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We introduce a model for elastoplasticity at finite strains coupled with damage. The

internal energy of the deformed elastoplastic body depends on the deformation, the

plastic strain, and the unidirectional isotropic damage. The main novelty is a dissipa-

tion distance allowing the description of coupled dissipative behavior of damage and

plastic strain. Moving from time-discretization, we prove the existence of energetic

solutions to the quasistatic evolution problem.
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1 INTRODUCTION

Failure in ductile materials, such as metals or polymers, proceeds from the initiation of micro-defects, followed by their diffuse
growth accompanied by large irreversible deformations, up to the formation of localized macroscopic cracks. Altogether, these
phenomena constitute ductile fracture, e.g., [23] or [32, Section 1.1.3], and are of primary concern in predictive modeling of
forming processes in industrial practice.

Continuum-based models for ductile fracture must involve two dissipative mechanisms: damage and plasticity; see, e.g., [7]
for an overview. Damage accounts for the stiffness reduction due to initiation, growth, and coalescence of defects, e.g., [32, Chap-
ter 7], whereas plasticity quantifies the development of permanent strains within the material, e.g., [32, Chapter 7]. Moreover,
the two mechanisms interact, resulting in the need for coupled damage-plasticity models, e.g., [32, Section 7.4.1].

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
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In what follows, we adopt the format of generalized standard materials[28] and assume that the material behavior is governed
by a stored energy density and a dissipation potential. Under small strains, the first local energy-based model for coupled
damage-plasticity was introduced by JU.[29] Later on, ALESSI et al.[2–4] developed its non-local extension by including gradients
of a damage variable into the stored energy, in the spirit of variational models for regularized brittle fracture and gradient damage
developed in the mathematical, e.g., [9,10,24,40] and engineering, e.g., [22,33,44,45] literature. Such enrichment introduces
an additional length scale into the energy functional to characterize the regions to which damage localizes; see also [1] for an
overview and comparison of available formulations. Very recently, this class of models has been extended to a finite-strain
regime independently by AMBATI et al.,[5] BORDEN et al.,[8] and MIEHE et al.[35] The last formulation involves additional
regularization with gradients of plastic strains to control the localization of permanent strains, too. We invite an interested
Reader to [5,8,35] for illustration of predictive power of these models, including their experimental validation.

Apart from providing a convenient approach to constitutive modeling, the framework of generalized standard materials nat-
urally leads to the notion of energetic solutions – a solution concept for rate-independent problems developed by MIELKE and
co-workers[38,41] that characterizes the evolution of state variables by conditions of global stability and energy conservation. The
existence of an energetic solution for small-strain damage-plastic models has recently been shown by CRISMALE,[13] who further
extended his result to gradient plasticity coupled with damage[14] (see also [15,16]). However, existence results for finite-strain
models are currently lacking, although finite-strain damage[40] and gradient plasticity[34,36,37,39,42] were successfully addressed
within the energetic solution concept.

In the current work, we prove the existence of an energetic solution to models of incomplete damage coupled with gradient
plasticity at finite strains, under structural assumptions that comply with contemporary engineering models.[1] More specifically,
we consider an elastoplastic body Ω ⊂ ℝ𝑑 subjected to a deformation 𝜑 ∶ Ω → ℝ𝑑 . In nonlinear plasticity it is commonly
assumed that the deformation gradient ∇𝜑 complies for the multiplicative decomposition ∇𝜑 = 𝐹𝑃 where 𝐹 ∶ Ω → ℝ𝑑×𝑑

and 𝑃 ∶ Ω → 𝑆𝐿(𝑑) stand for the elastic and plastic strains. Moreover, we introduce an internal scalar variable 𝑧 ∶ Ω → [0, 1]
describing the damage of the medium, where the value 𝑧(𝑥) = 1 corresponds to an undamaged status of Ω at 𝑥, while values
close to zero mean that the body is highly damaged. The internal stored energy of a material state (𝜑, 𝑃 , 𝑧) is given by

(𝜑, 𝑃 , 𝑧) = ∫Ω𝑊el(∇𝜑𝑃−1, 𝑧) +𝑊h(𝑃 , 𝑧) +
𝜈

𝑟p
|∇𝑃 |𝑟p + 𝜇

𝑟z
|∇𝑧|𝑟z d𝑥,

see Section 2.5. In this expression, the first term is the elastic energy, the second represents the energy related to hardening
effects1, the third and fourth are regularization terms which from a physical point of view can be viewed as surface energies
penalizing spatial variations of the internal variables 𝑃 and 𝑧. More precisely, we can expect 𝑃 and 𝑧, to change values on length
scales of order 𝜇1∕(𝑟p−1) and 𝜈1∕(𝑟z−1), respectively. This would schematically correspond to the observation of the emergence of
lower dimensional substructures in plasticity and damage, namely plastic shear bands and cracks. The correlation between the
variables 𝑃 and 𝑧 partly relies on the behavior of the internal energy, which is monotone increasing in 𝑧, see Section 2.5. The
evolution is driven by a time-dependent external loading 𝓁 which completes the total energy of the system given by

(𝑡, 𝜑, 𝑃 , 𝑧) = (𝜑, 𝑃 , 𝑧) − ⟨𝓁(𝑡), 𝜑⟩,
where the dual product ⟨𝓁(𝑡), 𝜑⟩ is defined in (26). We consider rate-independent evolution of the energy  coupled with a
dissipation distance between internal states given by

(𝑃 , 𝑧, 𝑃 , 𝑧) = ∫Ω𝐷(𝑃 (𝑥), 𝑧(𝑥), 𝑃 (𝑥), 𝑧(𝑥)) d𝑥.

The latter depends on the joint behavior of plastic strain and damage. This coupling is implemented in the non-symmetric
distance

𝐷(𝑃 , 𝑧, 𝑃 , 𝑧) =

{
𝜅|𝑧 − 𝑧| + 𝜌(𝑧)𝐷p(𝑃 , 𝑃 ), if 𝑧 ≥ 𝑧,

∞, else,

see Section 2.3. Here, 𝜌 is a positive, monotone increasing function and 𝐷p is the classical plastic dissipation distance introduced
by MIELKE.[36,37] The function 𝜌 models the fact that the material plasticizes more easily once it is damaged.

1 From the physical viewpoint, the term 𝑊h represents the energy stored in interlocked and blocked dislocations during the plastic flow and corresponds to
kinematic hardening; see, e.g., [32, Section 5.4] and [31, Section 7.4] for further details. As such, it should be distinguished from strain hardening in the sense
of [3, Equation (19)], which arises from the combined effect of stored energy and dissipation of the damage part of the model.
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We rely on the concept of energetic solutions, and consider a quasistatic evolution, namely a trajectory [0, 𝑇 ] ∋ 𝑡 →
(𝜑(𝑡), 𝑃 (𝑡), 𝑧(𝑡)) on a time interval [0, 𝑇 ] satisfying at every time 𝑡 a stability condition and an energy balance, see Definition 3.1.
Our main result, Theorem 3.2 in Section 3, asserts the existence of an energetic solution for any compatible (stable) initial datum.
To prove this result we apply a standard time-discretization scheme introduced by MIELKE and co-workers.[38,41] This scheme
has shown to be very successful in order to achieve existence of energetic solution to rate-independent systems. It is versatile, as
it has been employed in many different settings, like in problems of nonlinear plasticity (e.g., [34,39]), damage,[40,50,51] cracks
growth (e.g. [18,30]), delamination,[46] dislocations evolution,[49] and many others (see [41] and references therein for a more
detailed discussion and a more exhaustive bibliography).

In many applications, thanks to the solid theory of MIELKE, the existence of energetic solutions is easily obtained by checking a
series of standard hypotheses. In the present paper, due to our particular model which couples plasticity with damage, we borrow
ingredients coming from both these fields. The proof of our main result relies on checking that the coupled dissipation defined
in Section 2.3 is a lower semicontinuous quasidistance (C1-C2), the loading power is energetically controlled (C3), sublevels of
the energy are compact (C4), and the set of stable states is closed (C5). In order to verify these conditions, we need to proof the
linear growth of the plastic dissipation (Proposition 2.2) and a formula showing that the (abstract) coupled dissipation distance
(21) splits additively into a damage-dissipation and a damage-weighted plastic dissipation (Proposition 2.4). We consider this
part the main novelty of the present work.

The paper is organized as follows. Section 2 introduces our model, emphasizing the treatment of the dissipation potential
that accounts for damage and plastic processes. The existence proof, based on incremental energy minimization, is presented
in Section 3. We note in passing that our analysis rests on the conditions of global stability; alternative solution concepts like
viscous approximation, employed in a similar context by CRISMALE and LAZZARONI,[15] or semistability, used by ROUBÍČEK

and VALDMAN,[47,48] are excluded from consideration. Finally, in Section 4, we discuss possible extensions and generalizations.

2 THE MODEL

2.1 Preliminaries
We first describe the setting of our model and then introduce some basic concepts of linear algebra and geodesic calculus which
help to understand the model.

Reference configuration. In the sequel we work on a bounded connected open set Ω ⊂ ℝ𝑑 , 𝑑 ≥ 2, with Lipschitz boundary
representing the reference configuration of an elastoplastic body. We assume that the boundary of Ω is the union of a Dirichlet
and Neumann part, namely 𝜕Ω ∶= Γ𝐷 ∪ Γ𝑁 , and suppose Γ𝐷 has strictly positive (𝑑 − 1)-Hausdorff measure. Once we have
fixed a Dirichlet boundary condition for the deformation 𝜑 ∶ Ω → ℝ𝑑 , we can make use of the Poincaré inequality

‖𝜑‖𝑊 1,𝑝 ≤ 𝐶‖∇𝜑‖𝐿𝑝 ,

which holds true for this domain since 𝑑−1(Γ𝐷) > 0. Throughout the paper we use the letter 𝐶 to denote a generic positive
constant that may change from line to line.

Matrices and groups. We denote by ℝ𝑑×𝑑 the vector space of 𝑑 × 𝑑 matrices with real entries. The standard Euclidean inner
product is denoted by double dots, namely 𝐴 ∶ 𝐵 = 𝐴𝑖𝑗𝐵𝑖𝑗 (summation convention). The symbols ℝ𝑑×𝑑

sym and ℝ𝑑×𝑑
anti denote the

subspaces of ℝ𝑑×𝑑 consisting of symmetric and anti-symmetric matrices, respectively. The symbol ℝ𝑑×𝑑
dev stands for deviatoric

matrices, where deviatoric means tracefree. We employ the following notation for common matrix groups

𝐺𝐿(𝑑) ∶= {𝐴 ∈ ℝ𝑑×𝑑 ∶ det 𝐴 ≠ 0},

𝐺𝐿+(𝑑) ∶= {𝐴 ∈ ℝ𝑑×𝑑 ∶ det 𝐴 > 0},

𝑂(𝑑) ∶= {𝐴 ∈ ℝ𝑑×𝑑 ∶ 𝐴⊤𝐴 = 𝐴𝐴⊤ = 𝕀},

𝑆𝐿(𝑑) ∶= {𝐴 ∈ ℝ𝑑×𝑑 ∶ det 𝐴 = 1},

𝑆𝑂(𝑑) ∶= {𝐴 ∈ 𝑆𝐿(𝑑) ∶ 𝐴⊤𝐴 = 𝐴𝐴⊤ = 𝕀}

where 𝕀 ∈ ℝ𝑑×𝑑 denotes the identity matrix.
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Norms. We consistently use the notation | ⋅ | for norms of tensors and scalars, e.g. |𝐴| = (𝐴 ∶ 𝐴)1∕2. This notation is employed
in general for 𝑘-tensors of every order. On the other hand, we make use of the double-bar notation ‖ ⋅ ‖ for norms on function
spaces, e.g. ‖𝑓‖𝐿1 = ∫Ω |𝑓 (𝑥)|𝑑𝑥.

Polar decomposition. For all 𝐴 ∈ 𝐺𝐿(𝑑) there exists a unique decomposition

𝐴 = 𝑅𝑇 , (1)

with 𝑅 ∈ 𝑂(𝑑) and 𝑇 ∈ ℝ𝑑×𝑑
sym positive definite. If, moreover, 𝐴 ∈ 𝑆𝐿(𝑑) then it is easy to see that both 𝑇 and 𝑅 must have

determinant equal to 1. Furthermore, as 𝑇 is symmetric, there exists an orthogonal matrix 𝑄 and a diagonal matrix Λ such
that

𝑇 = 𝑄Λ𝑄⊤. (2)

The diagonal matrix Λ has the positive eigenvalues 𝜆𝑖 of 𝑇 on the diagonal. The matrix 𝜉 = diag(log 𝜆1,… , log 𝜆𝑑) then
satisfies

Λ = 𝑒𝜉 and 𝑇 = 𝑄𝑒𝜉𝑄⊤ = 𝑒𝑄𝜉𝑄
⊤
, (3)

where the last equality follows from the fact that 𝑄 is invertible and 𝑄−1𝑒𝐴𝑄 = 𝑒𝑄
−1𝐴𝑄 for all 𝐴 ∈ ℝ𝑑×𝑑 .

Geodesic exponential map vs. matrix exponential. Let 𝐺 be a (matrix) Lie group, e.g. 𝑆𝑂(𝑑) or 𝑆𝐿(𝑑). The (geodesic)
exponential map is defined by

Exp ∶ 𝑇𝑒𝐺 → 𝐺

𝑣 → 𝛾𝑣(1)

where 𝛾𝑣 is the unique geodesic starting from the identity 𝑒 ∈ 𝐺 with initial velocity 𝑣 lying in the tangent space to 𝐺 at the
identity. It is easy to show that the tangent space of 𝑆𝐿(𝑑) (resp. 𝑆𝑂(𝑑)) at the identity is ℝ𝑑×𝑑

dev (resp. ℝ𝑑×𝑑
anti ), see [11, Example

I.9.4., Exercise I.17(b)]. It is important to remark that in general the geodesic exponential map defined above differs from the
algebraic exponential of a matrix 𝜉 used above and denoted by 𝑒𝜉 . In fact it was shown in [36, Theorem 6.1] that for the left-
invariant metric induced by the standard Euclidean scalar product 𝐴 ∶ 𝐵 the geodesics on 𝑆𝐿(𝑑) starting from 𝑃 (0) in direction
of 𝜉 ∈ ℝ𝑑×𝑑

dev are given by

𝑃 (𝑡) = 𝑃 (0)𝑒𝑡𝜉⊤𝑒𝑡(𝜉−𝜉⊤).

