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Abstract
The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system
provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma.
This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining
and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that
the clinical outcome can vary significantly among patients within the same stage. The current classification
provides limited prognostic information and does not predict response to therapy. Multiple ways to classify
cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell
origin, molecular pathways, mutation status and gene expression-based stratification. These parameters rely on
tumour-cell characteristics. Extensive literature has investigated the host immune response against cancer and
demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named
‘Immunoscore’ has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore
may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a
prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated
to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium
may result in the implementation of the Immunoscore as a new component for the classification of cancer,
designated TNM-I (TNM-Immune).
 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Cancer is a complex and dynamic disease characterized
by major hallmarks. They include sustaining prolifer-
ative signalling, evading growth suppressors, resisting
cell death, enabling replicative immortality, inducing
angiogenesis, activating invasion and metastasis, repro-
gramming of energy metabolism and evading immune
destruction [1]. The most common system for classi-
fying the extent of spread of cancer is the American
Joint Committee on Cancer/Union Internationale Con-
tre le Cancer (AJCC/UICC) TNM classification [2–4].
The tumour staging gives an estimation of the degree
of tumour progression at the time of the surgical resec-
tion. The higher the degree of tumour progression, the
greater the chance that the tumour will have undergone
clonal evolution and acquired a set of unfavourable
characteristics, such as the ability to invade lymphatic
or blood vessels or to metastasize to distant sites. Fur-
thermore, multiple tumour-cell parameters are an indi-
cation of the intrinsic biology of the tumour.

The TNM classification has been used for over
80 years and is valuable in estimating the outcome of
patients for a variety of cancers [2–4]. There has been
a continual refinement of the staging system. In 2009,
the Union for International Cancer Control issued the
seventh edition of the TNM classification guidelines.
The pathologists generate data from a pathological
snapshot. This static measurement integrating the
tumour grade and stage is correlated with a dynamic

process, such as the time to occurrence or death. The
system is used in clinical trials to select patients who
are eligible for inclusion, and in cancer registries to
compare outcomes between different series, across
different countries and over different time periods
[5]. An accurate, stable internationally agreed staging
system is essential to global progress in this disease. Its
main aim should be to provide prognostic information
and, based on this information, individual treatment
decisions can then be made. In daily practice and in
guidelines, the TNM category is directly linked to
treatment strategies and, as such, changes in the TNM
staging system have a considerable and direct impact
on the cancer care that patients receive.

This TNM staging system has stood the test of
time but provides incomplete prognostic information.
Clinical outcome can significantly vary among patients
within the same histological tumour stage [5]. In some
patients, advanced-stage cancer can remain stable for
years, and although rare, partial or full regression of
metastatic tumours can occur spontaneously [6]. In
contrast, relapse, rapid tumour progression and patient
death is associated with approximately 25% of TNM
I/II stage colorectal cancer (CRC) patients, despite
complete surgical resection and no evidence of residual
tumour burden or distant metastasis [6].

Unfortunately, the predictive accuracy of the tra-
ditional staging system relies on the assumption that
disease progression is a tumour cell-autonomous pro-
cess. The focus of this classification is solely on the
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tumour cells and fails to incorporate the effects of
the host immune response [7]. The phenotype of a
tumour is not governed only by the epithelial compo-
nent but also by the tumour environment, that is, other
cells in contact with the tumour, the mesenchyme and
the inflammatory infiltrate. These components deter-
mine the net inputs to the cell, which include ligands,
cell–cell adhesion molecules, metabolites, oxygen and
multiple soluble factors [1]. Relatively little informa-
tion is available on the spatial organization of key
proteins and cells, although new imaging techniques
offer the potential for high-resolution measurements of
the spatio-temporal dynamics of large numbers of pro-
teins [8].

The TNM classification was never surpassed in
multivariate analysis by alternative methods such as
immunohistochemistry for tumour biomarkers, flow-
cytometry for DNA content, molecular signatures or
genetic features. However, it was shown that the analy-
sis of a specific type of intratumoural immune response
was indeed surpassing the TNM classification in mul-
tivariate analysis [9,10]. Thus, tumour progression has
now to be considered as the result of a balance between
an invasive tumour process and a defence system
whose major component is constituted by the host
immune response.

