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Abstract: Staphylococcus aureus is a major human pathogen causing a wide range of nosocomial
infections including pulmonary, urinary, and skin infections. Notably, the emergence of bacterial
strains resistant to conventional antibiotics has prompted researchers to find new compounds capable
of killing these pathogens. Nature is undoubtedly an invaluable source of bioactive molecules
characterized by an ample chemical diversity. They can act as unique platform providing new
scaffolds for further chemical modifications in order to obtain compounds with optimized biological
activity. A class of natural compounds with a variety of biological activities is represented by
alkaloids, important secondary metabolites produced by a large number of organisms including
bacteria, fungi, plants, and animals. In this work, starting from the screening of 39 alkaloids retrieved
from a unique in-house library, we identified a heterodimer β-carboline alkaloid, nigritanine, with a
potent anti-Staphylococcus action. Nigritanine, isolated from Strychnos nigritana, was characterized
for its antimicrobial activity against a reference and three clinical isolates of S. aureus. Its potential
cytotoxicity was also evaluated at short and long term against mammalian red blood cells and human
keratinocytes, respectively. Nigritanine showed a remarkable antimicrobial activity (minimum
inhibitory concentration of 128 µM) without being toxic in vitro to both tested cells. The analysis of the
antibacterial activity related to the nigritanine scaffold furnished new insights in the structure–activity
relationships (SARs) of β-carboline, confirming that dimerization improves its antibacterial activity.
Taking into account these interesting results, nigritanine can be considered as a promising candidate
for the development of new antimicrobial molecules for the treatment of S. aureus-induced infections.

Keywords: natural products; alkaloids; plant secondary metabolites; β-carboline; Staphylococcus
aureus; antimicrobial activity; cytotoxicity

Key Contribution: Starting from the screening of 39 alkaloids, we biologically characterized a
heterodimer β-carboline alkaloid, named nigritanine, with potent anti-Staphylococcus activity and
non-toxic to mammalian red blood cells and human keratinocytes at its bioactive concentration.
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This manuscript is dedicated to the memory of Professor Maurizio Botta (University of Siena,
Department of Biotechnology, Chemistry and Pharmacy) who prematurely passed away on 2 August
2019. During his successfully scientific career, he synthesized a huge number of small bioactive
molecules for the development of new pharmaceutical agents for cancer therapy and/or treatment of
microbial infections, thus providing an invaluable contribution in the field of medicinal chemistry and
drug discovery, worldwide.

1. Introduction

The discovery of antibiotics in the 1900s led to a medical revolution in the fight against bacterial
infections. However, during the years, bacteria have developed different mechanisms to resist the
killing activity of antibiotics [1]. The human pathogen Staphylococcus aureus is a microorganism
with high adaptability and tenacity, as highlighted by its abundance in the environment and in the
normal flora, the variety of virulence factors that it produces, and the capability to colonize various
human organs such as nose, pharynx, and skin [2–4]. Furthermore, multidrug-resistant S. aureus
is one of the major microorganisms causing bloodstream infections associated with high levels of
morbidity and mortality worldwide [5]. Considering that S. aureus has successfully evolved numerous
strategies to resist the activity of practically all antibiotics, new alternative compounds able to defeat S.
aureus-induced infections are urgently needed [6]. Notably, a significant portion of the commercial
drugs occurs in nature or is derived from natural products by means of chemical transformations or de
novo synthesis [7]. Alkaloids are a group of important secondary metabolites which are produced
by a wide variety of organisms including bacteria, fungi, plants, and animals. Chemically, alkaloids
are a large and structurally diverse group of nitrogen-containing compounds (one or more nitrogen
atoms within a heterocycle ring) [8]. Alkaloids can occur as monomers, dimers (bisalkaloids), trimers,
or tetramers. According to their chemical structure, alkaloids are classified in heterocyclic alkaloids
(also known as typical alkaloids), containing nitrogen in the heterocycle and originating from amino
acids, and nonheterocyclic alkaloids (also known as atypical or proto-alkaloids), containing a nitrogen
atom derived from an amino acid which is not a part of the heterocyclic ring [9]. Heterocyclic alkaloids
are divided according to their ring structure in several classes of monomeric alkaloids (e.g., pyrrole,
pyrrolidine, pyridine, piperidine, indole, quinoline, isoquinoline alkaloids). Since 1940, large-scale
efforts have been made to evaluate the antibacterial effects of naturally occurring alkaloids. Several
potent monomer and dimer alkaloids were identified, and synthetic modifications were investigated to
improve their biological activity [8–11]. However, a tremendously wide discrepancy between their
historical significance and their occurrence in modern drug development exists, and no alkaloids are
available in the market as antibacterial drugs [12]. In this work, an in-house library of about 1000
natural products and their derivatives was used as a unique source of lead compounds to identify new
potential antibacterial alkaloids. From the screening of all the alkaloids present in this library, the rare
β-carboline heterodimer nigritanine was identified and showed a potent antistaphylococcal activity.
Therefore, it was thoroughly characterized for its antimicrobial and cytotoxic activities.