Notice that for tracefree matrices in general 𝜉⊤𝜉 ≠ 𝜉𝜉⊤, that is why Exp(𝜉) ≠ 𝑒𝜉 . For antisymmetric matrices however, the
product commutes. This implies that on 𝑆𝑂(𝑑) the geodesics are exactly given by 𝑃 (𝑡) = 𝑃 (0)𝑒𝑡𝜉 for 𝜉 ∈ ℝ𝑑×𝑑

anti .
Rotations. Since the set of rotations 𝑆𝑂(𝑑) is a compact connected Lie group, the exponential map

Exp ∶ ℝ𝑑×𝑑
anti → 𝑆𝑂(𝑑)

𝜉 → 𝑒𝜉

is surjective [27, Corollary 11.10.]. Therefore, for every 𝑅 ∈ 𝑆𝑂(𝑑) there exists 𝜉 ∈ ℝ𝑑×𝑑
anti such that 𝑅 = 𝑒𝜉 . We can use the

spectral theory for real skew-symmetric matrices to bring 𝜉 to a block diagonal form. Namely, there exists an orthogonal matrix
𝑄 such that 𝜉 = 𝑄Σ𝑄⊤ with

Σ =

⎛⎜⎜⎜⎜⎝
𝛼1𝐿1

𝛼2𝐿2
⋱

𝛼𝑝𝐿𝑝

⎞⎟⎟⎟⎟⎠
, (4)
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where either 𝐿𝑗 = 0 ∈ ℝ or 𝐿𝑗 =
(

0 1
−1 0

)
∈ ℝ2×2

anti and 𝛼𝑗 ∈ ℝ. Since Σ is block diagonal its exponential is easily computed as

𝑒Σ =

⎛⎜⎜⎜⎜⎝
𝑒𝛼1𝐿1

𝑒𝛼2𝐿2

⋱
𝑒𝛼𝑝𝐿𝑝

⎞⎟⎟⎟⎟⎠
, 𝑒𝛼𝑗𝐿𝑗 =

(
cos 𝛼𝑗 sin 𝛼𝑗
− sin 𝛼𝑗 cos 𝛼𝑗

)
or 𝑒0 = 1.

Using the periodicity of Sinus and Cosinus, the rotation 𝑅 can be written as

𝑅 = 𝑒𝑄Σ𝑄⊤
, (5)

where Σ is defined as in (4), but with 𝛼𝑗 ∈ [0, 2𝜋).

2.2 Plastic dissipation
The (plastic) dissipation potential is a mapping

Δ ∶ Ω × 𝑆𝐿(𝑑) ×ℝ𝑑×𝑑 → [0,+∞],

which is measurable in 𝑥 ∈ Ω and convex and positively 1-homogeneous in the rate, i.e.,

Δ(𝑥, 𝑃 , 𝜆𝑃̇ ) = 𝜆Δ(𝑥, 𝑃 , 𝑃̇ ) for all 𝜆 ≥ 0. (6)

We further assume plastic indifference which corresponds to requiring that

Δ(𝑥, 𝑃𝑄, 𝑃̇𝑄) = Δ(𝑥, 𝑃 , 𝑃̇ ) for all 𝑄 ∈ 𝑆𝐿(𝑑). (7)

This property implies that there exists a measurable, 1-homogeneous function Δ̂ ∶ Ω ×ℝ𝑑×𝑑 → [0,+∞] such that

Δ(𝑥, 𝑃 , 𝑃̇ ) = Δ̂(𝑥, 𝑃̇ 𝑃−1),

see [37] or [41, Section 4.2.1.1]. We assume there exist constants 𝑐0, 𝑐1 > 0, independent of 𝑥 ∈ Ω, such that

𝑐0|𝑄| ≤ Δ̂(𝑥,𝑄) ≤ 𝑐1|𝑄| for every 𝑄 ∈ 𝑆𝐿(𝑑). (8)

With the potential at disposal, we define the induced plastic dissipation distance on 𝑆𝐿(𝑑) for any pair 𝑃1, 𝑃2 ∈ 𝑆𝐿(𝑑) by

𝐷p(𝑥, 𝑃1, 𝑃2) = inf

{
∫

1

0
Δ(𝑥, 𝑃 (𝑠), 𝑃̇ (𝑠)) d𝑠 ∶ 𝑃 ∈ 𝑊 1,∞([0, 1];𝑆𝐿(𝑑)), 𝑃 (0) = 𝑃1, 𝑃 (1) = 𝑃2

}
. (9)

Notice that due to plastic indifference we have that 𝐷p(𝑥, 𝑃1, 𝑃2) = 𝐷̂p(𝑥, 𝑃2𝑃−1
1 ) with

𝐷̂p(𝑥, 𝑃 ) = inf

{
∫

1

0
Δ̂(𝑥, 𝑃̇ (𝑠)𝑃 (𝑠)−1) d𝑠 ∶ 𝑃 ∈ 𝑊 1,∞([0, 1];𝑆𝐿(𝑑)), 𝑃 (0) = 𝕀, 𝑃 (1) = 𝑃

}
.

Due to (8), the dissipation distance 𝐷̂p is equivalent to the standard Riemannian distance induced by the Euclidean scalar product
on the Lie algebra ℝ𝑑×𝑑

dev . In particular, we have that for every 𝑥 ∈ Ω

𝑐0𝑑SL(𝑃 ) ≤ 𝐷̂p(𝑥, 𝑃 ) ≤ 𝑐1𝑑SL(𝑃 ), (10)

where

𝑑SL(𝑃 ) = inf

{
∫

1

0
|𝑃̇ (𝑠)𝑃−1(𝑠)| d𝑠 ∶ 𝑃 ∈ 𝑊 1,∞([0, 1];𝑆𝐿(𝑑)), 𝑃 (0) = 𝕀, 𝑃 (1) = 𝑃

}
.
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As it was pointed out in [36], the geodesics with respect to Δ̂ in direction 𝜉 are in general not known and even in the specific
Riemannian case geodesics of 𝑑SL connecting the identity to 𝜉 are not given by 𝑡 → 𝑒𝑡𝜉 . In particular, it might happen that
𝑑SL(𝑒𝜉) < |𝜉|. However, from standard theory of Riemannian manifolds it is known that

𝑑SL(𝑃0, 𝑃1) ∶= 𝑑SL(𝑃1𝑃−1
0 )

is a metric on 𝑆𝐿(𝑑), see pp. 19-20 of [11]. We conclude this introduction with the following results which are employed in
Section 3:

Lemma 2.1 (𝐷p is a quasi-distance). For every 𝑃1, 𝑃2, 𝑃3, 𝑄 ∈ 𝑆𝐿(𝑑) and all 𝑥 ∈ Ω the following properties hold:

(i) 𝐷p(𝑥, 𝑃1, 𝑃2) = 0 if and only if 𝑃1 = 𝑃2,
(ii) 𝐷p(𝑥, 𝑃1, 𝑃3) ≤ 𝐷p(𝑥, 𝑃1, 𝑃2) +𝐷p(𝑥, 𝑃2, 𝑃3),

(iii) 𝐷p(𝑥, 𝑃1𝑄, 𝑃2𝑄) = 𝐷p(𝑥, 𝑃1, 𝑃2).

Proof. The implication (i) follows from the previous remark that 𝑑SL is a metric on 𝑆𝐿(𝑑) which by (10) is equivalent to 𝐷p.
Condition (ii) is easily checked, while (iii) follows from (7). □

Notice that 𝐷p might not be symmetric. We now show that the quasi-distance 𝐷̂p has sublinear growth. To prove this upper
bound the most important observation is that, if 𝑃 ∈ 𝑆𝐿(𝑑) is such that 𝑃 = 𝑒𝜉 for some 𝜉, then we may test the definition of
𝐷̂p(𝑃 ) with the path 𝑠 → 𝑒𝑠𝜉, 𝑠 ∈ [0, 1] and get

𝐷̂p(𝑥, 𝑃 ) ≤ ∫
1

0
Δ̂(𝑒𝑠𝜉𝜉𝑒−𝑠𝜉) d𝑠 = ∫

1

0
Δ̂(𝜉) d𝑠 = Δ̂(𝜉). (11)

Proposition 2.2. There exists a positive constant 𝐶 = 𝐶(𝑑) > 0 such that for every 𝑃1, 𝑃2 ∈ 𝑆𝐿(𝑑) and all 𝑥 ∈ Ω

𝐷p(𝑥, 𝑃1, 𝑃2) ≤ 𝐶(1 + |𝑃1| + |𝑃2|). (12)

Proof. In the following, not to overburden notation, we drop the explicit dependence on 𝑥 ∈ Ω. For the Reader’s convenience
the proof is split into several steps. In Steps 1-3 we show that for every 𝑃 ∈ 𝑆𝐿(𝑑)

𝐷̂p(𝑃 ) ≤ 𝐶(1 + |𝑃 |) (13)

for some constant 𝐶 = 𝐶(𝑐1, 𝑑) > 0 (𝑐1 being the constant in (8)). In Step 4 we deduce the general statement of the proposition.
Step 1. Let 𝑃 ∈ 𝑆𝐿(𝑑) be arbitrary. The decompositions (1) and (2) entail

𝑃 = 𝑅𝑇 = 𝑅𝑄Λ𝑄⊤, (14)

where 𝑅 ∈ 𝑆𝑂(𝑑), 𝑄 ∈ 𝑂(𝑑) and Λ is diagonal and can be written as the exponential of 𝜉 = logΛ as in (3). We estimate the
dissipation relative to the positive definite symmetric matrix 𝑇 = 𝑄Λ𝑄⊤ using (11), and writing 𝑇 = 𝑄𝑒𝜉𝑄⊤ = 𝑒𝑄𝜉𝑄

⊤
,

𝐷̂p(𝑇 ) ≤ Δ̂(𝑄𝜉𝑄⊤) ≤ 𝑐1|𝑄𝜉𝑄⊤| = 𝑐1|𝜉|, (15)

where the second inequality follows from assumption (8).
Step 2. We now show that |𝜉| can be estimated in terms of |𝑇 |. The eigenvalues of Λ satisfy

∏𝑑
𝑖=1 𝜆𝑖 = 1, and thus∑𝑑

𝑖=1 log(𝜆𝑖) = 0. Assume 𝜆1,… , 𝜆𝑚 > 1 for some 𝑚 and 𝜆𝑚+1,… , 𝜆𝑑 ≤ 1. Let 𝓁 =
∑𝑚

𝑖=1 log 𝜆𝑖, so that
∑𝑑

𝑖=𝑚+1 log 𝜆𝑖 = −𝓁.
Since log 𝜆𝑖 > 0 for all 𝑖 = 1,… , 𝑚 and log 𝜆𝑖 ≤ 0 for all 𝑖 = 𝑚 + 1,… , 𝑑 we can write

𝑚∑
𝑖=1

(log 𝜆𝑖)2 ≤ 𝓁2,
𝑑∑

𝑖=𝑚+1
(log 𝜆𝑖)2 ≤ 𝓁2.
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Then, Jensen’s inequality implies that

|𝜉|2 = 𝑑∑
𝑖=1

(log 𝜆𝑖)2 ≤ 2𝓁2 = 2

(
𝑚∑
𝑖=1

log 𝜆𝑖

)2

≤ 2𝑚
𝑚∑
𝑖=1

(log 𝜆𝑖)2

≤ 2𝑚
𝑚∑
𝑖=1

(𝜆𝑖)2 ≤ 2(𝑑 − 1)
𝑑∑
𝑖=1

𝜆2𝑖 = 2(𝑑 − 1)|𝑇 |2.
In particular, estimate (15) leads to

𝐷̂p(𝑇 ) ≤ 𝐶1|𝑇 |, (16)

where 𝐶1 ∶= 𝑐1
√
2(𝑑 − 1).

Step 3. Let us now give an estimate for the rotation 𝑅 in the decomposition (14).
We use decomposition (5) to estimate

𝐷̂p(𝑅) ≤ Δ̂(𝑄Σ𝑄⊤) ≤ 𝑐1|𝑄Σ𝑄⊤| = 𝑐1|Σ| ≤ 𝐶2, (17)

where 𝐶2 ∶= 𝑐1
√
𝑑𝜋.

Step 4. By Lemma 2.1(ii),(iii) we have

𝐷̂p(𝑃𝑄) ≤ 𝐷̂p(𝑄) + 𝐷̂p(𝑃 ), for all 𝑃 ,𝑄 ∈ 𝑆𝐿(𝑑). (18)

Now let 𝑃1, 𝑃2 ∈ 𝑆𝐿(𝑑) and use the polar decomposition (1)-(3) to write

𝑃𝑖 = 𝑅𝑖𝑇𝑖 = 𝑅𝑖𝑄𝑖Λ𝑖𝑄
⊤
𝑖 , 𝑖 = 1, 2.

Using (16), (17) and (18) we obtain

𝐷p(𝑃1, 𝑃2) = 𝐷̂p(𝑃2𝑃−1
1 ) = 𝐷̂p(𝑅2𝑇2𝑇

−1
1 𝑅−1

1 )

≤ 𝐷̂p(𝑅−1
1 ) + 𝐷̂p(𝑇 −1

1 ) + 𝐷̂p(𝑇2) + 𝐷̂p(𝑅2)

≤ 2𝐶2 + 𝐶1|𝑇2| + 𝐷̂p(𝑇 −1
1 ).

Now 𝑇 −1
1 = 𝑄1Λ−1

1 𝑄⊤
1 and

𝐷̂p(𝑇 −1
1 ) = Δ̂(𝑄1 logΛ−1

1 𝑄⊤
1 ) ≤ 𝑐1| logΛ−1

1 | = 𝑐1| logΛ1|.
As in Step 2 we deduce that 𝑐1| logΛ1| ≤ 𝐶1|𝑇1|. Altogether we have shown that

𝐷p(𝑃1, 𝑃2) ≤ 2𝐶2 + 𝐶1(|𝑇1| + |𝑇2|) ≤ 2𝐶2 + 𝐶1𝐶3(|𝑃1| + |𝑃2|), (19)

where 𝐶1 = 𝑐1
√
2(𝑑 − 1), 𝐶2 = 𝑐1

√
𝑑𝜋 and 𝐶3 = sup{|𝑅| ∶ 𝑅 ∈ 𝑆𝑂(𝑑)}. □

Lemma 2.3. The dissipation distance 𝐷p ∶ Ω × 𝑆𝐿(𝑑) × 𝑆𝐿(𝑑) → [0,∞) is a Carathéodory function (i.e. measurable in the
first variable and continuous in the other variables for a.e. fixed 𝑥 ∈ Ω).

Proof. The measurability of 𝐷p(⋅, 𝑃0, 𝑃1) follows from measurability of Δ̂. To show continuity let 𝑃 ∗, 𝑃 ∈ 𝑆𝐿(𝑑) be fixed and
let 𝑃𝑘 → 𝑃 in 𝑆𝐿(𝑑). Then (dropping the 𝑥-variable dependence) we use the triangle inequality to estimate

|𝐷p(𝑃 ∗, 𝑃𝑘) −𝐷p(𝑃 ∗, 𝑃 )| ≤ 𝐷p(𝑃 , 𝑃𝑘) = 𝐷̂p(𝑃𝑘𝑃−1).

Therefore it suffices to show that 𝐷̂p(𝑃𝑘) → 0 for any sequence 𝑃𝑘 → 𝕀. Since 𝑃𝑘 ∈ 𝑆𝐿(𝑑) we can use the decompositions (1)
and (3) as well as the spectral theory (5) to write

𝑃𝑘 = 𝑒𝑄𝑘Σ𝑘𝑄⊤
𝑘 𝑒𝑆𝑘𝜉𝑘𝑆

⊤
𝑘 ,
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where 𝑄𝑘, 𝑆𝑘 are orthogonal and Σ𝑘, 𝜉𝑘 → 0 as 𝑃𝑘 → 𝕀. We again use the triangle inequality and (11) to estimate

𝐷̂p(𝑃𝑘) ≤ Δ̂(𝑄𝑘Σ𝑘𝑄⊤
𝑘
) + Δ̂(𝑆𝑘𝜉𝑘𝑆

⊤
𝑘
) ≤ 𝑐1

(|Σ𝑘| + |𝜉𝑘|) → 0 as 𝑘 → ∞.