Molecular subtypes of colorectal cancer

Several ways to classify cancer have been proposed
(Figure 1). These rely on tumour cell characteristics,
including morphology, molecular pathways, mutation
status, cell origin and gene expression-based methods,
and allow the distinction of multiple, often overlapping,
subtypes.

A morphology-based classification allows the dis-
tinction between five major types of CRC. More
than 90% of CRCs are adenocarcinomas originat-
ing from epithelial cells. A number of histolog-
ical variants are described: mucinous, signet ring
cell, medullary, micropapillary, serrated, cribriform
comedo-type, adenosquamous, spindle cell and undif-
ferentiated. These histopathological criteria have mod-
est prognostic value.

A second class is based on molecular pathways. CRC
is molecularly defined into three groups: chromosomal
unstable (CIN), microsatellite unstable (MSI) and
CpG island methylator phenotype (CIMP). Most cases
arise through the CIN pathway, with imbalances in
chromosome number and loss of heterozygosity. These
cancers have accumulation of mutations in specific
tumour suppressor genes and oncogenes that activate
pathways critical for CRC initiation and progression.
A high degree of MSI (MSI-high) is present in 15% of
CRCs and represents a specific type of genomic insta-
bility characterized by frequent microsatellite length
mutations. Frameshift mutations in microsatellite
instability high (MSI-High) colorectal cancers are

a potential source of targetable neo-antigens [11].
Most MSI-high cancers are caused by epigenetic
silencing of a mismatch-repair gene (MLH1 ). This
silencing typically occurs in tumours of the CpG
island methylator phenotype (CIMP-high) [12,13].
MSI-high cancers overlap with those of CIMP-high
cancers [13,14]. CIMP-high represents a specific
type of epigenomic instability that is characterized
by widespread promoter CpG island methylation
and epigenetic gene silencing [15]. Nonetheless,
different from the MSI subgroup, CIMP-high patients
have similar characteristics to MSI, and have been
associated with old age, female gender, proximal
tumour location, poor tumour differentiation, BRAF
mutation, wild-type TP53 , high-level of global DNA
methylation and stable chromosomes (CIN) [12,13].
MSI tumours have a more favourable prognosis and
are less prone to lymph node or distant metastasis [16].
CIMP-high might be a prognostic marker independent
of the presence of MSI and BRAF mutation [17].

A third method to classify CRCs is based on
mutation analysis. Following the discoveries from
Bert Vogelstein et al that tumours result from the
sequential accumulation of alterations in oncogenes
and tumour suppressor genes and the appearance of
driver mutations, several mutations are now regularly
tested in CRCs. These include the APC , KRAS , TP53 ,
BRAF , NRAS , PI3KCA and CTNNB1 genes. Somatic
mutations in codons 12, 13 and 61 of KRAS , and
more recently NRAS , predict innate resistance to mAbs
targeting epidermal growth factor receptor [18–20].
The BRAF V600E mutation is an adverse prognostic
factor in stage IV colorectal cancer but does not have
clinical utility at present [21].

The fourth and fifth methods, assessing the cell of
origin and gene expression, respectively, to classify
CRCs are molecular based techniques. Using this
approach, six groups of CRCs were recently defined,
based on similarities with distinct cell types within
the normal colon crypt and the response to classic
chemotherapy and targeted therapies [22]. Other gene
expression-based analysis described three groups of
CRC patients [23], which correlated with two of the
known molecularly defined groups, namely the MSI
(renamed CCS2) and the CIN (CCS1) groups, whereas
the third group corresponded partly with the CIMP
group (CCS3). Further analysis of precursor lesions
(serrated polyps) suggested that this latter group could
be derived from the serrated pathway. Some partial
overlap exists between both proposed gene expression-
based classifications, especially with respect to the
group that is defined by the MSI-high phenotype. Other
gene signatures were also reported and, strikingly,
most of the genes were unique to each signature.
These signatures showed low prediction accuracy and
moderate clinical usefulness [24].