2. Results and Discussion

2.1. Alkaloids Collection

Natural products remain the most productive source of leads in antibacterial drug discovery,
often providing novel mechanism(s) and chemical structures as useful platforms for the development
of drugs. A unique in-house library of about 1000 natural compounds, mostly isolated from several
plants used in traditional medicine of South America and collected over the years, is available at the
Organic Chemistry Laboratory of the Department of Chemistry and Technology of Drugs (Sapienza
University of Rome, Italy). This library consists of natural products belonging to different classes of
organic compounds which were previously published and fully characterized [13,14]. It was then
enlarged by the addition of other natural small molecules from commercially available sources and
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synthetic or semi-synthetic derivatives. Currently, all components of our collection are incorporated
into a virtual library, and their chemical and physicochemical features are analyzed by means of
cheminformatics tools, showing a satisfactory chemical diversity. Therefore, our in-house library is a
valid source of chemotypes for the modulation of biomolecular targets, and it was successfully screened
in silico and in vitro for the identification of hit and lead compounds in previous early-stage drug
discovery projects [15]. One of the largest and most intriguing classes of natural occurring compounds
within the library are the alkaloids, which consist of isoquinoline (1–11), quinoline (12–15), and indole
(16–39) alkaloids (Table 1).
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Table 1. List of alkaloids tested in this study.

Mol. Common Name Chemical Structure M.W. Molecular Formula Source Ref.
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Table 1. Cont.

Mol. Common Name Chemical Structure M.W. Molecular Formula Source Ref.

24 Triptamine·HCl

Toxins 2019, 11, x FOR PEER REVIEW  11 of 28 

 

24 Triptamine HCl 

 

160.22 

196.68 

(+HCl) 

C10H12N2 HCl 
Acacia species 

(Fabacee family) 
[33] 

25 Vomicine HC1 

 

380.44 

416.90 

(+HCl) 

C22H24N2O4 HCl 
Strychnos icaja 

(Loganiaceae family) 
[27,31] 

26 Vindoline 

 
 

456.53 C25H32N2O6 
Catharanthus roseus 

(Apocynaceae family) 
[34] 

 

Carboline Alkaloids (Indole Subclass) 

160.22
196.68
(+HCl)

C10H12N2 HCl Acacia species
(Fabacee family) [33]

25 Vomicine·HC1

Toxins 2019, 11, x FOR PEER REVIEW  11 of 28 

 

24 Triptamine HCl 

 

160.22 

196.68 

(+HCl) 

C10H12N2 HCl 
Acacia species 

(Fabacee family) 
[33] 

25 Vomicine HC1 

 

380.44 

416.90 

(+HCl) 