This proves the claimed continuity. □

2.3 Coupled damage-plastic dissipation
Let 𝜌 ∶ Ω ×ℝ → ℝ+ be a Carathéodory function (measurable in 𝑥 for every 𝑡 ∈ ℝ, continuous in 𝑡 for a.e. 𝑥 ∈ Ω). We make
the following assumption:

𝜌(𝑥, ⋅) is non-decreasing and constant on the intervals (−∞, 0] and [1,+∞). (20)

Let 𝜅 ∈ 𝐿∞(Ω;ℝ+) be such that 𝜅(𝑥) ≥ 𝜅0 > 0 for a.e. 𝑥 ∈ Ω. Given 𝑥 ∈ Ω, 𝑧1, 𝑧2 ∈ [0, 1] and 𝑃1, 𝑃2 ∈ 𝑆𝐿(𝑑) we define the
(coupled damage-plastic) dissipation distance between (𝑃1, 𝑧1) and (𝑃2, 𝑧2) at 𝑥 as

𝐷(𝑥, 𝑃1, 𝑧1, 𝑃2, 𝑧2) = inf

{
∫

1

0
Ψ(𝑥, 𝑧̇(𝑠)) + 𝜌(𝑥, 𝑧(𝑠))Δ(𝑥, 𝑃 (𝑠), 𝑃̇ (𝑠)) d𝑠 ∶

(𝑃 , 𝑧) ∈ 𝑊 1,∞([0, 1];𝑆𝐿(𝑑) × [0, 1]),

𝑃 (0) = 𝑃1, 𝑃 (1) = 𝑃2, 𝑧(0) = 𝑧1, 𝑧(1) = 𝑧2

}
, (21)

where

Ψ(𝑥, 𝑧̇) ∶=

{
𝜅(𝑥)|𝑧̇| if 𝑧̇ ≤ 0,
∞ else.

Thanks to the monotonicity assumption (20) we can prove the following.

Proposition 2.4. Let 𝑥 ∈ Ω, 𝑧1, 𝑧2 ∈ [0, 1] and 𝑃1, 𝑃2 ∈ 𝑆𝐿(𝑑). Then

𝐷(𝑥, 𝑃1, 𝑧1, 𝑃2, 𝑧2) = Ψ(𝑥, 𝑧2 − 𝑧1) + 𝜌(𝑥, 𝑧2)𝐷p(𝑥, 𝑃1, 𝑃2). (22)

Proof. We consider the following two cases.
Case 𝑧1 < 𝑧2: In this case the right-hand side of (22) is infinite. So we need to show that 𝐷 is infinite too. This follows as,

for every path 𝑧 ∈ 𝑊 1,∞([0, 1]; [0, 1]) connecting 𝑧1 to 𝑧2, the measure 1({𝑧̇ > 0}) is strictly positive. By definition of Ψ the
path has infinite dissipation length.

Case 𝑧1 ≥ 𝑧2: Since 𝜌 is non-decreasing, by definition of Ψ every path of finite dissipation satisfies 𝑧̇ ≤ 0 a.e. on [0,1]. By
monotonicity (20),

𝐷(𝑥, 𝑃1, 𝑧1, 𝑃2, 𝑧2) = inf

{
∫

1

0
Ψ(𝑥, 𝑧̇(𝑠))𝑑𝑠 + ∫

1

0
𝜌(𝑥, 𝑧(𝑠))Δ(𝑥, 𝑃 (𝑠), 𝑃̇ (𝑠)) d𝑠 ∶ 𝑧̇ ≤ 0

}

≥ Ψ(𝑥, 𝑧2 − 𝑧1) + inf

{
∫

1

0
𝜌(𝑥, 𝑧(𝑠))Δ(𝑥, 𝑃 (𝑠), 𝑃̇ (𝑠)) d𝑠 ∶ 𝑧2 ≤ 𝑧 ≤ 𝑧1

}
≥ Ψ(𝑥, 𝑧2 − 𝑧1) + 𝜌(𝑥, 𝑧2)𝐷p(𝑥, 𝑃1, 𝑃2).

To show the opposite inequality let 𝑃𝑘 ∈ 𝑊 1,∞([0, 1];𝑆𝐿(𝑑)) be a sequence with 𝑃𝑘(0) = 𝑃1, 𝑃𝑘(1) = 𝑃2 such that, for
any 𝑘,

∫
1

0
Δ(𝑥, 𝑃𝑘(𝑠), 𝑃̇𝑘(𝑠)) d𝑠 ≤ 𝐷p(𝑥, 𝑃1, 𝑃2) +

1
𝑘
. (23)
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Let 𝑧𝑘 ∈ 𝑊 1,∞([0, 1]; [𝑧2, 𝑧1]) be the function

𝑧𝑘(𝑠) =
⎧⎪⎨⎪⎩
𝑘(𝑧2 − 𝑧1)

(
𝑠 − 1

𝑘

)
+ 𝑧2, if 0 ≤ 𝑠 ≤ 1

𝑘
,

𝑧2, else.

Moreover let 𝜁 ∶ [ 1
𝑘
, 1] → [0, 1] be the unique affine function such that 𝜁 ( 1

𝑘
) = 0, 𝜁 (1) = 1, and let

𝑃𝑘(𝑡) =
⎧⎪⎨⎪⎩
𝑃1 for 𝑡 ∈

[
0, 1
𝑘

]
,

𝑃𝑘(𝜁 (𝑡)) for 𝑡 ∈
(1
𝑘
, 1
]
.

Notice that 𝑃𝑘 is Lipschitz continuous as well. Since 𝑃𝑘 is constant on [0, 1∕𝑘] it follows that 𝑅(𝑥, 𝑃𝑘,
̇̃
𝑃 𝑘) = 0 on [0, 1∕𝑘], and

by 1-homogeneity, we have

𝐷(𝑥, 𝑃1, 𝑧1, 𝑃2, 𝑧2) ≤ Ψ(𝑥, 𝑧2 − 𝑧1) + ∫
1

1∕𝑘
𝜌(𝑥, 𝑧𝑘(𝑡))Δ(𝑥, 𝑃𝑘(𝑡),

̇̃
𝑃 𝑘(𝑡)) d𝑡

= Ψ(𝑥, 𝑧2 − 𝑧1) + 𝜌(𝑥, 𝑧2)∫
1

1∕𝑘
Δ(𝑥, 𝑃𝑘(𝜁 (𝑡)), 𝑃̇𝑘(𝜁 (𝑡)))𝜁̇(𝑡) d𝑡

= Ψ(𝑥, 𝑧2 − 𝑧1) + 𝜌(𝑥, 𝑧2)∫
1

0
Δ(𝑥, 𝑃𝑘(𝑠), 𝑃̇𝑘(𝑠)) d𝑠

(23)≤ Ψ(𝑥, 𝑧2 − 𝑧1) + 𝜌(𝑥, 𝑧2)
(
𝐷p(𝑥, 𝑃1, 𝑃2) +

1
𝑘

)
where we used the change of variables 𝑠 = 𝜁 (𝑡). We conclude by taking the limit 𝑘 → ∞ on the right-hand side. □

We now define the dissipation between two internal states (𝑃1, 𝑧1), (𝑃2, 𝑧2) ∶ Ω → 𝑆𝐿(𝑑) × [0, 1] as

(𝑃1, 𝑧1, 𝑃2, 𝑧2) = ∫Ω𝐷(𝑥, 𝑃1(𝑥), 𝑧1(𝑥), 𝑃2(𝑥), 𝑧2(𝑥)) d𝑥,

and the total dissipation of a damage-plastic process, given (𝑃 , 𝑧) ∶ [𝑠, 𝑡] → 𝐿1(Ω;𝑆𝐿(𝑑)) × 𝐿1(Ω; [0, 1]), as

Diss(𝑃 , 𝑧; 𝑠, 𝑡) ∶= sup
𝑁∑
𝑖=1

(𝑃 (𝑟𝑖−1), 𝑧(𝑟𝑖−1), 𝑃 (𝑟𝑖), 𝑧(𝑟𝑖)), (24)

where the supremum is computed over all partitions 𝑠 = 𝑟0 < 𝑟1 < ⋯ < 𝑟𝑁−1 < 𝑟𝑁 = 𝑡, and all 𝑁 ∈ ℕ.

2.4 State space
In order to deal with time-dependent boundary conditions of the form

𝜑 = 𝑔Dir(𝑡) on Γ𝐷,

where 𝑔Dir ∶ [0, 𝑇 ] ×ℝ𝑑 → ℝ𝑑 represents a Dirichlet datum, we use the so-called multiplicative splitting technique[19,21,30,34]

replacing the variable 𝜑 by 𝑔Dir(𝑡)◦𝑦, see e.g. [21, Section 5]. More precisely, we set

𝜑(𝑥) = 𝑔Dir(𝑡, 𝑦(𝑥)), where 𝑦(𝑥) = 𝑥 on Γ𝐷.

This results in a multiplicative split of the deformation gradient

∇𝜑(𝑥) = ∇𝑔Dir(𝑡, 𝑦(𝑥))∇𝑦(𝑥).
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We refer to the next section for the hypotheses on 𝑔Dir . The space of admissible states, denoted by , is the triple  ×  ×,
where

 ∶= 𝑊
1,𝑞
𝐷

(Ω;ℝ𝑑) ∶= {𝑦 ∈ 𝑊 1,𝑞(Ω;ℝ𝑑) ∶ 𝑦 = id on Γ𝐷},

 ∶= 𝑊 1,𝑟p (Ω;𝑆𝐿(𝑑)),

 ∶= 𝑊 1,𝑟z (Ω; [0, 1]),

for some coefficients 𝑞 > 𝑑 and 𝑟p, 𝑟z > 1. The space  is endowed with the weak topologies of the Sobolev spaces, namely,

𝑃𝑘 ⇀ 𝑃 in  if and only if 𝑃𝑘 ⇀ 𝑃 weakly in 𝑊 1,𝑟p (Ω;ℝ𝑑×𝑑),

𝑧𝑘 ⇀ 𝑧 in  if and only if 𝑧𝑘 ⇀ 𝑧 weakly in 𝑊 1,𝑟z (Ω;ℝ).

By Poincaré’s inequality, weak convergence in  is equivalent to weak convergence of gradients, i.e.,

𝑦𝑘 ⇀ 𝑦 in  if and only if ∇𝑦𝑘 ⇀ ∇𝑦 weakly in 𝐿𝑞(Ω;ℝ𝑑×𝑑).

Notice that the space  is not a linear subspace of 𝑊 1,𝑟p (Ω;ℝ𝑑×𝑑) because the target space is the manifold 𝑆𝐿(𝑑). Nevertheless
weak limits of sequences (𝑃𝑘)𝑘∈ℕ ⊂  are again in  . This follows since weak convergence in  implies strong convergence in
𝐿𝑟p (Ω;ℝ𝑑×𝑑).

We introduce the short notation 𝑞 = (𝑦, 𝑃 , 𝑧) for elements in  and occasionally use the variable 𝑞 in the dissipation distance
 although it depends only on the internal variables and is independent of 𝑦.

2.5 Energy
We consider the following total energy for the system:

(𝑡, 𝑦, 𝑃 , 𝑧) =∫Ω𝑊el(𝑥,∇𝑔Dir(𝑡, 𝑦(𝑥))∇𝑦(𝑥)(𝑃 (𝑥))−1, 𝑧(𝑥)) +𝑊h(𝑥, 𝑃 (𝑥), 𝑧(𝑥)) d𝑥

+ 𝜈

𝑟p ∫Ω |∇𝑃 (𝑥)|𝑟p d𝑥 + 𝜇

𝑟z ∫Ω |∇𝑧(𝑥)|𝑟z d𝑥 − ⟨𝓁(𝑡), 𝑔Dir(𝑡, 𝑦)⟩, (25)

for some material parameters 𝜈, 𝜇 > 0, where the mapping 𝑡 → 𝓁(𝑡) represents external loading of the mechanical system and is
defined as

⟨𝓁(𝑡), 𝜑⟩ = ∫Ω 𝑓 (𝑥, 𝑡) ⋅ 𝜑(𝑥) d𝑥 + ∫Γ𝑁 𝜏(𝑥, 𝑡) ⋅ 𝜑(𝑥) d𝑑−1(𝑥), (26)

where 𝑓 is a prescribed bulk force and 𝜏 is a prescribed traction on the Neumann boundary Γ𝑁 . The quantity

el(𝑡, 𝑦, 𝑃 , 𝑧) = ∫Ω𝑊el(𝑥,∇𝑔Dir(𝑡, 𝑦(𝑥))∇𝑦(𝑥)(𝑃 (𝑥))−1, 𝑧(𝑥)) d𝑥,

is the elastic energy of the system and the term

h(𝑃 , 𝑧) = ∫Ω𝑊h(𝑥, 𝑃 (𝑥), 𝑧(𝑥)) d𝑥,

represents the energy related to kinematic hardening instead. The terms in (25) involving ∇𝑃 and ∇𝑧 are higher order energetic
terms which have the role of regularizations introducing internal length scales. Notice that the elastic energy density depends
on the elastic strain ∇𝑔Dir(𝑡, 𝑦)∇𝑦𝑃−1 whereas the hardening energy depends on the plastic strain 𝑃 . It is convenient to denote
the total bulk energy (density) without regularization by

𝑊 (𝑥, 𝐹 , 𝑃 , 𝑧) = 𝑊el(𝑥, 𝐹 , 𝑧) +𝑊h(𝑥, 𝑃 , 𝑧),
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and

(𝑡, 𝑦, 𝑃 , 𝑧) = el(𝑡, 𝑦, 𝑃 , 𝑧) +h(𝑃 , 𝑧).

The presence of the time-dependent Dirichlet datum is reflected in the power of external forces given by

𝜕𝑡(𝑡, 𝑦, 𝑃 , 𝑧) = 𝜕𝑡el(𝑡, 𝑦, 𝑃 , 𝑧) − ⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦)⟩ − ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦)⟩, (27)

where

𝜕𝑡el(𝑡, 𝑦, 𝑃 , 𝑧) = ∫Ω 𝜕𝐹𝑊el(𝑥, 𝐹 (𝑡, 𝑥), 𝑧(𝑥))(𝐹 (𝑡, 𝑥))⊤ ∶ ∇𝑔̇Dir(𝑡, 𝑦(𝑥))(∇𝑦(𝑥))−1 d𝑥

with𝐹 (𝑡, 𝑥) = ∇𝑔Dir(𝑡, 𝑦(𝑥))∇𝑦(𝑥)(𝑃 (𝑥))−1. This motivates the assumptions on the Kirchhoff stress 𝜕𝐹𝑊el(𝑥, 𝐹 , 𝑧)𝐹⊤ explained
below and used in [34].