Interestingly, both profiles emphasize the impor-
tance of ZEB1 , a transcription factor regulating the
epithelial–mesenchymal transition (EMT). However,
EMT in CRC is generally not a feature of the whole

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2014; 232: 199–209
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com



202 J Galon et al

Tumour cell
extension
and invasion

Morphology

T-STAGE N-STAGE M-STAGE

Immunoscore CD3+ T cells CD8+ T cells Density Location (CT, IM)

Cell of origin Molecular pathway Mutation status Gene expression

Mucinous

Medullary

Adeno. NOS

Serrated

Signet ring cell

Micropapillary

Cribriform comedo

Enterocyte

Goblet-like

Transit-amplifying-R

Transit-amplifying-S

Inflammatory

Stem-like

CIN

MSI

CIMP

BRAF

APC

KRAS

TP53

CTNNB1

CCS1

CCS2

CCS3

Ways to classify

Tumour cell
characteristics

Host immune
response

Understanding Disease

Figure 1. Classification of colorectal cancer. (Top) Classification based on tumour cell extension and invasion. (Middle) Classification based
on tumour cell characteristics. Adeno NOS, adenocarcinoma not otherwise specified; Transit-amplifying-R, transit-amplifying-resistant;
Transit-amplifying-S, transit-amplifying-Sensitive; CIN, chromosomal unstable; MSI, microsatellite unstable; CIMP, CpG island methylator
phenotype. (Bottom) Classification based on the host immune response using the Immunoscore.

tumour but is seen at the invasive margin (IM). The
stroma of human colorectal tumours was shown to con-
tain TWIST1-positive cancer cells with mesenchymal
phenotypes [25]. EMT is characterized by tumour cell
budding, nuclear expression of β-catenin, loss of CDH1
(E-cadherin), gain of CDH2 (N -cadherin) and alter-
ation of other epithelial cell adhesion molecules [26].
These features are often not molecularly defined but the
result of interplay between the tumour and the microen-
vironment. Such local features lead to heterogeneity
of the gene expression profile. Thus, gene expression
classification may be prone to bias, due to different
percentages of tumour cells in the sample, but also due
to lack or uncontrolled presence of the IM in the sam-
ple used for RNA extraction. These issues were not
addressed in either study [22,23]. Because of the lim-
itation of gene expression signatures, and to facilitate
implementation and testing in large patient series, both
studies developed an immunohistochemistry approach
based on gene expression data. Unfortunately, half of
the patients turned out to be unclassifiable [22] and the
absence of CDX2 positivity in all CCS3 samples (25%
of CRCs) [23] does not correspond with extensive lit-
erature data (98% positivity in CRCs) [27].

The carcinogenic process that gives rise to an indi-
vidual tumour is unique. It is postulated that tumours
with similar characteristics share common pathogenic
mechanisms and progression patterns. However, other
major parameters have to be taken into consider-
ation, in particular the tumour microenvironment.

Importantly, neoplastic cells interact with host non-
neoplastic cells (including immune cells) and extracel-
lular matrix in the tumour microenvironment, and those
components influence each other and modify an
integral phenotype of any given tumour [28]. Many
markers, signatures and methods have been described
to evaluate the prognosis of cancer patients, yet very
few such markers and laboratory assays translate into
clinical practice or reach the statistical power of the
TNM classification.

New ways to classify cancers using tumour
microenvironment-related information

Modern classification of tumours is based on the recog-
nition of disease entities that are characterized by mor-
phological, phenotypical and genetic markers. Each
classification system needs to be reliable, reproducible,
clinically relevant and biologically meaningful. Many
hurdles have to be taken into consideration. First, the
inevitable presence of non-neoplastic cells, including
immune cells, in ‘tumour areas’ means that DNA
(or RNA) from the tumour area is not ‘pure’ DNA
(or RNA) from neoplastic cells. These ‘contaminants’,
often > 50% of non-tumour cells, may in fact have
a profound biological meaning. Thus, the degree of
immune cell infiltration may correlate with tumour
molecular changes or may mask a correlation between

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2014; 232: 199–209
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a tumour marker and the outcome, because ‘contam-
inating’ non-neoplastic cells can influence the results
of a tumour molecular assay. For sensitive mutation
detection, sequencing technologies allow the detection
of approximately 5% of mutant alleles. For quantita-
tive DNA methylation assays, a careful assessment of
a potential influence of contaminating normal cells is
necessary. This is even more problematic with gene
expression signatures, where a different degree of non-
neoplastic cells is observed among the assays.

