control defined as34 

  ω t+1
H = ρω t +ω t+1  

 

with  ρ <1  and the shocks ω t  and   ω t+1  as in (2.12), some interesting results emerge. As 

reported in Fig. 4.3 the objective functional associated with the latter reaches its minimum 

for ρ = 0  at a cost of −.9065. 

                                                
34 In a problem with a longer time horizon this malevolent control may be defined as   ω t+1

H = ρω t
H + ω t+1  with 

  ω t+1 as in (2.12) and  ω1
H ≡ ω1 ,  i.e. the usual first period robust control. 
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Figure 4.3: Expected cost associated with the control at time zero determined assuming various ρ’s for 
the hypothetically correlated malevolent control (solid line) vs. expected cost associated with standard 
robust control (dashed line).  
 

Therefore both players optimize their objective functional by treating today’s shock (either 

malevolent or not) as linearly uncorrelated to tomorrow’s shock. This means that, by 

construction, the most common robust control framework implies that the game at time t is 

linearly uncorrelated with the game at time t+1.35  

 

These results are not confined to the simple ‘robustized’ version of the classical MacRae 

(1972) problem. Indeed, exploiting Tucci’s (2009) results, they apply when unstructured 

uncertainty à la Hansen and Sargent is used, both in the case of a “probabilistically 

sophisticated” and a non-“probabilistically sophisticated” decision maker, or when 

uncertainty is related to unknown structural parameters of the model. For instance when the 

permanent income model is used, with the parameter estimates in Hansen et al. (2002),36 both 

tvp-control and robust control are equal −51.1 when  φ = 0  but tvp-control is −57.8 when 

 φ = −.1, −64.5 when  φ = −.2  and so on, as reported in Fig. 4.4.37 

 

                                                
35 It is understood that t does not necessarily stand for calendar year. It may indicate a U.S. administration or a 
central banker term. 
36 See, e.g., Hansen and Sargent (2001, 2003, 2007a), Hansen et al. (1999, 2002) or Tucci (2006, 2009) for a 
description of the model. 
37 See Tucci (2009) for details. 
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Figure 4.4: Control at time zero determined assuming various φ’s for the ‘return to normality’ model of 
the time-varying intercept (solid line) vs. robust control (dashed line).  
 

Again, the value of the objective functional associated with tvp-control is exactly the same as 

that for robust control, i.e. 11434, when the former uses the transition parameter  φ = 0  in 

(3.2b) and decreases to  10874 for  φ = −.1,  9193 for  φ = −.2  and so on (Fig. 4.5). 

 

  
Figure 4.5: Expected cost associated with controls at time zero determined assuming various φ’s for the 
‘return to normality’ model of the time-varying intercept (solid line) vs. expected cost associated with 
standard robust control (dashed line).  
 

As in the ‘robustized’ MacRae problem, the hypothetically correlated malevolent control 

attains its minimum when  ρ = 0  at a cost of 11434 (Fig. 4.6). 
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Figure 4.6: Expected cost associated with the control at time zero determined assuming various ρ’s for 
the hypothetically correlated malevolent control (solid line) vs. expected cost associated with standard 
robust control (dashed line).  
 

Even in this problem, widely used in robust control literature, both players (the controller and 

malevolent nature) optimize their objective functional by treating today’s shock (either 

malevolent or not) as linearly uncorrelated to tomorrow’s shock. 
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5. Conclusion  

 

Tucci (2006) argues that, unless some prior information is available, the true model in a 

robust control setting à la Hansen and Sargent is observationally equivalent to a model with a 

time-varying intercept. Then he shows that, when the same “malevolent shock” is used in 

both procedures, the robust control for a linear system with an objective functional having 

desired paths for the states and controls set to zero applied by a “probabilistically 

sophisticated” decision maker is identical to the optimal control for a linear system with an 

intercept following a ‘Return to Normality’ model and the same objective functional only 

when the transition matrix in the law of motion of the parameters is zero.  

 

By explicitly taking into account the welfare loss associated with the various controls, this 

paper shows that the application of the usual robust control framework in discrete time 

problems implies that both players (the controller and malevolent nature) optimize their 

objective functional by treating today’s shock (either malevolent or not) as linearly 

uncorrelated to tomorrow’s shock. Therefore, by construction, the most common robust 

control framework implies that the game at time t is linearly uncorrelated with the game at 

time t+1. This is true not only when unstructured uncertainty à la Hansen and Sargent is used 

in the case of a “probabilistically sophisticated” decision maker but also, as shown in Tucci 

(2009), when the decision maker is  non-“probabilistically sophisticated” or uncertainty is 

related to unknown structural parameters of the model as in Giannoni (2002, 2007). 
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