For our analysis, we ask the following conditions to hold:

• Control on the Kirchhoff stress:

∃ 𝑐𝑊0 ∈ ℝ, 𝑐𝑊1 > 0, 𝛿 > 0, a modulus of continuity 𝜔 ∶ (0, 𝛿) → (0,∞) such that

∀ (𝑥, 𝐹 , 𝑧) s.t. 𝑊el(𝑥, 𝐹 , 𝑧) < ∞, 𝑁 ∈ 𝛿 ∶= {𝑁 ∈ ℝ𝑑×𝑑 ∶ |𝑁 − 𝕀| < 𝛿} ∶

𝑊el(𝑥, ⋅, 𝑧) is differentiable on 𝛿𝐹 ,|𝜕𝐹𝑊el(𝑥, 𝐹 , 𝑧)𝐹⊤| ≤ 𝑐𝑊1 (𝑊el(𝑥, 𝐹 , 𝑧) + 𝑐𝑊0 ), (28)

|𝜕𝐹𝑊el(𝑥, 𝐹 , 𝑧)𝐹⊤ − 𝜕𝐹𝑊el(𝑥,𝑁𝐹 , 𝑧)(𝑁𝐹 )⊤| ≤ 𝜔(|𝑁 − 𝕀|)(𝑊el(𝑥, 𝐹 , 𝑧) + 𝑐𝑊0 ). (29)

• Polyconvexity: We assume that 𝑊h is a normal integrand, meaning 𝑊h(⋅, 𝑃 , 𝑧) is measurable for every 𝑃 ∈ 𝑆𝐿(𝑑), 𝑧 ∈ [0, 1]
and 𝑊h(𝑥, ⋅, ⋅) is lower semicontinuous for a.e. 𝑥 ∈ Ω. Moreover, we assume that the elastic energy density 𝑊el is finite just
on 𝐺𝐿+(𝑑) and polyconvex,[6] namely

𝑊el(𝑥, 𝐹 , 𝑧) = 𝕎conv(𝑥,𝕄(𝐹 ), 𝑧), (30)

where 𝕎conv is a normal integrand, 𝕎conv(𝑥, ⋅, 𝑧) is convex for a.e. 𝑥 ∈ Ω and every 𝑧 ∈ [0, 1], and 𝕄(𝐹 ) denotes the vector
of all minors of the elastic strain 𝐹 . In dimension 𝑑 = 3, for instance,

𝕄(𝐹 ) = (𝐹 , cof 𝐹 , det 𝐹 ).

• Coercivity: Furthermore, we assume the coercivity bounds

𝑊el(𝑥, 𝐹 , 𝑧) ≥ 𝐶1|𝐹 |𝑞e − 𝐶2, (31a)

𝑊h(𝑥, 𝑃 , 𝑧) ≥ 𝐶1|𝑃 |𝑞p − 𝐶2, (31b)

for some constants 𝐶1, 𝐶2 > 0 and exponents satisfying

1
𝑞e

+ 1
𝑞p

≤ 1
𝑞
<

1
𝑑
, (32)

see [41, Section 4.1.3].

• Monotonicity and continuity: We further assume continuity and monotonicity in 𝑧. More precisely, we ask

𝑊 (𝑥, 𝐹 , 𝑃 , ⋅) ∈ 𝐶0([0, 1];ℝ) (33)
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and

𝑧 ≤ 𝑧 ⇒ 𝑊 (𝑥, 𝐹 , 𝑃 , 𝑧) ≤ 𝑊 (𝑥, 𝐹 , 𝑃 , 𝑧) (34)

for every 𝐹 ∈ 𝐺𝐿+(𝑑), 𝑃 ∈ 𝑆𝐿(𝑑) and a.e. 𝑥 ∈ Ω.

• Regularity of Dirichlet data and loading: Moreover, one needs to assume that 𝑔Dir and 𝓁 are sufficiently regular. Precisely,
one requires

𝑔Dir ∈ 𝐶1([0, 𝑇 ] ×ℝ𝑑 ;ℝ𝑑) with

∇𝑔Dir ,∇𝑔̇Dir , (∇𝑔Dir)−1 ∈ 𝐶0([0, 𝑇 ] ×ℝ𝑑 ;ℝ𝑑×𝑑) ∩ 𝐿∞([0, 𝑇 ] ×ℝ𝑑 ;ℝ𝑑×𝑑), (35)

𝓁 ∈ 𝑊 1,1(0, 𝑇 ; (𝑊 1,𝑞(Ω;ℝ𝑑))∗), (36)

see [41, Condition (4.1.32), Remark 4.2.5].

Here, the multiplicative stress control (28) is needed to bound the power of external forces (27) by the energy, whereas the
uniform continuity condition (29) together with (35) and (36) ultimately guarantees the convergence 𝜕𝑡(𝑡, 𝑞𝑘) → 𝜕𝑡(𝑡, 𝑞) as
stable sequences (𝑡𝑘, 𝑞𝑘) tend to (𝑡, 𝑞) [41, Prop. 2.1.17]. In particular, it was shown in [34, Theorem 5.3] that there exist constants
𝑐𝐸0 ∈ ℝ, 𝑐𝐸1 > 0 and a modulus of continuity 𝜔 such that

|𝜕𝑡el(𝑡, 𝑞)| ≤ 𝑐𝐸1 (el(𝑡, 𝑞) + 𝑐𝐸0 ), (37a)

|𝜕𝑡el(𝑠, 𝑞) − 𝜕𝑡el(𝑡, 𝑞)| ≤ 𝜔(|𝑡 − 𝑠|)(el(𝑡, 𝑞) + 𝑐𝐸0 ). (37b)

Moreover, polyconvexity (30), coercivity (31), and continuity (33) are used to show lower semicontinuity and compactness
of the energy, whereas monotonicity (34) is needed for the construction of recovery sequences in Section 3.1. We would like
to emphasize that these conditions are compatible with frame-indifference (objectivity) and non-interpenetrability of matter,
namely

• Objectivity:

𝑊el(𝑥,𝑄𝐹 , 𝑧) = 𝑊el(𝑥, 𝐹 , 𝑧) ∀𝑄 ∈ 𝑆𝑂(𝑑), 𝐹 ∈ 𝐺𝐿+(𝑑). (38)

• Non-interpenetrability:

𝑊el(𝑥, 𝐹 , 𝑧) → ∞ as det 𝐹 → 0+, (39)

see Example 2.6. As these conditions are essential in modeling continuous media, it is certainly desirable to include them into
the model. However, they are not needed for the analysis.

Remark 2.5 (Ciarlet-Nečas condition). With assumption (39) it is clear that a finite energy solution satisfies the local non-
interpenetration det ∇𝜑 > 0 a.e. in Ω. It is possible to guarantee global non-self-interpenetration involving the so-called Ciarlet-
Nečas condition,[12] which reads

∫Ω det ∇𝜑(𝑥) d𝑥 ≤ 𝑑(𝜑(Ω)),

where 𝑑 denotes the Lebesgue measure on ℝ𝑑 . In order to achieve this we would change the state space  to

𝐶𝑁 ∶=
{
𝑦 ∈  ∶ ∫Ω det ∇𝑦(𝑥) d𝑥 ≤ 𝑑(𝑦(Ω))

}
.

It can be shown that supposing Ciarlet-Nečas condition for 𝑦 instead of 𝜑 is equivalent under the assumption that 𝑔Dir(𝑡) is an
orientation-preserving diffeomorphism [41, Lemma 4.1.1]. Moreover, due to the condition 𝑞 > 𝑑, convergence of ∇𝑦𝑘 ⇀ ∇𝑦 in
𝐿𝑞(Ω) implies convergence of det(∇𝑦𝑘) ⇀ det(∇𝑦) in 𝐿1(Ω). This shows that 𝐶𝑁 is weakly closed in  .



MELCHING ET AL. 13 of 28

Example 2.6 (Ogden-type materials with kinematic hardening). Let us give an example for an energy satisfying the assumptions
above. We choose

𝑊 (𝐹 , 𝑃 , 𝑧) = 𝑔(𝑧)𝑊el(𝐹 ) +𝑊h(𝑃 ),

where 𝑔(𝑧) = (1 + 𝑧)∕4. Then clearly assumptions (33) and (34) are satisfied. For the hardening energy density 𝑊h, we consider
a kinematic hardening law of the form

𝑊h(𝑃 ) = |𝑃 − 𝕀|𝑞p .
Possible examples for polyconvex (30), frame-indifferent (38) elastic energy densities 𝑊el satisfying non-interpenetrability (39)
can be found in the class of Ogden-type materials

𝑊el(𝐹 ) =
𝑛∑
𝑖=1

𝑎𝑖 tr(𝐹⊤𝐹 − 𝕀)𝛼𝑖∕2 +
𝑚∑
𝑗=1

𝑏𝑗 tr( cof 𝐹⊤𝐹 − 𝕀)𝛽𝑗∕2 + Γ(det 𝐹 ),

for 𝐹 ∈ 𝐺𝐿+(𝑑) and 𝑊el = +∞ otherwise, where 𝑛, 𝑚 ≥ 1, 𝛼𝑖, 𝛽𝑖 ≥ 1, 𝑎𝑖, 𝑏𝑖 > 0 and Γ ∶ (0,∞) → (0,∞) is convex satisfying
Γ(𝜀) → +∞ as 𝜀 → 0+. The coercivity condition (31) is met, for instance, if 𝛼𝑖 ≥ 𝑞e for some 𝑖 and 𝑞p is large enough such that
1∕𝑞e + 1∕𝑞p < 1∕𝑑.

3 QUASISTATIC EVOLUTION

We follow the concept of energetic solutions, which is solely based on the energy functional  , the dissipation distance  and the
state space introduced above. Given initial conditions (𝑦0, 𝑃0, 𝑧0) ∈ we look for an energetic solution (𝑦, 𝑃 , 𝑧) ∶ [0, 𝑇 ] → .
We first introduce the concept of stable states at a given time 𝑡 ∈ [0, 𝑇 ]: this is defined via the subset (𝑡) of  defined as

(𝑡) = {(𝑦, 𝑃 , 𝑧) ∈  ∶ (𝑡, 𝑦, 𝑃 , 𝑧) ≤ (𝑡, 𝑦, 𝑃 , 𝑧) +(𝑃 , 𝑧, 𝑃 , 𝑧) ∀(𝑦, 𝑃 , 𝑧) ∈ }.
An energetic solution is asked to satisfy the following energy balance (E) and global stability condition (S).

Definition 3.1. We say that (𝑦, 𝑃 , 𝑧) ∶ [0, 𝑇 ] →  is an energetic solution with initial conditions (𝑦0, 𝑃0, 𝑧0) ∈  if
(𝑦(0), 𝑃 (0), 𝑧(0)) = (𝑦0, 𝑃0, 𝑧0), the map 𝑠 → 𝜕𝑡(𝑠, 𝑦(𝑠), 𝑃 (𝑠), 𝑧(𝑠)) belongs to 𝐿1(0, 𝑇 ), (𝑡, 𝑦(𝑡), 𝑃 (𝑡), 𝑧(𝑡)) < ∞ for all
𝑡∈ [0, 𝑇 ], and the two following conditions are satisfied for all 𝑡 ∈ [0, 𝑇 ]:

(𝑦(𝑡), 𝑃 (𝑡), 𝑧(𝑡)) ∈ (𝑡), (S)

(𝑡, 𝑦(𝑡), 𝑃 (𝑡), 𝑧(𝑡)) + Diss(𝑃 , 𝑧; 0, 𝑡) = (0, 𝑦0, 𝑃0, 𝑧0) + ∫
𝑡

0
𝜕𝑠(𝑠, 𝑦(𝑠), 𝑃 (𝑠), 𝑧(𝑠)) d𝑠, (E)

where Diss(𝑃 , 𝑧; 0, 𝑡) is defined in (24).

We now formulate the main results of the paper.

Theorem 3.2 (Existence of energetic solutions). Let (,  ,) be the triple introduced in Section 2. Let 𝑞0 = (𝑦0, 𝑃0, 𝑧0) ∈ (0)
be a stable initial state. Suppose the hypotheses given in Section 2.5 are satisfied, i.e. the bulk energy satisfies (28), (29), (30),
(31), (33), and (34), whereas the data of the problem satisfy (35) and (36). Then there exists an energetic solution 𝑞 = (𝑦, 𝑃 , 𝑧) ∶
[0, 𝑇 ] →  with initial condition 𝑞0.

Given an interval [0, 𝑇 ] and a positive natural number 𝑛, we denote by Π𝑛 the family of partitions of [0, 𝑇 ] into 𝑛 inter-
vals, namely the family of 𝑛-tuples of real numbers satisfying 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 . We define the family of partitions of
arbitrary length as

Π =
∞⋃
𝑛=1

Π𝑛.

The fineness of a partition is defined as max𝑘 |𝑡𝑘 − 𝑡𝑘−1|.
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Theorem 3.3 (Existence via incremental minimization). For every stable initial data 𝑞0 ∈ (0) and every sequence of partitions
𝜎𝑛 ∈ Π of [0, 𝑇 ] with fineness tending to zero as 𝑛 → ∞, we can find a trajectory 𝑞𝑛 ∶ [0, 𝑇 ] →  with 𝑞(0) = 𝑞0 which is
piecewise constant on the partition, right-continuous, and satisfies

𝑞𝑛(𝑡) ∈ (𝑡), (40)

(𝑡, 𝑞𝑛(𝑡)) + Diss(𝑃𝑛, 𝑧𝑛; 𝑠, 𝑡) − (𝑠, 𝑞𝑛(𝑠)) ≤ ∫
𝑡

𝑠

𝜕𝑟(𝑟, 𝑞𝑛(𝑟)) d𝑟 (41)

for every 𝑠, 𝑡 ∈ 𝜎𝑛. Moreover, there exists a subsequence and an energetic solution 𝑞 = (𝑦, 𝑃 , 𝑧) ∶ [0, 𝑇 ] →  for the initial
conditions 𝑞0 with the following properties:

∀𝑡 ∈ [0, 𝑇 ] ∶ 𝑃𝑛𝑘(𝑡) ⇀ 𝑃 (𝑡) in  ,
∀𝑡 ∈ [0, 𝑇 ] ∶ 𝑧𝑛𝑘 (𝑡) ⇀ 𝑧(𝑡) in ,

∀𝑠, 𝑡 ∈ [0, 𝑇 ] ∶ Diss(𝑃𝑛𝑘 , 𝑧𝑛𝑘 ; 𝑠, 𝑡) → Diss(𝑃 , 𝑧; 𝑠, 𝑡),

∀𝑡 ∈ [0, 𝑇 ] ∶ (𝑡, 𝑞𝑛𝑘 (𝑡)) → (𝑡, 𝑞(𝑡)),
and

𝜕𝑟(⋅, 𝑞𝑛𝑘(⋅)) → 𝜕𝑟(⋅, 𝑞(⋅)) in 𝐿1(0, 𝑇 ). (42)

Notice that the statement of Theorem 3.3 is actually stronger than that of Theorem 3.2 because it additionally provides a way
to construct energetic solutions using incremental minimization and convergence results.