Second, a precise characterization of specific
tumour-infiltrating cells requires the use of an
immunohistochemical technique to detect in the tissue
the presence and localization of specific antigens
expressed by subsets of immune cells. The evaluation
of immune cells in haematoxylin and eosin (H&E)-
stained sections can be done at a low cost compared
to an immunohistochemical technique. However, an
evaluation of a specific subset of immune cells is
generally not possible with H&E-stained sections.
For example, lymphocytes with opposite functions,
such as CD4+ T cells with Th1 orientation versus
Th2 orientation versus immune cells with regulatory
functions (Treg cells), or NK cells, NKT cells, B
cells or cytotoxic CD8 T cells, are indistinguishable
without proper marker evaluation and require antibody
labelling by immunohistochemistry. Nowadays this is
simple, as specific antibodies with high affinity and
a high signal:noise ratio allow the detection of these
immune cell subpopulations with a single staining.

Third, it is known that immune cells are scattered
in the core of the tumour (CT) within the tumour
stroma and the tumour glands, in the invasive mar-
gin (IM) and in organized lymphoid follicles distant
from the tumour. A statistically significant correlation
between immune cell density in each tumour region
(CT and IM) and patient outcome has been shown in
colorectal cancer [9]. Further, the combined analysis of
tumour regions (CT plus IM) improved the accuracy of
prediction of survival for the different patient groups
compared with single-region analysis [9]. Given the
major clinical importance of distinct tumour regions,
it is appropriate to conduct immune cell infiltration
evaluation systematically in the two separate areas, the
core of the tumour and the invasive margin [9,10].
For routine practice, this requires immune cell evalua-
tion on whole-tissue sections, taking into account their
location.

Fourth, objective ways of counting immune cells
need to be achieved in order to remove the subjectivity
of field selection and imprecise semi-quantitative eval-
uation. Most of the tumour markers are generally more
complicated to quantify than immune cells, since only
a fraction of the tumour cells express the antigen and
the staining intensity has often been taken into consid-
eration. Standardized and reproducible measurement of
the intensity of staining, and hence quantitation of pro-
tein expression, is intrinsically difficult using immuno-
histochemistry. In contrast, immune cell types are
easier to quantify because well-characterized markers

exist, giving complete membrane staining for immune
cell subpopulations (eg CD3+ for T cells), allowing
counting cells as individual cells. Nowadays, digi-
tal pathology and image analysis software can detect
stained immune cells and determine their densities (n
cells/mm2) in histological sections. Validation studies
demonstrated the high concordance of these automated
systems in comparison to optical counts [9,29]. This
is particularly important to facilitate routine pathology
and to speed up the process of quantification. In par-
ticular, given the huge number of infiltrating immune
cells within a tumour (eg a mean of 75 000 CD3+
cells present on a 4 µm-thick section of tumour slide
from a CRC stage I/II patient), it would be unrealis-
tic to ask pathologists to count them all. In addition,
immune cells such as CD3+ lymphocytes are often
aggregated in complex cell clusters. Algorithms for
segmenting clusters of densely packed cells permit a
precise counting of cells. Given the major importance
of the determination of the density of immune cells
[9,30] to predict a patient’s outcome, it is now required
to take advantage of the digital pathology to determine
the exact count of stained cells and the surface of the
tissue analysed.

Fifth, the heterogeneity of a tumour applies to
tumour cells but to the microenvironment as well.
Upon evaluation of whole-tissue sections, a patholo-
gist often needs to choose specific fields to perform
detailed image analysis. The selection of the tissue
areas to study may depend on subjective interpretation,
and the evaluation needs to be validated by a sec-
ond independent observer blinded for the other results.
Inter-observer variability can reach very high levels
[31]. The use of computer-assisted image analysis pro-
vides important advantages, as all the fields are anal-
ysed in the whole tumour section [32]. For example, the
determination of the mean density of stained cells in a
tumour region is supported by an objective computer-
based cell-counting method, leading to a good level of
reproducibility between users.