C22H24N2O4 HCl 
Strychnos icaja 

(Loganiaceae family) 
[27,31] 

26 Vindoline 

 
 

456.53 C25H32N2O6 
Catharanthus roseus 

(Apocynaceae family) 
[34] 

 

Carboline Alkaloids (Indole Subclass) 

380.44
416.90
(+HCl)

C22H24N2O4 HCl Strychnos icaja
(Loganiaceae family) [27,31]

26 Vindoline

Toxins 2019, 11, x FOR PEER REVIEW  11 of 28 

 

24 Triptamine HCl 

 

160.22 

196.68 

(+HCl) 

C10H12N2 HCl 
Acacia species 

(Fabacee family) 
[33] 

25 Vomicine HC1 

 

380.44 

416.90 

(+HCl) 

C22H24N2O4 HCl 
Strychnos icaja 

(Loganiaceae family) 
[27,31] 

26 Vindoline 

 
 

456.53 C25H32N2O6 
Catharanthus roseus 

(Apocynaceae family) 
[34] 

 

Carboline Alkaloids (Indole Subclass) 

456.53 C25H32N2O6
Catharanthus roseus

(Apocynaceae family) [34]

Toxins 2019, 11, x FOR PEER REVIEW  11 of 28 

 

24 Triptamine HCl 

 

160.22 

196.68 

(+HCl) 

C10H12N2 HCl 
Acacia species 

(Fabacee family) 
[33] 

25 Vomicine HC1 

 

380.44 

416.90 

(+HCl) 

C22H24N2O4 HCl 
Strychnos icaja 

(Loganiaceae family) 
[27,31] 

26 Vindoline 

 
 

456.53 C25H32N2O6 
Catharanthus roseus 

(Apocynaceae family) 
[34] 

 

Carboline Alkaloids (Indole Subclass) Carboline Alkaloids (Indole Subclass)



Toxins 2019, 11, 511 11 of 26

Table 1. Cont.

Mol. Common Name Chemical Structure M.W. Molecular Formula Source Ref.
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Considering the chemical structures of isoquinoline alkaloids, this group can be divided in
two major categories: simple isoquinolines, which are composed of a benzene ring fused to a
pyridine ring, and benzylisoquinolines, which contain a second aromatic ring [42]. In contrast, indole
alkaloids are bicyclic structures consisting of a six-membered benzene ring fused to a five-membered
nitrogen-containing pyrrole ring and are among the most numerous (at least 4100 known molecules)
and complex alkaloids. In our library, the group of indole alkaloids covers several subclasses, the largest
of which is represented by β-carbolines featuring a common tricyclic pyrido[3,4-b]indole ring structure
(Table 1). According to the saturation of the N-containing six-membered ring, β-carbolines are
categorized in fully aromatic (βCs), dihydro- (DHβCs), and tetrahydro- (THβCs) β-carbolines [43].
Alkaloids from the in-house library belonging to more than 10 plant families (e.g., Apocynaceae,
Loganiaceae, Berberidaceae, Papaveraceae, Rubiaceae) are known to occur in several species (Table 1).
With the aim to identify new potential antistaphylococcal agents, the in-house library of alkaloids
was initially screened towards Gram(+) and Gram(-) reference bacterial strains. For the biological
characterization, all the compounds were dissolved in dimethyl sulfoxide (DMSO).

2.2. Antimicrobial Activity

2.2.1. Inhibition Zone Assay

The antimicrobial activity of all collected compounds was initially tested on a reference strain
of the Gram(+) S. aureus (S. aureus ATCC 25923) by the inhibition zone assay. The Gram(-) bacterial
strain Escherichia coli ATCC 25922 was also included for comparison (Table 2). Most of the compounds
resulted to be inactive against both classes of bacteria (data not shown). The only exception was the
already characterized methylated derivative of β-carboline, i.e., harmane, which was able to inhibit
the growth of both S. aureus and E. coli strains in an agar diffusion assay [44–46], with diameters of the
inhibition zone of 4.36 and 8.46 mm, respectively (Table 2).