In order to show existence of energetic solutions, we resort in applying the theory introduced and developed by MIELKE and
co-authors in a series of papers and books (see [38] or more recently[41] and references therein). Along the existence proof in
Section 3.2 below we use that, under the assumptions stated in Section 2, the following conditions are satisfied:

(C1) The dissipation  satisfies the following two properties:

(i) ∀(𝑃1, 𝑧1), (𝑃2, 𝑧2) ∈  × ∶

(𝑃1, 𝑧1, 𝑃2, 𝑧2) = 0 ⇔ 𝑃1 = 𝑃2, 𝑧1 = 𝑧2.

(ii) ∀(𝑃𝑖, 𝑧𝑖) ∈  ×, 𝑖 = 0, 1, 2 ∶

(𝑃0, 𝑧0, 𝑃2, 𝑧2) ≤ (𝑃0, 𝑧0, 𝑃1, 𝑧1) +(𝑃1, 𝑧1, 𝑃2, 𝑧2).

(C2)  ∶ ( ×)2 → [0,+∞] is lower semicontinuous.

(C3) There exists a function 𝜆 ∈ 𝐿1(0, 𝑇 ) such that for all 𝑞 ∈  the following implication holds true:

(0, 𝑞) < ∞ ⇒ 𝜕𝑡(⋅, 𝑞) ∶ [0, 𝑇 ] → ℝ is integrable and

|𝜕𝑡(𝑡, 𝑞)| ≤ 𝜆(𝑡)(1 + (𝑡, 𝑞)).
(C4) For all 𝑡 ∈ [0, 𝑇 ], the map 𝑞 → (𝑡, 𝑞) has compact sublevels.

(C5) The set of stable states is closed on [0, 𝑇 ] ×: namely, for every sequence (𝑡𝑘, 𝑞𝑘) such that 𝑞𝑘 ∈ (𝑡𝑘) for every 𝑘, 𝑡𝑘 → 𝑡,
and 𝑞𝑘 ⇀ 𝑞 in , we have 𝑞 ∈ (𝑡).

Notice that (C1) and (C2) imply that for any bounded sequence (𝑃𝑘, 𝑧𝑘)𝑘∈ℕ ∈  × we have

min{(𝑃 , 𝑧, 𝑃𝑘, 𝑧𝑘),(𝑃𝑘, 𝑧𝑘, 𝑃 , 𝑧)} → 0 ⇒ (𝑃𝑘, 𝑧𝑘) ⇀ (𝑃 , 𝑧) in  ×
as was observed in [34, Lemma 4.1], because bounded sets in  × are precompact (with respect to the weak topologies). As
a consequence, once (C1) and (C2) are established, we may use the generalized version of Helly’s selection principle stated in
[41, Theorem 2.1.24].
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Aiming to prove Theorem 3.3, we start by checking that conditions (C1)-(C4) are indeed satisfied by our model introduced
in Section 2. The proof of (C5) is typically the hardest part and we establish it separately in Section 3.1 by arguing as in
THOMAS.[50,51] The process in finding mutual recovery sequences used therein is directly applicable to our setting.

Proof of (C1): The dissipation  is defined as an integral over Ω of the non-negative function 𝐷. By Proposition 2.4 for
almost every 𝑥 ∈ Ω we have

𝐷(𝑥, 𝑃0(𝑥), 𝑧0(𝑥), 𝑃1(𝑥), 𝑧1(𝑥)) = 𝜅(𝑥)(𝑧0(𝑥) − 𝑧1(𝑥)) + 𝜌(𝑧1(𝑥))𝐷p(𝑥, 𝑃0(𝑥), 𝑃1(𝑥)),

with 𝜌(𝑧1(𝑥))𝐷(𝑥, 𝑃0(𝑥), 𝑃1(𝑥)) ≥ 0, and 𝜅(𝑥) ≥ 𝜅0 > 0. It is thus easily seen that if 𝐷(⋅, 𝑃0, 𝑧0, 𝑃1, 𝑧1) = 0 a.e. in Ω it must be
𝑧0 = 𝑧1 a.e. on Ω. Now, since 𝜌 is strictly positive, 𝐷p(𝑥, 𝑃0(𝑥), 𝑃1(𝑥)) = 0 for a.e. 𝑥 ∈ Ω, which in turn implies 𝑃0 = 𝑃1 a.e.
by Lemma 2.1(i). This proves point (i) of (C1). We now prove the triangle inequality (ii). Let (𝑃𝑖, 𝑧𝑖) ∈  × for 𝑖 = 1, 2, 3.
We can assume without loss of generality that 𝑧1 ≥ 𝑧2 ≥ 𝑧3 a.e. on Ω. Otherwise the right-hand side of the triangle inequality
is +∞. Fix 𝑥 ∈ Ω and for simplicity drop the 𝑥-dependence in the next formulas. We use Lemma 2.1(ii), Proposition 2.4, and
the monotonicity of 𝜌 to estimate

𝐷(𝑃1, 𝑧1, 𝑃3, 𝑧3) = 𝜅(𝑧1 − 𝑧3) + 𝜌(𝑧3)𝐷p(𝑃1, 𝑃3)

= 𝜅(𝑧1 − 𝑧2) + 𝜅(𝑧2 − 𝑧3) + 𝜌(𝑧3)𝐷p(𝑃1, 𝑃3)

≤ 𝜅(𝑧1 − 𝑧2) + 𝜅(𝑧2 − 𝑧3) + 𝜌(𝑧3)(𝐷p(𝑃1, 𝑃2) +𝐷p(𝑃2, 𝑃3))

≤ 𝜅(𝑧1 − 𝑧2) + 𝜌(𝑧2)𝐷p(𝑃1, 𝑃2) + 𝜅(𝑧2 − 𝑧3) + 𝜌(𝑧3)𝐷p(𝑃2, 𝑃3)

= 𝐷(𝑃1, 𝑧1, 𝑃2, 𝑧2) +𝐷(𝑃2, 𝑧2, 𝑃3, 𝑧3).

We conclude by integrating over Ω.
Proof of (C2): We have to show that whenever (𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) ⇀ (𝑃 , 𝑧, 𝑃 , 𝑧) in ( ×)2 then

(𝑃 , 𝑧, 𝑃 , 𝑧) ≤ lim inf
𝑘→∞

(𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘).

By compactness the convergence of (𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) to (𝑃 , 𝑧, 𝑃 , 𝑧) above is strong in 𝐿1(Ω). By Proposition 2.4 it suffices to
show that

∫Ω Ψ(𝑥, 𝑧(𝑥) − 𝑧(𝑥)) d𝑥 ≤ lim inf
𝑘→∞ ∫Ω Ψ(𝑥, 𝑧𝑘(𝑥) − 𝑧𝑘(𝑥)) d𝑥 (43)

and

∫Ω 𝜌(𝑥, 𝑧)𝐷p(𝑥, 𝑃 , 𝑃 ) d𝑥 = lim
𝑘→∞∫Ω 𝜌(𝑥, 𝑧𝑘)𝐷p(𝑥, 𝑃𝑘, 𝑃𝑘) d𝑥. (44)

The implication (43) simply follows from Fatou’s Lemma since Ψ is non-negative and lower semicontinuous in the second
component. In order to prove (44) we use that 𝜌(𝑥, ⋅) is continuous. As shown in Lemma 2.3, 𝐷p(𝑥, ⋅, ⋅) is continuous as well
and using the sublinear growth proved in Proposition 2.2 we conclude by Dominated Convergence Theorem.

Proof of (C3): From the very definition of the energy we recall

𝜕𝑡(𝑡, 𝑦, 𝑃 , 𝑧) = 𝜕𝑡el(𝑡, 𝑦, 𝑃 , 𝑧) − ⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦)⟩ − ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦)⟩
and use estimate (37a) to control

|𝜕𝑡el(𝑡, 𝑦, 𝑃 , 𝑧)| ≤ 𝑐𝐸1 (el(𝑡, 𝑦, 𝑃 , 𝑧) + 𝑐𝐸0 ) ≤ 𝑐𝐸1 ((𝑡, 𝑦, 𝑃 , 𝑧) + 𝑐𝐸0 )

by assumptions (35) and (36). Moreover,

|⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦)⟩ + ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦)⟩| (35)≤ 𝐶(‖𝓁̇(𝑡)‖(𝑊 1,𝑞)∗ + ‖𝓁(𝑡)‖(𝑊 1,𝑞)∗ )‖∇𝑦‖𝐿𝑞

(∗)≤ 𝐶𝜆(𝑡)(1 + (𝑡, 𝑦, 𝑃 , 𝑧)),
where 𝜆(𝑡) ∶= ‖𝓁̇(𝑡)‖(𝑊 1,𝑞)∗ + ‖𝓁(𝑡)‖(𝑊 1,𝑞)∗ ∈ 𝐿1(0, 𝑇 ) by assumption (36) and (∗) follows from (48) shown below.
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Proof of (C4): To assert that all sublevels of the energy are compact is equivalent to saying that sublevels are precompact and
closed. We start by showing (sequential) precompactness. Let 𝑡 ∈ [0, 𝑇 ] and assume that we have a sequence 𝑞𝑘 = (𝑦𝑘, 𝑃𝑘, 𝑧𝑘) ∈ which satisfies (𝑡, 𝑞𝑘) ≤ 𝐶 . Using coercivity (31) we see that

(𝑡, 𝑞𝑘) ≥ 𝑐
(‖∇𝑦𝑘𝑃−1

𝑘
‖𝑞e
𝐿𝑞e + ‖𝑃𝑘‖𝑞p𝐿𝑞p + ‖∇𝑃𝑘‖𝑟p𝐿𝑟p + ‖∇𝑧𝑘‖𝑟z𝐿𝑟z

)
− 𝐶1‖∇𝑦𝑘‖𝐿𝑞 − 𝐶2, (45)

by assumptions (35) and (36). By Young’s inequality we deduce that, for any 𝜂 > 0,

𝐶1‖∇𝑦𝑘‖𝐿𝑞 ≤ 𝜂−1𝐶 +
𝜂‖∇𝑦𝑘‖𝑞𝐿𝑞

𝑞
. (46)

Additionally, using Hölder’s and Young’s inequality in view of (32), we have

‖∇𝑦𝑘‖𝑞𝐿𝑞 ≤ ‖∇𝑦𝑘𝑃−1
𝑘
‖𝑞
𝐿𝑞e‖𝑃𝑘‖𝑞𝐿𝑞p ≤ 𝐶

(‖∇𝑦𝑘𝑃−1
𝑘
‖𝑞e
𝐿𝑞e + ‖𝑃𝑘‖𝑞p𝐿𝑞p

)
. (47)

Combining (45), (46), and (47) and choosing 𝜂 > 0 suitably small, we readily see that

‖∇𝑦𝑘‖𝑞𝐿𝑞 + ‖𝑃𝑘‖𝑞p𝐿𝑞p + ‖∇𝑃𝑘‖𝑟p𝐿𝑟p + ‖∇𝑧𝑘‖𝑟z𝐿𝑟z ≤ 𝐶(1 + (𝑡, 𝑞𝑘)) ≤ 𝐶. (48)

Then, there exists a (not relabeled) subsequence such that

𝑧𝑘 → 𝑧∗ in 𝐿1(Ω) and pointwise a.e.,

𝑧𝑘 ⇀ 𝑧∗ weakly in 𝑊 1,𝑟z (Ω).

Notice that 𝑧𝑘 ∈ [0, 1] a.e. on Ω, thus 𝑧𝑘 stays uniformly bounded in 𝐿∞(Ω), so that by Vitali’s Convergence Theorem we infer

𝑧𝑘 → 𝑧∗ in 𝐿𝜎(Ω)

for all 𝜎 ≥ 1. Similarly, we argue for 𝑃𝑘 which is uniformly bounded in 𝐿𝑞p (Ω) with 𝑞p ∶= max{𝑞p, 𝑟∗p}, 𝑟∗p being the Sobolev
exponent to 𝑟p, and extract another (not relabeled) subsequence such that

𝑃𝑘 ⇀ 𝑃 ∗ weakly in 𝑊 1,𝑟p (Ω),

𝑃𝑘 → 𝑃 ∗ in 𝐿𝑠(Ω),

for every 𝑠 ∈ [1, 𝑞p). Furthermore, we infer that

∇𝑦𝑘 ⇀ ∇𝑦∗ weakly in 𝐿𝑞(Ω).

In particular, we have checked that

𝑞𝑘 ⇀ 𝑞∗ in ,
which is nothing but sequential precompactness.

It remains to show the lower semicontinuity of  , which is equivalent to closedness of sublevels. Take a sequence 𝑞𝑘 ⇀ 𝑞 in
 where 𝑞𝑘 = (𝑦𝑘, 𝑃𝑘, 𝑧𝑘) and assume without loss of generality that sup𝑘 (𝑡, 𝑞𝑘) ≤ 𝐶 . We can use estimate (48) and choose a
(not relabeled) subsequence such that (𝑡, 𝑞𝑘) converges to lim inf𝑘→∞ (𝑡, 𝑞𝑘) and

∇𝑦𝑘 ⇀ ∇𝑦 weakly in 𝐿𝑞(Ω),

∇𝑃𝑘 ⇀ ∇𝑃 weakly in 𝐿𝑟p (Ω),

∇𝑧𝑘 ⇀ ∇𝑧 weakly in 𝐿𝑟z (Ω),

𝑃𝑘 → 𝑃 in 𝐿𝑠(Ω),

𝑧𝑘 → 𝑧 in 𝐿𝜎(Ω)



MELCHING ET AL. 17 of 28

for every 𝑠 ∈ [1, 𝑞p), 𝜎 ∈ [1,∞). Now in order to use polyconvexity (30) we need to show that

𝕄(∇𝑔Dir(𝑡, 𝑦𝑘)∇𝑦𝑘𝑃−1
𝑘

) ⇀ 𝕄(∇𝑔Dir(𝑡, 𝑦)∇𝑦𝑃−1) weakly in 𝐿1(Ω).

This result was established in [39] and applied in [34, Proposition 5.1] (see also [41, Lemma 4.1.3]). The convergence is proven
under the assumption that 𝑞 > 𝑑 and

1
𝑞
+ 𝑑 − 1

𝑠
≤ 1

which is indeed satisfied here since 𝑞p > 𝑞 > 𝑑 and therefore 𝑠 can be chosen larger than 𝑑. The lower semicontinuity of
(𝑦, 𝑃 , 𝑧) → (𝑡, 𝑦, 𝑃 , 𝑧) now follows from classical theory due to the polyconvexity assumptions in Section 2.5. It was pointed
out in [34] that the classical assumption of 𝑊 being a Carathéodory function can be relaxed to the one of a normal integrand
using a Yosida-Moreau regularization.

3.1 Closedness of stable states (C5)
This closedness relies on finding suitable recovery sequences for the damage variable 𝑧. In [40] this was achieved in the frame-
work of damage in nonlinear elasticity for 𝑟z > 𝑑, in which case damage is continuous in space. In the papers,[50,51] it was
generalized to 1 < 𝑟z < 𝑑. We apply the strategy of [50,51] to our model. In particular, the choice of recovery sequences is the
same as in the mentioned works.