Sixth, specific markers need to be selected.
They should be robust, well-established and have
high predictive value. A growing body of lit-
erature [9,10,30,33–36] supports the hypothesis
that cancer development is influenced by the host
immune system. This may offer powerful prog-
nostic information and facilitate clinical decision
making regarding the need for systemic therapy
[7]. Accumulat-ing evidence suggests that CD3+
[9,10,30,34,37–43], CD8+ [9,10,34,38,43–52] and
CD45RO+ [9,10,34,40,47,49,53,54] cells have roles
in antitumour immune responses. Numerous data col-
lected from large cohorts of human CRCs (with sample
sizes n = 415, 599 and 602, respectively) demonstrated
that the number, type and location of tumour immune
infiltrates in primary tumours are prognostic for
disease-free survival (DFS) and overall survival
(OS) [9,10,30]. Altogether, these immune parameters
are designated the ‘immune contexture’ [33,35,55].
Notably, several large studies of CRCs (with sample
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sizes n = 843 and n = 768, respectively) have shown
that tumour lymphocytic reaction and T cell sub-
populations (CD8, CD45RO, FOXP3) are significant
prognostic biomarkers, even after adjusting for stage,
lymph node count and well-established prognostic
tumour molecular biomarkers, including microsatel-
lite instability (MSI), BRAF mutation and LINE-1
hypomethylation [54,56]. A possible association
exists between MSI status and immune cell infiltrates
[38]. MSI tumours often contain intra-epithelial T
cells in response to the expression of neo-antigens
on the cell surface [42], in particular those that do
not undergo non-sense medicated decay [11]. This
probably contributes to the better prognosis of patients
with MSI tumours. Furthermore, CRCs from a large
cohort (n = 1197) and external validation (n = 209)
confirmed the prognostic value associated with CD3+,
CD8+ and CD45RO+ (PTPRC) T cell infiltration in
CRCs [43].

A recent meta-analysis [55] summarized the impact
of immune cells, including B cells, NK cells, MDSC,
macrophages and all subsets of T cells on clinical out-
come from more than 120 published articles. Impor-
tantly, the beneficial impact of the immune infiltrate
with cytotoxic and memory T cell phenotype has
been demonstrated in cancers from diverse anatomi-
cal sites; including colorectal cancer but also malig-
nant melanoma, lung, gastric, oesophageal, head and
neck, breast, bladder, urothelial, ovarian, cervical, pro-
static and pancreatic cancer, hepatocellular carcinoma,
medulloblastoma and Merkel cell carcinoma [55]. It is
interesting to note that the implications of this immune
phenotype apply not only to various organs of cancer
origin, but also to various cancer cell types, ie adeno-
carcinoma, squamous cell carcinoma, large cell cancer
and melanoma. Thus, general characteristics emerge in
which cytotoxic T cells, memory T cells and TH1 cells
are associated with prolonged survival [35,57,58]. In
contrast, the prognostic impact of other immune cells,
such as B cells, NK cells, MDSCs, macrophages and
a subset of T-helper populations (TH2, TH17, TREG
cells), differ depending on the type of cancer and on the
cancer stage [55]. Altogether, the publications indicate
that a precise analysis of the immune component of the
tumour microenvironment by computer-based analysis
may be essential to managing patients better. Thus,
precise analysis of the tumour microenvironment by
pathologists may be essential for future clinical imple-
mentation and better patient management. An expertise
in this new emerging field is now warranted to translate
it into the clinical practice.

‘Immunoscore’ as a new approach for the
classification of cancer

A potential clinical translation of these observa-
tions is the establishment of a scoring system des-
ignated ‘Immunoscore’ (Figure 2), derived from the
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Figure 3. Correspondence between the immune contexture and the
Immunoscore.

immune contexture (Figure 3) [33,35,55], and based
on the numeration of two lymphocyte populations
(CD3/CD45RO, CD3/CD8 or CD8/CD45RO), both in
the core of the tumour (CT) and in the invasive mar-
gin (IM) of tumours, as a clinically useful prognostic
marker in colorectal cancer [34]. Detailed descrip-
tion of the immune contexture in comparison to the
Immunoscore has been described previously [35,36].
The Immunoscore provides a score ranging from
Immunoscore 0 (I0) when low densities of both cell
types are found in both regions, to Immunoscore 4 (I4)
when high densities are found in both regions. This test
has a dual advantage: first, it appears to be the strongest
prognostic factor for DFS, disease-specific (DSS) and
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OS, including at early-stage colorectal cancers; and
second, it has biological meaning (adaptive immune
response to tumours) and provides a tool or a target for
novel therapeutic approaches, including immunother-
apy (as recently illustrated in clinical trials boosting T
cell responses with anti-CTLA4, anti-PDCD1 (PD-1)
and anti-CD274 (PD-L1) [59–62]. Current immunohis-
tochemical technologies allow the application of such
analyses in routine diagnostic pathology. Thus, consid-
ering the probable universal character of the immune
control of tumours, it is essential for patients to take
into account the immune parameter as a prognostic fac-
tor and to introduce the Immunoscore as a component
of cancer classification [6,7,35,63,64].