Table 2. Diameters of the inhibition zone of all the active tested compounds against the reference
Gram(+) and Gram(-) bacterial strains.

Inhibition Zone Assay Diameter of Inhibition Zone (mm) 1

Compound
Gram-Positive

Staphylococcus aureus
ATCC 25923

Gram-Negative
Escherichia coli

ATCC 25922

Dihydroberberine·HCl (1) 7.800 n.a.
(S)-Glaucine (7) 7.600 n.a.
Canthin-6-one (28) 6.100 n.a.
Harmane (30) 4.360 8.640
Harmine (32) n.a. 6.250
Mytragine (34) 5.420 n.a.
Nigritanine (35) 10.39 n.a.
Paynantheine (36) 8.440 n.a.
Speciociliatine (38) 8.240 n.a.

1 Data represent the mean of three independent experiments with standard deviation (SD) not exceeding 0.2; n.a.:
not active.

Interestingly, a greater selectivity towards the human pathogen S. aureus was noted, especially
for the β-carboline alkaloids. In fact, the rare heterodimer alkaloid nigritanine (compound 35) as
well as some of its analogues (i.e., speciociliatine, mytragine, and paynantheine) showed a powerful
activity against the reference strain of S. aureus ATCC 25923, with a diameter of growth inhibition zone
ranging from 8.24 to 10.39 mm. Mytragine was previously characterized for its selective anti-Gram(+)
efficacy [47]; in contrast, no microbiological data have been provided so far for speciociliatine,
paynantheine, and rhyncophylline. Because of these reasons, we decided to examine the activity of
nigritanine, mytragine, and the other three abovementioned molecules against three multidrug-resistant
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clinical isolates of S. aureus. As reported in Table 3, nigritanine was the sole compound that retained a
potent activity against the clinical isolates of S. aureus (i.e., S. aureus 1a, 1b, 1c). This was indicated by
the similar diameters of inhibition zones. In contrast, all the others molecules completely or almost
completely lost their activity towards S. aureus 1a, 1b, and 1c strains.

Table 3. Diameters of the inhibition zone of some active alkaloids against the reference and clinical
isolates of S. aureus strains.

Inhibition Zone Assay Diameter of Inhibition Zone (mm) 1

Compound S. aureus ATCC 25923 S. aureus 1a S. aureus 1b S. aureus 1c

Mytragine (34) 5.420 4.000 n.a. n.a.
Nigritanine (35) 10.39 11.20 8.440 9.100
Paynantheine (36) 8.440 3.800 n.a. n.a.
Speciociliatine (38) 8.240 4.520 4.340 4.580

1 Data represent the mean of three independent experiments with SD not exceeding 0.2.

A representative image of the antibacterial activity of these compounds is shown in Figure 1.
The growth inhibition zone of nigritanine (zone #1) is clearly evident compared to that of the other
alkaloids tested. These results are in line with other published data of alkaloids extracted from Anabasis
articulata, showing a potent anti-Gram(+) activity when evaluated by the inhibition zone assay [48].
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2.2.2. Determination of the Minimum Inhibitory Concentration

The antibacterial activity of nigritanine, speciociliatine, mytragine, paynantheine, and rhyncophylline
was also evaluated by the microdilution broth assay to determine the minimum inhibitory concentration
(MIC) against the reference strain of S. aureus and the three clinical isolates after 16 hours of treatment
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(Table 4). Remarkably, although the MIC of nigritanine against the reference strain of S. aureus was
higher than the MIC of other alkaloids reported in the literature (i.e., 128 µM, 56.5 µg/mL versus
2–16 µg/mL for vincamine, atropine, allantoin, or trigonelline [49]), the ability to inhibit the growth of
the clinical isolates was maintained at the same concentration of 128 µM. This is in contrast with what
observed for the aforementioned compounds which completely lost activity when tested against clinical
isolates [49]. Similar MIC values were also obtained with alkaloids from leaves of Eclipta alba [50].