We want to prove that, if (𝑡𝑘, 𝑞𝑘) is a sequence such that 𝑞𝑘 ∈ (𝑡𝑘), 𝑡𝑘 → 𝑡, and 𝑞𝑘 ⇀ 𝑞 in , then 𝑞 ∈ (𝑡). Thus we need to
ensure that for every 𝑞 ∈ 

0 ≤ (𝑡, 𝑞) +(𝑞, 𝑞) − (𝑡, 𝑞).
In order to show this we provide a so-called mutual recovery sequence 𝑞𝑘 (see [40,43]) satisfying

lim sup
𝑘→∞

((𝑡𝑘, 𝑞𝑘) +(𝑞𝑘, 𝑞𝑘) − (𝑡𝑘, 𝑞𝑘)) ≤ (𝑡, 𝑞) +(𝑞, 𝑞) − (𝑡, 𝑞). (49)

Indeed, by stability of 𝑞𝑘, we have for every 𝑞𝑘 ∈ 
0 ≤ (𝑡𝑘, 𝑞𝑘) +(𝑞𝑘, 𝑞𝑘) − (𝑡𝑘, 𝑞𝑘). (50)

Then the lim sup bound (49) together with (50) implies 𝑞 ∈ (𝑡).
Notice that if the dissipation  was continuous (not only lower semicontinuous) then (49) would hold true even for the

constant recovery sequence 𝑞𝑘 = 𝑞 because  is lower semicontinuous and (⋅, 𝑞) is continuous. In the present case however,
the dissipation  is not (globally) continuous but only on its domain. The same is true for dissipation distances in finite plasticity
with isotropic hardening, see [34, Conditions 3.5].

Lemma 3.4. Let

𝔻 ∶=
{
(𝑃 , 𝑧, 𝑃 , 𝑧) ∈ ( ×)2 ∶ (𝑃 , 𝑧, 𝑃 , 𝑧) < ∞

}
.

Then  ∶ 𝔻 → [0,∞) is continuous.

Proof. By Proposition 2.4,

(𝑃 , 𝑧, 𝑃 , 𝑧) = ∫Ω Ψ(𝑥, 𝑧 − 𝑧) + 𝜌(𝑥, 𝑧)𝐷p(𝑥, 𝑃 , 𝑃 ) d𝑥.

Now take a sequence (𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) ∈ 𝔻 such that (𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) ⇀ (𝑃 , 𝑧, 𝑃 , 𝑧) in ( ×)2. Then the convergence is strong
in 𝐿1(Ω), so that up to not relabeled subsequence we might assume (𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) → (𝑃 , 𝑧, 𝑃 , 𝑧) a.e. in Ω. Observe that

𝔻 =
{
(𝑃 , 𝑧, 𝑃 , 𝑧) ∈ ( ×)2 ∶ 𝑧(𝑥) ≥ 𝑧(𝑥) for a.e. 𝑥 ∈ Ω

}
.
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Thus,

(𝑃𝑘, 𝑧𝑘, 𝑃𝑘, 𝑧𝑘) = ∫Ω 𝜅(𝑥)(𝑧𝑘(𝑥) − 𝑧𝑘(𝑥)) + 𝜌(𝑥, 𝑧𝑘)𝐷p(𝑥, 𝑃𝑘, 𝑃𝑘) d𝑥

for every 𝑘 ∈ ℕ. By Lemma 2.3 the integrand converges pointwise a.e. in Ω to the corresponding limit. We can further estimate
the integrand, using Proposition 2.2, by

2‖𝜅‖𝐿∞ + 𝐶‖𝜌‖𝐿∞(1 + |𝑃𝑘(𝑥)| + |𝑃𝑘(𝑥)|).
This bound allows us to use the Dominated Convergence Theorem. Hence,

lim
𝑘→∞∫Ω 𝜅(𝑧𝑘 − 𝑧𝑘) + 𝜌(𝑧𝑘)𝐷p(𝑃𝑘, 𝑃𝑘) d𝑥 = ∫Ω 𝜅(𝑧 − 𝑧) + 𝜌(𝑧)𝐷p(𝑃 , 𝑃 ) d𝑥, (51)

where, for simplicity, we have again omitted the 𝑥-dependence. Noticing that 𝜅(𝑥)(𝑧(𝑥) − 𝑧(𝑥)) = Ψ(𝑥, 𝑧(𝑥) − 𝑧(𝑥)) for a.e.
𝑥 ∈ Ω, the right-hand side of (51) is nothing but (𝑃 , 𝑧, 𝑃 , 𝑧) and the statement follows. □

Lemma 3.5. Let 𝑞𝑘 ∈ (𝑡𝑘) such that 𝑡𝑘 → 𝑡 and 𝑞𝑘 ⇀ 𝑞 in . Then for every 𝑞 ∈  there exists a mutual recovery sequence
𝑞𝑘 in the sense of (49).

Proof. For sake of completeness, we give the full proof following the steps in [51, Theorem 3.14].
Step 1. Let (𝑡𝑘, 𝑞𝑘) be as in the statement and 𝑞 = (𝑦, 𝑃 , 𝑧) ∈  be arbitrary. We first set 𝑦𝑘 ∶= 𝑦 and 𝑃𝑘 = 𝑃 for all 𝑘. From

this choice it is possible to reduce to the case 𝑡𝑘 = 𝑡 for every 𝑘. Indeed, we claim that the lim sup in (49) coincides with

lim sup
𝑘→∞

((𝑡, 𝑞𝑘) +(𝑞𝑘, 𝑞𝑘) − (𝑡, 𝑞𝑘)).
Consider the difference

||(𝑡𝑘, 𝑞𝑘) − (𝑡, 𝑞𝑘) + (𝑡, 𝑞𝑘) − (𝑡𝑘, 𝑞𝑘)|| ≤ ||el(𝑡𝑘, 𝑞𝑘) −el(𝑡, 𝑞𝑘) +el(𝑡, 𝑞𝑘) −el(𝑡𝑘, 𝑞𝑘)||
+ ||⟨𝓁(𝑡𝑘), 𝑔Dir(𝑡𝑘, 𝑦)⟩ − ⟨𝓁(𝑡), 𝑔Dir(𝑡, 𝑦)⟩||
+ ||⟨𝓁(𝑡𝑘), 𝑔Dir(𝑡𝑘, 𝑦𝑘)⟩ − ⟨𝓁(𝑡), 𝑔Dir(𝑡, 𝑦𝑘)⟩||. (52)

We want to show that this is infinitesimal as 𝑡𝑘 → 𝑡. The first line in the right-hand side is

||el(𝑡𝑘, 𝑞𝑘) −el(𝑡, 𝑞𝑘) +el(𝑡, 𝑞𝑘) −el(𝑡𝑘, 𝑞𝑘)||
=
|||||∫

𝑡𝑘

𝑡

𝜕𝑠el(𝑠, 𝑞𝑘) − 𝜕𝑠el(𝑠, 𝑞𝑘) d𝑠
|||||

≤ ∫
𝑡𝑘

𝑡

|𝜕𝑠el(𝑡, 𝑞𝑘)| + |𝜕𝑠el(𝑡, 𝑞𝑘)| + |𝜕𝑠el(𝑠, 𝑞𝑘) − 𝜕𝑠el(𝑡, 𝑞𝑘)| + |𝜕𝑠el(𝑡, 𝑞𝑘) − 𝜕𝑠el(𝑠, 𝑞𝑘)| d𝑠.
Now, by (37a) and (37b) we can bound this by 𝐶|𝑡 − 𝑡𝑘|(1 + (𝑡, 𝑞𝑘)), see also (62) below. Let us continue with the estimate of
the second and third lines in (52), that are less or equal to

||⟨𝓁(𝑡𝑘) − 𝓁(𝑡), 𝑔Dir(𝑡𝑘, 𝑦)⟩|| + ||⟨𝓁(𝑡), 𝑔Dir(𝑡𝑘, 𝑦) − 𝑔Dir(𝑡, 𝑦)⟩|| + ||⟨𝓁(𝑡𝑘) − 𝓁(𝑡), 𝑔Dir(𝑡𝑘, 𝑦𝑘)⟩|| + ||⟨𝓁(𝑡), 𝑔Dir(𝑡𝑘, 𝑦𝑘) − 𝑔Dir(𝑡, 𝑦𝑘)⟩||
≤ 𝐶‖𝓁(𝑡𝑘) − 𝓁(𝑡)‖(𝑊 1,𝑞)∗ + ‖𝓁(𝑡)‖(𝑊 1,𝑞)∗‖𝑔Dir(𝑡𝑘, 𝑦𝑘) − 𝑔Dir(𝑡, 𝑦𝑘)‖𝑊 1,𝑞 → 0

as 𝑘 → ∞ by (35) and (36). Altogether,

||(𝑡𝑘, 𝑞𝑘) − (𝑡, 𝑞𝑘) + (𝑡, 𝑞𝑘) − (𝑡𝑘, 𝑞𝑘)|| ≤ 𝑜(1) + 𝑜(1)(𝑡, 𝑞𝑘).
This shows the claim provided (𝑡, 𝑞𝑘) ≤ 𝐶 < ∞, which is satisfied by the recovery sequence chosen below.
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Step 2. If (𝑡, 𝑞) +(𝑞, 𝑞) = +∞ then (49) holds trivially. Let us therefore assume (𝑡, 𝑞) < +∞ and (𝑞, 𝑞) < +∞. This in
particular implies

𝑧 ≤ 𝑧, (53)

a.e. on Ω. We define the recovery sequence as 𝑞𝑘 ∶= (𝑦, 𝑃 , 𝑧𝑘) where

𝑧𝑘 ∶= min{(𝑧 − 𝛿𝑘)+, 𝑧𝑘} (54)

and 𝛿𝑘 > 0 is a sequence that will be chosen later (tending to zero as 𝑘 → ∞).
We now claim that 𝑧𝑘 ⇀ 𝑧weakly in𝑊 1,𝑟z (Ω). Indeed, by construction, 𝑧𝑘 is bounded in𝑊 1,𝑟z (Ω). So for every subsequence

𝑧𝑘𝑙 there exists a further subsequence 𝑧𝑘𝑙𝑗
and a limit 𝑧∗ (a priori depending on the subsequence we choose) such that

𝑧𝑘𝑙𝑗
⇀ 𝑧∗ weakly in 𝑊 1,𝑟z (Ω),

𝑧𝑘𝑙𝑗
→ 𝑧∗ in 𝐿𝑟z (Ω),

𝑧𝑘𝑙𝑗
→ 𝑧∗ a.e. on Ω.

But by definition of 𝑧𝑘, it follows that it converges to 𝑧 a.e. on Ω. Thus, 𝑧∗ = 𝑧 independently of the subsequence and we have
shown

𝑧𝑘 ⇀ 𝑧 weakly in 𝑊 1,𝑟z (Ω).

Notice that (𝑞𝑘, 𝑞𝑘) ∈ 𝔻 because 𝑧𝑘 ≤ 𝑧𝑘. Therefore, by Lemma 3.4

lim sup
𝑘→∞

(𝑞𝑘, 𝑞𝑘) = lim
𝑘→∞

(𝑞𝑘, 𝑞𝑘) = (𝑞, 𝑞).

Step 3. It remains to show that

lim sup
𝑘→∞

((𝑡, 𝑞𝑘) − (𝑡, 𝑞𝑘)) ≤ (𝑡, 𝑞) − (𝑡, 𝑞). (55)

To achieve this we need to choose the sequence 𝛿𝑘 in such a way that 𝑑({𝑧𝑘 < (𝑧 − 𝛿𝑘)+}) goes to zero as 𝑘 → ∞. This
particularly implies 𝑧𝑘 → 𝑧 in 𝐿𝜎 for all 𝜎 ≥ 1. Recall that

(𝑡, 𝑦, 𝑃 , 𝑧) = (𝑡, 𝑦, 𝑃 , 𝑧) + 𝜈

𝑟p ∫Ω |∇𝑃 |𝑟p d𝑥 + 𝜇

𝑟z ∫Ω |∇𝑧|𝑟z d𝑥 − ⟨𝓁(𝑡), 𝑔Dir(𝑡, 𝑦)⟩.
By lower semicontinuity of  , to establish (55), it suffices to show

lim
𝑘→∞

(𝑡, 𝑦, 𝑃 , 𝑧𝑘) = (𝑡, 𝑦, 𝑃 , 𝑧) (56)

and

lim sup
𝑘→∞ ∫Ω

(|∇𝑧𝑘|𝑟z − |∇𝑧𝑘|𝑟z) d𝑥 ≤ ∫Ω
(|∇𝑧|𝑟z − |∇𝑧|𝑟z) d𝑥. (57)

Up to subsequences we can assume that 𝑧𝑘 → 𝑧 a.e. on Ω. Since 𝑊 is continuous in 𝑧, this implies

𝑊 (⋅, 𝑦(⋅), 𝑃 (⋅), 𝑧𝑘(⋅)) → 𝑊 (⋅, 𝑦(⋅), 𝑃 (⋅), 𝑧(⋅)) a.e. on Ω.

By using 𝑧𝑘 ≤ 𝑧 and monotonicity (34) we get the uniform bound

𝑊 (𝑦, 𝑃 , 𝑧𝑘) ≤ 𝑊 (𝑦, 𝑃 , 𝑧) ∈ 𝐿1(Ω).
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Therefore, (56) follows from the Dominated Convergence Theorem. We are left with showing (57). We define

𝐵𝑘 = {𝑧𝑘 < (𝑧 − 𝛿𝑘)+},

𝐴𝑘 = Ω ⧵ 𝐵𝑘.

Since 𝐵𝑘 ⊂ {|𝑧 − 𝑧𝑘| ≥ 𝛿𝑘} thanks to (53), we can use Markov’s inequality to show that

𝑑(𝐵𝑘) ≤ 1
𝛿
𝑟z
𝑘
∫Ω |𝑧 − 𝑧𝑘|𝑟z𝑑𝑥.

As we want this to go to 0 we impose that

𝛿𝑘 = ‖𝑧 − 𝑧𝑘‖1∕𝑟z𝐿𝑟z .