The Immunoscore was shown to be very powerful,
for instance, in CRC patients with clinically localized
colorectal cancer, with no detectable tumour spreading
to lymph nodes or distant organs. These patients
are usually treated only by a surgical removal of
the tumour; however, approximately 25% of these
patients will have recurrence of their disease, indicating
that occult metastases were already present at the
time of curative surgery. No tumour-associated marker
predicts the recurrence of this subgroup of patients
that could have a benefit for an adjuvant therapy. The
Immunoscore (I) approach (with an enumeration of
CD8+ and CD45RO+ cells in the CT and the IM)
was applied to two large independent cohorts (n = 602).
Only 4.8% of patients with a high I4 relapsed after
5 years and 86.2% were still alive. In contrast, 72% of
patients with a low score (I0 and I1) experience tumour
recurrence and only 27.5% were alive at 5 years. These
I0 and I1 patients could potentially have benefited
from adjuvant therapy if the Immunoscore had been
incorporated into the tumour staging [34].

The Immunoscore classification, demonstrating
the prevalence of immune infiltrates, was shown to
have a prognostic significance superior to that of
the AJCC/UICC TNM classification system. For all
patients with CRC stages I/II/III, multivariate Cox
analysis revealed that the immune criteria remained
highly significantly associated with prognosis (DFS,
DSS, OS). In contrast, the histopathological staging
system (T stage, N stage and tumour differentiation)
was no longer significant [10]. Tumour invasion was
shown to be statistically dependent on the host immune
reaction. Indeed, the immune pattern remained the only
significant criterion over the classical AJCC/UICC
TNM classification for DFS and OS, and led to an
editorial entitled ‘TNM staging in colorectal cancer:
T is for T cell and M is for memory’ accompanying
the publication by Mlecnik et al [10,65]. It has thus
been suggested that the prevalence of tumour immune
infiltrates, more than the tumour status, could be a
key indicator for recurrence, metastasis and therefore
clinical outcome (Figure 4). These results suggest
that once human cancer becomes clinically detectable,
the adaptive immune response plays a critical role in
preventing tumour recurrence. The ability of effector-
memory T cells to recall previously encountered

T-stage M-stage

N-stage

Tumour
morphology

Tumour
cell of
origin

Tumour
molecular
pathway

Tumour
gene

signature

Tumour
mutation

status

Immunoscore

Microenvironment
Host-immune response

Understanding Disease

Figure 4. Schematic representation of cancer classification based
on tumour-microenvironment-related parameters (Immunoscore),
based on tumour extension and invasion (T, N, M stages), and based
on five alternative tumour-related methods.

antigens leads to a protective response. Following
primary exposure to antigen, memory T cells dis-
seminate and are maintained for long periods of time
[66]. The trafficking properties and the long-lasting
antitumour capacity of memory T cells could result in
long-term immunity in human cancer. Over the past
few years, the area of immune regulation at the level
of the tumour microenvironment has gained a forefront
position in cancer research, in CRC [9,10,30,34,55],
melanoma [67] and all other cancer types [7]. The
Immunoscore, initially described several years ago [9]
as a prognostic factor [10,34], could also play a role
as a marker to predict the response to biotherapies
targeting the immune checkpoints [63,64],

The inherent complexity of immunohistochemistry,
in conjunction with protocol variability, contributes
to the variability of the results obtained. A standard-
ized consensus method is required. Large-scale assay
harmonization efforts have already been witnessed,
conducted for commonly used immunological assays
of peripheral blood immune cell populations [68,69].
It is therefore essential to pursue assay uniformity
to reduce these limitations. A clinical validation of
the Immunoscore with standardized procedures is nec-
essary to reach clinical applicability for individual
patients.