Table 4. Minimum inhibitory concentration (MIC) (µM) of nigritanine, speciociliatine, mytragine,
paynantheine, and rhyncophylline against the reference and clinical isolates of S. aureus strains. MICs
are the values obtained from three identical readings out of four independent experiments.

Strains Nigritanine Speciociliatine Mytragine Paynantheine Rhyncophylline

S. aureus ATCC 25923 128 µM > 256 µM > 256 µM > 256 µM > 256 µM
S. aureus 1a 128 µM > 256 µM > 256 µM > 256 µM > 256 µM
S. aureus 1b 128 µM > 256 µM > 256 µM > 256 µM > 256 µM
S. aureus 1c 128 µM > 256 µM > 256 µM > 256 µM > 256 µM

Notably, the MICs of nigritanine were found to correspond to the minimum bactericidal
concentration (MBC) which is defined as the minimum concentration of drug causing ≥3 log killing of
bacteria after 16 hours of incubation. Indeed, about five log reduction in the number of viable cells
of the reference and clinical isolates of S. aureus were detected after treatment with nigritanine at its
MIC (i.e., 128 µM) (Figure 2). Note that other plant alkaloid extracts had similar or even higher MIC
and MBC values against S. aureus and other Gram(+) bacterial strains. For example, alkaloid extracts
from the aerial part of Sida acuta gave MIC and MBC values ranging from 80 to >400 µg/mL against
Staphylococcus strains [51], while the MIC of alkaloid extracts of Mahonia aquifolium ranged from 100 to
500 µg/mL against Staphylococcus epidermidis and Staphylococcus hominis strains [52]. Very high MIC
values (>500 µg/mL) were obtained with alkaloids isolated from aerial parts of Hypecoum erectum L.
(i.e., protopine and allocryptopine) against S. aureus, Bacillus cereus, and Bacillus subtilis strains [53].
Since alkaloids extracts with MICs ranging from 100 to 1000 µg/mL are considered to be compounds
endowed with antimicrobial activity [54,55], nigritanine (MIC = 56.5 µg/mL) would represent a highly
potential antimicrobial molecule.
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Figure 2. Reduction in the number of viable bacterial cells (evaluated by colony forming unit (CFU)
counting) of the reference and clinical isolates of S. aureus strains after 16 hours treatment with
nigritanine at the MIC (128 µM) compared to control (Ctrl) samples consisting in vehicle-treated
bacterial cells. The data represent the mean of three independent experiments ± SD. The levels of
statistical significance versus the Ctrl samples were p < 0.01 (**); p < 0.001 (***).
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2.3. Structure–Activity Relationships (SARs) of Nigritanine for Its Antibacterial Activity

Taking into account all these microbiological data, the new β-carboline alkaloid nigritanine
(35) emerged as a promising antibacterial agent against S. aureus. Nigritanine is a rare β-carboline
heterodimer from different African Strichnos species. In particular, the interest for the Strichnos genus,
due to the large variety of alkaloids and their use in traditional medicine, led Nicoletti et al. to isolate
compound 35, along with other alkaloids, from the leaves of Strichnos nigritana Bak and from the stem
bark of Strichnos barteri Solered, two species rather common in West Africa. From a chemical standpoint,
nigritanine is a heterodimer alkaloid formed by the union of a corynane (Figure 3a) and a tryptamine
unit. Interestingly, this corynane heterodimer displays a substantially higher antibacterial activity
than the monomeric analogs, confirming the trend observed for the β-carboline homodimer [43,56].
The structure–activity relationships (SARs) were investigated for nigritanine (35) and its monomeric
analogs (Figure 3b). Accordingly, the analysis of the antibacterial activity related to the corynane
scaffolds indicated that: (1) the tetrahydro-β-carboline scaffold exhibits good activity; (2) the methoxyl
group at C9 position, the double bond at C19–C18, and the stereochemistry of C3 and C20 do not affect
the activity; (3) the corynane heterodimer shows a substantially higher activity than the monomeric
analogs, highlighting that the presence of the tryptamine unit is essential. Notably, for β-carboline
indoles, dimerization improves the antibacterial activity possibly because the larger molecule is less
susceptible to bacterial efflux [43].
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tetrahydro-β-carboline alkaloids with respect to antibacterial activity.