Now we can write, by the definition of 𝑧𝑘,

𝜇

𝑟z ∫Ω
(|∇𝑧𝑘|𝑟z − |∇𝑧𝑘|𝑟z) d𝑥 = 𝜇

𝑟z ∫𝐴𝑘

(|∇𝑧|𝑟z − |∇𝑧𝑘|𝑟z) d𝑥.
We take the lim sup as 𝑘 → ∞ and use that 𝐼𝐴𝑘

∇𝑧𝑘 ⇀ ∇𝑧 weakly in 𝐿𝑟z (Ω) (here 𝐼𝐴𝑘
, the characteristic function of 𝐴𝑘, con-

verges to 1 strongly in 𝐿𝑞(Ω) for any 𝑞 ∈ [1,+∞), while ∇𝑧𝑘 tends to ∇𝑧 weakly in 𝐿𝑝(Ω) for all 𝑝 < 𝑟z; the equiboundedness
of 𝐼𝐴𝑘

∇𝑧𝑘 on 𝐿𝑟z implies the claim) to get

lim sup
𝑘→∞

𝜇

𝑟z ∫𝐴𝑘

(|∇𝑧|𝑟z − |∇𝑧𝑘|𝑟z) d𝑥 = 𝜇

𝑟z

(
∫Ω |∇𝑧|𝑟z d𝑥 − lim inf

𝑘 ∫𝐴𝑘

|∇𝑧𝑘|𝑟z d𝑥)

≤ 𝜇

𝑟z

(
∫Ω |∇𝑧|𝑟z d𝑥 − ∫Ω |∇𝑧|𝑟z d𝑥

)
by weak lower semicontinuity of the norm. □

3.2 Proof of Theorem 3.3
We are now in position to prove the main result. We proceed in several steps following the general scheme showed in [38]
(see also, e.g. [34] for the treatment of the boundary datum). Since many steps are standard we do not enter into much detail and
refer to [38,41]. Nevertheless, for completeness all crucial steps of the proof are mentioned.

Step 1: Approximation via incremental minimization. Let 𝜎𝑛 = {0 = 𝑡𝑛0 < 𝑡𝑛1 < ⋯ < 𝑡𝑛
𝑁(𝑛) = 𝑇 } ∈ Π, 𝑛 ∈ ℕ, be a

sequence of partitions such that the fineness tends to zero as 𝑛 tends to ∞. For fixed 𝑛 we iteratively solve for

(𝑦𝑗, 𝑃𝑗 , 𝑧𝑗) ∈ argmin
(𝑦,𝑃 ,𝑧)∈

{(𝑡𝑗 , 𝑦, 𝑃 , 𝑧) +(𝑃𝑗−1, 𝑧𝑗−1, 𝑃 , 𝑧)
}
, 𝑗 ∈ {1,… , 𝑁(𝑛)}. (58)

Note that (C2) and (C4) guarantee the existence of minimizers. This selection satisfies 𝑞𝑗 = (𝑦𝑗, 𝑃𝑗 , 𝑧𝑗) ∈ (𝑡𝑗). This can be seen
by using the minimum property in (58) and the triangle inequality (C1 (ii)). Arguing in a standard way (testing the minimum in
(58) by 𝑞𝑗−1) we arrive at the inequality

(𝑡, 𝑞𝑛(𝑡)) + Diss(𝑃𝑛, 𝑧𝑛; 𝑠, 𝑡) ≤ (𝑠, 𝑞(𝑠)) + ∫
𝑡

𝑠

𝜕𝑟(𝑟, 𝑞𝑛(𝑟)) d𝑟, (59)

for every 𝑠, 𝑡 ∈ 𝜎𝑛, where we have defined the right-continuous piecewise constant approximation

𝑞𝑛(𝑡) ∶= 𝑞𝑗−1, for 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗).

We have just established (40) and (41). The next goal is to pass this inequality to the limit.
Step 2: A priori estimates. Using (59) in combination with (C3), and a standard application of Gronwall’s inequality, entails

(𝑡, 𝑞𝑛(𝑡)) ≤ (1 + (0, 𝑞0)) exp
(
∫

𝑡

0
𝜆(𝑠) d𝑠

)
≤ 𝐶
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for every 𝑡 ∈ [0, 𝑇 ]. This leads to

sup
𝑡∈[0,𝑇 ]

(𝑡, 𝑞𝑛(𝑡)) + Diss(𝑃𝑛, 𝑧𝑛; 0, 𝑇 ) ≤ 𝐶. (60)

In this step we have exploited the uniform continuity of (⋅, 𝑞) guaranteed by conditions (35) and (36).
Step 3: Selection of subsequences. The dissipation distance satisfies (C1) and (C2) and due to (C4) the sequence (𝑃𝑛, 𝑧𝑛) takes

values in a compact subset of  ×. Moreover, its dissipation is bounded uniformly in 𝑛. Therefore we can use Helly’s selection
principle [41, Theorem 2.1.24] and find a subsequence (not relabeled) and functions 𝑃 , 𝑧 ∶ [0, 𝑇 ] →  ×, 𝛿 ∶ [0, 𝑇 ] → [0, 𝐶]
such that the following hold:

∀𝑡 ∈ [0, 𝑇 ] ∶ 𝑃𝑛(𝑡) ⇀ 𝑃 (𝑡) in  , (61a)

∀𝑡 ∈ [0, 𝑇 ] ∶ 𝑧𝑛(𝑡) ⇀ 𝑧(𝑡) in , (61b)

∀𝑡 ∈ [0, 𝑇 ] ∶ 𝛿𝑛(𝑡) ∶= Diss(𝑃𝑛, 𝑧𝑛; 0, 𝑡) → 𝛿(𝑡), (61c)

∀𝑠, 𝑡 ∈ [0, 𝑇 ] ∶ Diss(𝑃 , 𝑧; 𝑠, 𝑡) ≤ 𝛿(𝑡) − 𝛿(𝑠). (61d)

Let us define the sequence

𝜃𝑛(𝑡) ∶= 𝜕𝑡(𝑡, 𝑞𝑛(𝑡)) = 𝜕𝑡el(𝑡, 𝑞𝑛(𝑡)) − ⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦𝑛(𝑡))⟩ − ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦𝑛(𝑡))⟩,
Notice that, thanks to (37b) and the fact that

el(𝑡, 𝑞) ≤ 𝐶(1 + (𝑡, 𝑞)), (62)

the power 𝜕𝑡el(⋅, 𝑞) satisfies the following uniform-continuity property

∀𝐸 > 0, 𝜀 > 0, ∃𝛿 > 0 such that (63)

(0, 𝑞) ≤ 𝐸, |𝑡 − 𝑠| < 𝛿 ⇒ |𝜕𝑡el(𝑡, 𝑞) − 𝜕𝑡el(𝑠, 𝑞)| < 𝜀.

It is easy to check that 𝜃𝑛 is bounded in 𝐿1(0, 𝑇 ) and equi integrable. Actually, the term 𝜕𝑡el(𝑡, 𝑞𝑛(𝑡)) belongs to 𝐿∞(0, 𝑇 )
thanks to (37a) and the a-priori estimates. Furthermore, by (35), for every interval 𝐼 ⊂ [0, 𝑇 ], we have

∫𝐼 |⟨𝓁̇(𝑠), 𝑔Dir(𝑠)◦𝑦𝑛(𝑠)⟩| d𝑠 ≤ 𝐶 ∫𝐼 ‖𝓁̇(𝑠)‖(𝑊 1,𝑞)∗‖∇𝑦𝑛(𝑠)‖𝐿𝑞 d𝑠 ≤ 𝐶 ∫𝐼 ‖𝓁̇(𝑠)‖(𝑊 1,𝑞)∗ d𝑠,

and, since 𝓁̇ ∈ 𝐿1(0, 𝑇 ; (𝑊 1,𝑞(Ω))∗), for every 𝜀 > 0 there exists a 𝜂 > 0 such that, if 𝑑(𝐼) < 𝜂, we have

∫𝐼 ‖𝓁̇(𝑠)‖∗ d𝑠 < 𝜀∕𝐶.

The estimate of the term ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦𝑛(𝑡))⟩ is similar. Thus, we can use Dunford-Pettis Theorem[20] or [41, Theorem B.3.8]
and find a further (not relabeled) subsequence such that

𝜃𝑛 ⇀ 𝜃 weakly in 𝐿1(0, 𝑇 ). (64)

Notice that we did not construct a limit for the deformation yet because we are only able to use Helly’s selection principle on
the dissipative variables. We can still use the fact that 𝑦𝑛 is controlled by the energy for every fixed time 𝑡. We define the limit
deformation 𝑦 ∶ [0, 𝑇 ] →  as follows. Fix 𝑡 ∈ [0, 𝑇 ] and use (C4) and (60) to select a 𝑡-dependent subsequence (𝑛𝑡

𝑘
)𝑘∈ℕ such

that

𝜃𝑛𝑡
𝑘
(𝑡) → lim sup

𝑛→∞
𝜃𝑛(𝑡) =∶ 𝜃sup(𝑡)

and 𝑦𝑛𝑡
𝑘
(𝑡) converges weakly to some limit 𝑦̃ in  . We now define

𝑦(𝑡) ∶= 𝑦̃.
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Notice that such 𝑦̃ may not be unique and may depend on the chosen subsequence. From the definition of 𝜃sup together with
regularity (35) and continuity (63), we can deduce

𝜃sup(𝑡) = lim
𝑘→∞

(
𝜕𝑡el(𝑡, 𝑞𝑛𝑡

𝑘
(𝑡)) − ⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦𝑛𝑡

𝑘
(𝑡))⟩ − ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦𝑛𝑡

𝑘
(𝑡))⟩)

= 𝜕𝑡el(𝑡, 𝑞(𝑡)) − ⟨𝓁̇(𝑡), 𝑔Dir(𝑡, 𝑦(𝑡))⟩ − ⟨𝓁(𝑡), 𝑔̇Dir(𝑡, 𝑦(𝑡))⟩ (65)

for every 𝑡 ∈ [0, 𝑇 ]. We refer to [21, Proposition 3.3] for further details on the convergence of the first term.
Step 4: Stability. We define 𝜏𝑡𝑛 ∶= max{𝜏 ∈ 𝜎𝑛 ∶ 𝜏 ≤ 𝑡}. Then, by definition, 𝜏𝑡𝑛 → 𝑡, 𝑞𝑛(𝑡) ⇀ 𝑞(𝑡) as 𝑛 = 𝑛𝑡

𝑘
→ ∞ and 𝑞𝑛(𝑡) =

𝑞𝑛(𝜏𝑡𝑛) ∈ (𝜏𝑡𝑛) for every 𝑛 ∈ ℕ. Therefore 𝑞(𝑡) ∈ (𝑡) by (C5).
Step 5: Upper energy estimate. Let 𝑡 ∈ [0, 𝑇 ] be fixed and 𝜏𝑡𝑛 be as above. Our goal is to pass to the limit in (41) for 𝑠 = 0

which reads

(𝜏𝑡𝑛, 𝑞𝑛(𝜏𝑡𝑛)) + Diss(𝑃𝑛, 𝑧𝑛; 0, 𝜏𝑡𝑛) ≤ (0, 𝑞0) + ∫
𝜏𝑡𝑛

0
𝜕𝑟(𝑟, 𝑦𝑛(𝑟)) d𝑟. (66)

This is a standard procedure. Indeed, first one proves

(𝑡, 𝑞(𝑡)) ≤ lim inf
𝑛→∞

(𝜏𝑡𝑛, 𝑞𝑛(𝜏𝑡𝑛)), (67)

then uses (61c), (61d), (66) and (67) to get

(𝑡, 𝑞(𝑡)) + Diss(𝑃 , 𝑧; 0, 𝑡) ≤ lim inf
𝑛→∞

(𝜏𝑡𝑛, 𝑞𝑛(𝜏𝑡𝑛)) + lim
𝑛→∞

Diss(𝑃𝑛, 𝑧𝑛; 0, 𝑡)

≤ lim sup
𝑛→∞

(𝜏𝑡𝑛, 𝑞𝑛(𝜏𝑡𝑛)) + lim
𝑛→∞

Diss(𝑃𝑛, 𝑧𝑛; 0, 𝑡)

≤ (0, 𝑞0) + ∫
𝑡

0
𝜃(𝑟) d𝑟 (68)

≤ (0, 𝑞0) + ∫
𝑡

0
𝜃sup(𝑟) d𝑟

= (0, 𝑞0) + ∫
𝑡

0
𝜕𝑟(𝑟, 𝑦(𝑟)) d𝑟.

Step 6: Lower energy estimate. Since this part is established differently compared to the standard scheme,[38] we discuss
it more deeply. Take any partition 𝜎 = {0 = 𝑟0 < 𝑟1 < ⋯ < 𝑟𝑁 = 𝑡} ∈ Π of [0, 𝑡]. By the stability of the limit (Step 4) one has
that

(𝑟𝑖−1, 𝑞(𝑟𝑖−1)) ≤ (𝑟𝑖, 𝑞(𝑟𝑖)) − (𝑟𝑖, 𝑞(𝑟𝑖)) + (𝑟𝑖−1, 𝑞(𝑟𝑖)) +(𝑞(𝑟𝑖−1), 𝑞(𝑟𝑖))

Summing this over 𝑖 = 1,… , 𝑁 we get

(𝑡, 𝑞(𝑡)) − (0, 𝑞(0)) +
𝑁∑
𝑖=1

(𝑞(𝑟𝑖−1), 𝑞(𝑟𝑖)) ≥
𝑁∑
𝑖=1

∫
𝑟𝑖

𝑟𝑖−1

𝜕𝑟(𝑟, 𝑦(𝑟𝑖)) d𝑟. (69)

We use

𝑁∑
𝑖=1

(𝑞(𝑟𝑖−1), 𝑞(𝑟𝑖)) ≤ Diss(𝑃 , 𝑧; 0, 𝑡)

to estimate the left hand side of (69) as desired. It remains to show that there exists a sequence of partitions

𝜎𝑛 = {0 = 𝑟𝑛0 < 𝑟𝑛1 < ⋯ < 𝑟𝑛
𝑁(𝑛) = 𝑡} ∈ Π, 𝑛 ∈ ℕ (70)
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such that

∫
𝑡

0
𝜕𝑟(𝑟, 𝑦(𝑟)) d𝑟 = lim

𝑛→∞

𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

𝜕𝑟(𝑟, 𝑦(𝑟𝑖)) d𝑟. (71)

The difficulty here is that we cannot assume measurability of 𝑦 in time. However, 𝑡 → 𝜕𝑡(𝑡, 𝑦(𝑡)) is integrable. Thus, we can
find a sequence of partitions such that the integral is approximated by its Riemann sums,[26] i.e.