We performed multiple Immunoscore quality con-
trols to test the accuracy and repeatability of the
method. We first observed that the automated cell-
counting method achieved a very good level of cor-
relation with the optical counting for CD3 and CD8
immunostainings and an excellent reproducibility of
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Rapid
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Technique to be performed by pathologist using bright field and precise cell evaluation

Established pathology techniques, using 2 regular whole slide FFPE sections

Automatized immunochemistry

Two simple stainings less costly than complicated molecular techniques

Autostainers, scanner, digital pathology reduce the time to perform an Immunoscore

Two strong membrane stainings, with no background, allowing the enumeration of individual cells

Inter-observers variability is removed by the use of digital pathology, taking into account cell location and counts

Precise cell density (cell number / surface area)

Standardized operating procedure should be performed to ensure reproducibility and worldwide comparisons

Necessity of pathologist expertise to validate cell type, cell location, and cell counts perform by digital pathology

The Immunoscore has a prognostic value highly significant even in Cox multivariate including TNM classification 9, 10

Understanding Disease

Figure 5. Characteristics of a good biomarker and of the Immunoscore.

the count of stained cells. In addition, the variablity
between users for the determination with the software
of the immune cell densities in tumour regions was
5.2% and 2.5% for CD3 and CD8, respectively (unpub-
lished data). All the tests indicated a reliable assess-
ment of the Immunoscore. To be used globally in a rou-
tine manner, evaluation of a novel marker should have
the following characteristics: do-able in routine, fea-
sible, simple, inexpensive, rapid, robust, reproducible,
quantitative, standardized, pathology-based and power-
ful. The Immunoscore has a potential to fulfil these key
aspects (Figure 5). Importantly, for patients with rec-
tal cancer treated by chemoradiotherapy (pCRT) before
surgery, preoperative chemoradiation therapy induces
histological reactions precluding the realization of an
Immunoscore, since the delineation of the analysed
tumour regions (CT and IM) is often no longer prac-
ticable. Also, assessment of anti-tumour immunity by
the Immunoscore is inappropriate in biopsies, since the
limitation of the material precludes a precise delimita-
tion of the tumour and the invasive margin. However,
immune cell quantification remains an interesting pos-
sibility in tumour biopsies.

To assess the Immunoscore in clinical practice
and measure its prognostic value, we are conducting
a prospective multicentre study (French PHRC pro-
gramme) for 600 patients from seven hospitals bearing
a colorectal cancer treated by primary surgery. In an
effort to promote the utilization of the Immunoscore
in routine clinical settings, we initiated a worldwide
Immunoscore consortium, with the support of the
Society for Immunotherapy of Cancer (SITC) [64].
Several thousands of tumours from patients will be
Immunoscore-tested by the 23 centres from the world-
wide consortium. The worldwide Immunoscore consor-
tium, composed of international expert pathologists and
immunologists, identified a strategy for the organiza-
tion of worldwide retrospective study for the validation
of the Immunoscore in colon cancer. Evidence-based
selection of specific markers for the Immunoscore was

discussed. Because of background staining and loss of
antigenicity in stored sections (CD45RO) and granu-
lar staining (GZMB), it was decided to employ the
two easiest membrane stains, CD3 and CD8. Thus, the
combination of two markers (CD3+ and CD8+) in two
regions (CT and IM) was agreed for validation in stan-
dard clinical practice. Precise quantification is currently
performed on whole slide sections (Figure 2), following
the recommended initial guidelines.

The purpose of the ongoing Immunoscore worldwide
consortium is to validate the following points: first, to
demonstrate the feasibility and reproducibility of the
Immunoscore; second, to validate the major prognostic
power of the Immunoscore in routine for patients with
colon cancer stages I/II/III; and third, to demonstrate
the utility of the Immunoscore to predict stage II colon
cancer patients with high risk of recurrence. Twenty-
three international pathology expert centres are now
participating in the Immunoscore enterprise. These
participants represent 23 centres from 17 countries,
including Asia, Europe, North America, Australia and
the Middle East (Australia, Austria, Canada, China,
Czech Republic, France, Germany, India, Italy, Japan,
The Netherlands, Qatar, Spain, Sweden, Switzerland,
the UK and the USA). It is hoped that this initiative
will result in the implementation of the Immunoscore
as a new component for the classification of cancer,
TNM-I (Immune). The Immunoscore should better
define the prognosis of cancer patients, better identify
patients at high risk of tumour recurrence [70], help
to predict and stratify patients who will benefit from
therapies [35] and, ultimately, help save the lives of
patients with cancer.
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