2.4. Cytotoxicity

2.4.1. Hemolytic Assay

The short-term cytotoxic effect of nigritanine was tested against mammalian red blood cells
after 40 minutes treatment at its MIC (128 µM), 2 ×MIC (256 µM), and 4 ×MIC (512 µM). The least
active compound speciociliatine was tested at the same concentrations for comparison. As reported in
Figure 4, both compounds displayed a weak toxic effect, causing about 30% hemolysis at the highest
concentrations, while nigritanine gave rise to about 20% lysis of erythrocytes at its active concentration
(128 µM). These results confirmed the potential safety of nigritanine in mammalian cells at a short term.
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2.4.2. Cytotoxic Effect on HaCaT Cells

Since the most common site of S. aureus infection is the skin, and keratinocytes represent the
major cell type in the epidermis [57], the long-term cytotoxic effect of nigritanine was evaluated by the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on human immortalized
keratinocytes (HaCaT) after 24 h treatment. As indicated in Figure 5, nigritanine did not induce any
marked reduction in the percentage of viable keratinocytes after 24 h incubation at a concentration
range between 2 µM and 200 µM. Note that other natural alkaloids were cytotoxic at much lower
concentrations than 2 µM [49,58,59], which contrasts with the maximum non-toxic concentration tested
for nigritanine (200 µM = 88.3 µg/mL). Moreover, the MICs of nigritanine (35) against reference and
clinical isolates of S. aureus were equal to 128 µM. These results support the use of this compound as
an antibacterial agent harmless to mammalian cells at its active antibacterial concentration.
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3. Conclusions

With the increasing occurrence of multidrug-resistant bacterial infections and the low number
of new antimicrobial agents on the market, the discovery of new natural compounds with antibiotic
action is extremely necessary. In this work, we characterized the antibacterial profile of the heterodimer
alkaloid nigritanine (isolated in the 1980s from Strychnos species), against S. aureus strains including
clinical isolates. Interestingly, nigritanine resulted to have a potent anti-staphylococcal activity
without being toxic to mammalian red blood cells and human keratinocytes at its active concentration.
More importantly, it retained its antibacterial activity against three multidrug-resistant clinical isolates of
S. aureus, a feature that was not observed for the other tested carboline alkaloids. Thus, the heterodimer
alkaloid nigritanine has emerged as a promising scaffold for the design and development of potent
and selective antibacterial compounds with low cytotoxicity.

4. Material and Methods

4.1. Chemistry

All the tested compounds (namely, 1–39) are known structures belonging to our in-house library of
natural products. The chemical identity of compounds was assessed by re-running Nuclear magnetic
resonance spectroscopy (NMR) experiments and proved to be in agreement with the literature data
reported below for each compound. The purity of all compounds, checked by reversed-phase High
Performance Liquid Chromatography (HPLC), was always higher than 95%.

Compound 1 (dihydroberberine hydrochloride or 9,10-dimethoxy-6,8-dihydro-5H-[1,3]dioxolo[4,5-
g]isoquinolino[3,2-a]isoquinoline hydrochloride) was purchased from Fluka (CAS: 483-15-8, St. Louis,
MO, USA) and used without further purification.