∫
𝑡

0
𝜕𝑟(𝑟, 𝑦(𝑟)) d𝑟 = lim

𝑛→∞

𝑁(𝑛)∑
𝑖=1

𝜕𝑟(𝑟𝑛𝑖 , 𝑦(𝑟𝑛𝑖 ))(𝑟𝑛𝑖 − 𝑟𝑛
𝑖−1). (72)

Now, in order to get (71), we prove that there exists a sequence of partitions simultaneously satisfying (72) and

lim
𝑛→∞

||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

𝜕𝑟el(𝑟, 𝑞(𝑟𝑛𝑖 )) − 𝜕𝑟el(𝑟𝑛𝑖 , 𝑞(𝑟
𝑛
𝑖 )) d𝑟

|||||| = 0,

lim
𝑛→∞

||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

⟨𝓁̇(𝑟), 𝑔Dir(𝑟, 𝑦(𝑟𝑛𝑖 ))⟩ − ⟨𝓁̇(𝑟𝑛𝑖 ), 𝑔Dir(𝑟𝑛𝑖 , 𝑦(𝑟𝑛𝑖 ))⟩ d𝑟|||||| = 0,

lim
𝑛→∞

||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

⟨𝓁(𝑟), 𝑔̇Dir(𝑟, 𝑦(𝑟𝑛𝑖 ))⟩ − ⟨𝓁(𝑟𝑛𝑖 ), 𝑔̇Dir(𝑟𝑛𝑖 , 𝑦(𝑟𝑛𝑖 ))⟩ d𝑟|||||| = 0. (73)

The condition in the first line is straightforwardly achieved for every sequence with fineness tending to zero using equiboundeness
of the energy and uniform continuity (63). To treat the second condition we estimate

||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

⟨𝓁̇(𝑟), 𝑔Dir(𝑟, 𝑦(𝑟𝑛𝑖 ))⟩ − ⟨𝓁̇(𝑟𝑛𝑖 ), 𝑔Dir(𝑟𝑛𝑖 , 𝑦(𝑟𝑛𝑖 ))⟩ d𝑟||||||
≤
||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

⟨𝓁̇(𝑟), 𝑔Dir(𝑟, 𝑦(𝑟𝑛𝑖 )) − 𝑔Dir(𝑟𝑛𝑖 , 𝑦(𝑟
𝑛
𝑖 ))⟩ d𝑟|||||| +

||||||
𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

⟨𝓁̇(𝑟) − 𝓁̇(𝑟𝑛𝑖 ), 𝑔Dir(𝑟
𝑛
𝑖 , 𝑦(𝑟

𝑛
𝑖 ))⟩ d𝑟||||||

≤ 𝐶

𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

‖𝑔Dir(𝑟) − 𝑔Dir(𝑟𝑛𝑖 )‖𝐿∞ + ‖𝓁̇(𝑟) − 𝓁̇(𝑟𝑛𝑖 )‖(𝑊 1,𝑞)∗ d𝑟, (74)

where we used conditions (35) and (36) together with the fact that sup𝑟∈[0,𝑇 ] ‖∇𝑦(𝑟)‖𝐿𝑞 ≤ 𝐶 . The third line can be bounded
analogously by

𝐶

𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

‖𝑔̇Dir(𝑟) − 𝑔̇Dir(𝑟𝑛𝑖 )‖𝐿∞ + ‖𝓁(𝑟) − 𝓁(𝑟𝑛𝑖 )‖(𝑊 1,𝑞)∗ d𝑟.

Since 𝑔Dir , 𝑔̇Dir ∶ [0, 𝑇 ] → 𝐿∞(Ω), 𝓁, 𝓁̇ ∶ [0, 𝑇 ] → (𝑊 1,𝑞(Ω))∗ and 𝜕𝑡(⋅, 𝑦(⋅)) ∶ [0, 𝑇 ] → ℝ are integrable, we can apply
Lemma 3.6 below to the mentioned functions to find a sequence of partitions satisfying (71).

Lemma 3.6. Let 𝑠 < 𝑡. Assume we have a countable family of Bochner integrable functions

𝑓𝑘 ∶ [𝑠, 𝑡] → 𝑋𝑘, 𝑘 ∈ ℕ,

where 𝑋𝑘 are Banach spaces. Then there exists a k-independent sequence of partitions

𝜎𝑛 = {𝑠 = 𝑟𝑛0 < 𝑟𝑛1 < ⋯ < 𝑟𝑛
𝑁(𝑛) = 𝑡}, 𝑛 ∈ ℕ,
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with fineness Δ(𝜎𝑛) → 0 such that

lim
𝑛→∞

𝑁(𝑛)∑
𝑖=1

∫
𝑟𝑛
𝑖

𝑟𝑛
𝑖−1

‖𝑓𝑘(𝑟) − 𝑓𝑘(𝑟𝑛𝑖 )‖ d𝑟 = 0

for every 𝑘 ∈ ℕ.

The proof can be found in [18, Lemma 4.12 & Remark 4.13].
Step 7: Conclusion. A combination of the upper estimate (68) with the lower energy estimate in Step 6 gives the following

chain of inequalities

(𝑡, 𝑞(𝑡)) + Diss(𝑃 , 𝑧; 0, 𝑡) ≤ lim inf
𝑘→∞

(𝑡, 𝑞𝑛𝑘(𝑡)) + lim
𝑘→∞

Diss(𝑃𝑛𝑘 , 𝑧𝑛𝑘 ; 0, 𝑡)

≤ lim sup
𝑘→∞

(𝑡, 𝑞𝑛𝑘(𝑡)) + 𝛿(𝑡)

≤ (0, 𝑞0) + ∫
𝑡

0
𝜃(𝑟) d𝑟

≤ (0, 𝑞0) + ∫
𝑡

0
𝜕𝑟(𝑟, 𝑞(𝑟)) d𝑟

≤ (𝑡, 𝑞(𝑡)) + Diss(𝑃 , 𝑧; 0, 𝑡).

Hence, equality holds everywhere, implying

𝜃(𝑟) = 𝜃sup(𝑟) = 𝜕𝑟(𝑟, 𝑞(𝑟)) for a.e. 𝑟 ∈ [0, 𝑇 ],

Diss(𝑃𝑛𝑘 , 𝑧𝑛𝑘 ; 0, 𝑡) → Diss(𝑃 , 𝑧; 0, 𝑡), and

(𝑡, 𝑞𝑛𝑘 (𝑡)) → (𝑡, 𝑞(𝑡)).
To show convergence (42) we argue as in [21, Lemma 3.5]. We know that 𝜃𝑛𝑘 ⇀ 𝜃 in 𝐿1(0, 𝑇 ) and 𝜃(𝑡) = lim sup𝑘→∞ 𝜃𝑛𝑘(𝑡) for
a.e. 𝑡 ∈ [0, 𝑇 ]. Now,

‖𝜃𝑛𝑘 − 𝜃‖𝐿1 = ∫
𝑇

0
(𝜃 − 𝜃𝑛𝑘) d𝑡 + 2∫

𝑇

0
(𝜃𝑛𝑘 − 𝜃)+ d𝑡 (75)

where 𝑓+ ∶= max{0, 𝑓}. The first integral converges to zero by weak convergence and the second integrand satisfies
0≤ (𝜃𝑛𝑘 − 𝜃)+ ≤ Θ𝑘 ∶= sup𝑙≥𝑘 𝜃𝑛𝑙 − 𝜃. Due to equiboundedness of 𝜃𝑛𝑘 in 𝐿1 we know that Θ1 ∈ 𝐿1(0, 𝑇 ). Therefore we can
use Levi’s Monotone Convergence Theorem for the monotone decreasing sequence Θ𝑘 and conclude that also the second term
in (75) converges to zero entailing (42).

4 EXTENSIONS AND GENERALIZATIONS

4.1 Nonlinear loading
In our discussion, for simplicity and not to overburden notation, we assume that the external loading acts linearly on the sys-
tem, see (26). In this case, the force densities per unit volume (or area) in the reference configuration are independent of the
deformation. Such loads are also called dead loads and are quite standard and commonly used also in nonlinear settings, see
e.g. [21,34]. They describe external loads that are for instance determined by experimental devices. Nevertheless, it is possible
to extend Theorem 3.2 to the case of nonlinear loading functionals, in the spirit of [18].

To allow for more general loads one replaces 𝓁(𝑡) by a nonlinear, bounded operator (𝑡) ∶  → ℝ defined as

(𝑡)[𝑦] = ∫Ω 𝐹 (𝑥, 𝑡, 𝑦(𝑥)) d𝑥 + ∫Γ𝑁 𝑇 (𝑥, 𝑡, 𝑦(𝑥)) d𝑑−1(𝑥),
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where 𝐹 ∶ Ω × [0, 𝑇 ] ×ℝ𝑑 → ℝ and 𝑇 ∶ Γ𝑁 × [0, 𝑇 ] ×ℝ𝑑 → ℝ are bulk and traction force densities of suitable growth and
regularity such that  ∈ 𝑊 1,1(0, 𝑇 ) satisfies:

∃ 𝑐𝐿0 ∈ ℝ, 𝜆 ∈ 𝐿1(0, 𝑇 ), 𝛿 > 0, modulus of continuity 𝜔 ∶ (0, 𝛿) → (0,∞)

∀ 𝑦 ∈  , 𝑡, 𝑡1, 𝑡2 ∈ [0, 𝑇 ] s.t. |𝑡1 − 𝑡2| < 𝛿 ∶

|̇(𝑡)[𝑦]| ≤ 𝜆(𝑡)(𝑐𝐿0 + ‖∇𝑦‖𝐿𝑞 ), (76)

|̇(𝑡1)[𝑦] − ̇(𝑡2)[𝑦]| ≤ 𝜔(|𝑡1 − 𝑡2|)(𝑐𝐿0 + ‖∇𝑦‖𝐿𝑞 ). (77)

We do not enter into a detailed proof of the existence result for energetic solution with these new hypotheses, but restrict
ourselves to observing that assumption (76) is needed for (C3) and condition (77) guarantees uniform continuity in the sense of
(63), namely

∀𝐸 > 0, 𝜀 > 0, ∃𝛿 > 0 such that

(0, 𝑦, 𝑃 , 𝑧) ≤ 𝐸, |𝑡 − 𝑠| < 𝛿 ⇒ |̇(𝑡)[𝑦] − ̇(𝑠)[𝑦]| < 𝜀. (78)

4.2 BV-regularizations
For consistency, we fixed the condition 𝑟p, 𝑟z > 1 throughout this paper. However, without any further assumptions, one can
allow 𝑟p = 1 or 𝑟z = 1 or both. This extension for the setting of damage in elastic materials has been introduced and dealt with
by THOMAS.[52] In plasticity theory, this has already been studied in the linear and nonlinear settings; see e.g. [25] for a quasistatic
evolution to the Gurtin-Anand model, at small deformations, where the 𝐵𝑉 -control of the plastic strain is compensated by an
𝐿2-control of its curl (the macroscopic Burgers tensor). In this contribution the authors show that, as the regularization term
coefficients vanish, the solutions approach a quasistatic evolution to perfect plasticity.[17] The Gurtin-Anand model has been
coupled with damage in [13,14], where the regularization term for the 𝑧 variable controls its 𝐻1-norm; this is necessary to
ensure lower semicontinuity of the plastic potential. In spirit of [25], the quasistatic perfectly plastic limit is achieved with the
aid of a higher order regularization for the damage, which was later improved in [16].

In the nonlinear setting, it appears to be much harder to proof existence of energetic solutions without regularization terms,
even for solely elastoplastic models without damage. We refer to [34] for the use of regularization terms controlling the 𝑊 1,𝑟-
norm, if 𝑟 > 1, or the 𝐵𝑉 -norm, if 𝑟 = 1. The main idea to deal with the case 𝑟 = 1 is based on the contribution,[52] which can
indeed also be used to cover the case of 𝐵𝑉 -regularization in our model, see discussion below. It remains an open problem to
show existence of quasistatic evolutions to the model introduced in [39], which uses the term ( curl 𝑃 )𝑃⊤ as a regularization.

We can consider the general cases 𝑟p ≥ 1, 𝑟z ≥ 1; however, for simplicity of discussion we restrict to detail a bit the special
case 𝑟p = 𝑟z = 1 (the cases when only one exponent is 1 is treated similarly). We define

 =  × 𝐵𝑉 (Ω;𝑆𝐿(𝑑)) × 𝐵𝑉 (Ω; [0, 1]), (79)

and

(𝑡, 𝑦, 𝑃 , 𝑧) =∫Ω𝑊el(𝑥,∇𝑔Dir(𝑡, 𝑦(𝑥))∇𝑦(𝑥)(𝑃 (𝑥))−1, 𝑧(𝑥)) +𝑊h(𝑥, 𝑃 (𝑥), 𝑧(𝑥)) d𝑥

+ 𝜈|𝐷𝑃 (Ω)| + 𝜇|𝐷𝑧(Ω)| − ⟨𝓁(𝑡), 𝑦⟩, (80)

where |𝐷𝑃 (Ω)| and |𝐷𝑧(Ω)| denote the total variation of 𝑃 and 𝑧, respectively.

Theorem 4.1 (Existence of energetic solutions with 𝐵𝑉 -regularizations). Let  be the triple (79),  as in (80), and  as in
Section 2.3. Let 𝑞0 = (𝑦0, 𝑃0, 𝑧0) ∈ (0) be a stable initial state. Under the same hypotheses as in Theorem 3.2, there exists an
energetic solution 𝑞 = (𝑦, 𝑃 , 𝑧) ∶ [0, 𝑇 ] →  with initial condition 𝑞0.

The proof only changes slightly compared to the one we presented in Section 3; instead of Sobolev embedding theorems, we
use that 𝐵𝑉 (Ω) compactly embeds into 𝐿1(Ω). To proof the existence of mutual recovery sequences (C5) as in Lemma 3.5, we
notice that Step 1 of the proof can exactly be copied, whereas for Steps 2-3 we argue as in [52].
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Let 𝑞𝑘 ⇀ 𝑞 in  and 𝑞 ∈  be arbitrary. Set 𝑞𝑘 = (𝑦, 𝑃 , 𝑧𝑘), with 𝑧𝑘 defined, like in (54), as

𝑧𝑘 =
⎧⎪⎨⎪⎩
𝑧 − 𝛿𝑘 on 𝐴𝑘 ∶= {0 ≤ 𝑧 − 𝛿𝑘 ≤ 𝑧𝑘}
𝑧𝑘 on 𝐵𝑘 ∶= {0 ≤ 𝑧𝑘 < 𝑧 − 𝛿𝑘}
0 on 𝐶𝑘 ∶= Ω ⧵ (𝐴𝑘 ∪ 𝐵𝑘),

where 𝛿𝑘 > 0 is chosen such that 𝛿𝑘 ∈ [𝑚1∕2
𝑘

, 𝑚
1∕4
𝑘

] with 𝑚𝑘 ∶= max{𝑘−1, ‖𝑧 − 𝑧𝑘‖𝐿1}. With this choice, it can be shown that
0 ≤ 𝑧𝑘 ≤ 𝑧𝑘 a.e., 𝑑(𝐵𝑘) + 𝑑(𝐶𝑘) → 0, and 𝑧𝑘 → 𝑧 strongly in 𝐿1(Ω). Together with Lemma 3.4, the latter implies

lim
𝑘→∞

(𝑞𝑘, 𝑞𝑘) = (𝑞, 𝑞).

By the same arguments as in Step 3 of Lemma 3.5, it can be shown that

lim
𝑘→∞

(𝑡, 𝑦, 𝑃 , 𝑧𝑘) = (𝑡, 𝑦, 𝑃 , 𝑧).

Notice that we do not need to show weak convergence of 𝑧𝑘 to 𝑧 in 𝐵𝑉 (Ω), but only strong convergence in 𝐿1(Ω). It remains to
proof the analogue of inequality (57) in the 𝐵𝑉 -setting, namely

lim sup
𝑘→∞

|𝐷𝑧𝑘|(Ω) − |𝐷𝑧𝑘|(Ω) ≤ |𝐷𝑧|(Ω) − |𝐷𝑧|(Ω).
This result is the main novelty of [52] compared to the Sobolev-setting.[50,51] Its proof uses 𝐵𝑉 -decomposition techniques and a
careful study of the different 𝐵𝑉 -traces resulting from the case distinction in the definition of 𝑧𝑘. We refer to [52, Lemma 2.13]
for the details.
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