Compound 2 (bulbocapnine hydrochloride or (S)-11-methoxy-7-methyl-6,7,7a,8-tetrahydro-5H-
[1,3]dioxolo[4’,5’:4,5]benzo[1,2,3-de]benzo[g]quinolin-12-ol hydrochloride) was purchased from
Sigma-Aldrich (CAS: 632-47-3, St. Louis, MO, USA) and used without further purification.

Compound 3 (boldine or (6aS)-1,10-dimethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]
quinoline-2,9-diol) was purchased from Sigma-Aldrich (CAS: 476-70-0, St. Louis, MO, USA) and used
without further purification.

Compound 4 (cotarmine hydrochloride or (R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo
[4,5-g]isoquinolin-5-ol) was purchased from MolPort (CAS: 82-54-2, Beacon, NY, USA) and used
without further purification.

Compound 5 (chelidonine or (5bR,6S,12bS)-13-Methyl-5b,6,7,12b,13,14-hexahydro[1,3]dioxolo[4’,5’:
4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridin-6-ol) was purchased from Sigma-Aldrich (CAS:
476-32-4, St. Louis, MO, USA) and used without further purification.

Compound 6 (emetine hydrochloride or (2S, 3 R, 11b S)-2-(((R)-6, 7-dimethoxy-1, 2, 3, 4-
tetrahydroisoquinolin-1-yl)methyl)-3-ethyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]
isoquinoline hydrochloride) was purchased from MolPort (CAS: 14198-59-5, Beacon, NY, USA) and
used without further purification.

Compound 7 ((S)-Glaucine or (6aS)-1,2,9,10-tetramethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo
[de,g]quinoline) was purchased from MolPort (CAS: 475-81-0, Beacon, NY, USA) and used without
further purification.

Compound 8 (hydrastine or (R)-6,7-dimethoxy-3-((R)-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-
g]isoquinolin-5-yl)isobenzofuran-1(3H)-one) was purchased from Sigma-Aldrich (CAS: 118-08-1,
St. Louis, Mo., USA) and used without further purification.

Compound 9 (noscapine or narcotine or (3S)-6,7-dimethoxy-3-((5R)-4-methoxy-6-methyl-5,6,7,8,9,
9a-hexahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)isobenzofuran-1(3H)-one) was purchased from
Sigma-Aldrich (CAS: 128-62-1, St. Louis, MO, USA) and used without further purification.

Compound 10 (papaverine or (6,7-dimethoxyisoquinolin-1-yl)(3,4-dimethoxyphenyl)methanone)
was purchased from MolPort (CAS: 58-74-2, Beacon, NY, USA) and used without further purification.
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Compound 11 (tubocurarine chloride hydrochloride or (1S,16R)-10,25-dimethoxy-15,15,30-
trimethyl-7,23-dioxa-30-aza-15-azoniaheptacyclo[22.6.2.23,6.18,12.118,22.027,31.016,34]hexatriaconta-3(36),
4,6(35),8(34),9,11,18(33),19,21,24,26,31-dodecaene-9,21-diol chloride hydrochloride) showed NMR
spectra identical to those reported in the literature [25].

Compound 12 (cinchonine or (S)-quinolin-4-yl((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methanol)
was purchased from Sigma-Aldrich (CAS: 118-10-5, St. Louis, MO, USA) and used without
further purification.

Compound 13 (kokusaginine or 4,6,7-trimethoxyfuro[2,3-b]quinoline) showed NMR spectra
identical to those reported in the literature [27].

Compound 14 (maculine or 9-methoxy-[1,3]dioxolo[4,5-g]furo[2,3-b]quinoline) showed NMR
spectra identical to those reported in the literature [27].

Compound 15 (4-methoxy-2-(1-ethylpropyl)-quinoline) showed NMR spectra identical to those
reported in the literature [27].

Compound 16 (aspidospermine or 1-((3aR,5aR,10bR,12bR)-3a-Ethyl-7-methoxy-2,3,3a,5,5a,11,12,
12b-octahydro-1H,4H-6,12a-diaza-indeno[7,1-cd]fluoren-6-yl)-ethanone) showed NMR spectra identical
to those reported in the literature [28].

Compound 17 (brucine or (4aR,5aS,8aR,15bR)-10,11-dimethoxy-4a,5,5a,7,8,13a,15,15a,15b,16-
decahydro-2H-4,6-methanoindolo[3,2,1-ij]oxepino[2,3,4-de]pyrrolo[2,3-h]quinolin-14-one) was purchased
from Sigma-Aldrich (CAS: 357-57-3, St. Louis, MO, USA) and used without further purification.

Compound 18 (diaboline or (4bR,7aS,8aR,13R,13aR,13bR)-13-hydroxy-5,6,7a,8,8a,11,13,13a,13b,14-
decahydro-7,9-methanoindeno[1,2-d]oxepino[3,4-f ]indole-14-carboxylic acid) showed NMR spectra
identical to those reported in the literature [60].

Compound 19 (physostigmine or eserine or ((3aR,8bS)-3,4,8b-trimethyl-2,3a-dihydro-1H-pyrrolo
[2,3-b]indol-7-yl) N-methylcarbamate) was purchased from MolPort (CAS: 57-47-6, Beacon, NY, USA)
and used without further purification.

Compound 20 (holstiine or (15Z)-15-Ethylidene-10-hydroxy-17-methyl-11-oxa-8,17-diazapentacyclo
[12.5.2.11,8.02,7.013,22]docosa-2,4,6-triene-9,20-dione) showed NMR spectra identical to those reported
in the literature [61].

Compound 21 (pseudobrucine or (4aR,4a1R,5aR,8aS,8a1S,15aS)-5a-hydroxy-10,11-dimethoxy-4a1,
5,5a,7,8,8a1,15,15a-octahydro-2H-4,6-methanoindolo[3,2,1-ij]oxepino[2,3,4-de]pyrrolo[2,3-h]quinolin-14
(4aH)-one) was purchased from Fisherpharma (CAS: 560-30-5, Beacon, NY, USA) and used without
further purification.

Compound 22 (retuline or 1-((3aS,5R,6S,6aS,11bR,E)-12-ethylidene-6-(hydroxymethyl)-1,2,4,5,6,6a-
hexahydro-3,5-ethanopyrrolo[2,3-d]carbazol-7(3aH)-yl)ethanone) showed NMR spectra identical to
those reported in the literature [62].

Compound 23 (serotonin or 3-(2-aminoethyl)-1H-indol-5-ol) was purchased from Sigma-Aldrich
(CAS: 50-67-9, St. Louis, MO, USA) and used without further purification.

Compound 24 (triptamine hydrochloride or 2-(1H-indol-3-yl)ethan-1-amine hydrochloride)
was purchased from Sigma-Aldrich (CAS: 343-94-2, St. Louis, MO, USA) and used without
further purification.

Compound 25 (vomicine hydrochloride or (4aR,4a1R,6aS,6a1S,13aS)-10-hydroxy-16-methyl-4a,5,
13,13a-tetrahydro-2H-6a,4-(ethanoiminomethano)indolo[3,2,1-ij]oxepino[2,3,4-de]quinoline-6,12(4a1H,
6a1H)-dione hydrochloride) was purchased from MolPort (5969-84-6, Beacon, NY, USA) and used
without further purification.

Compound 26 (vindoline or (3aR,3a1R,4R,5S,5aR,10bR)-methyl 4-acetoxy-3a-ethyl-5-hydroxy-8-
methoxy-6-methyl-3a,3a1,4,5,5a,6,11,12-octahydro-1H-indolizino[8,1-cd]carbazole-5-carboxylate) was
purchased from MolPort (CAS: 2182-14-1, Beacon, NY, USA) and used without further purification.

Compound 27 (akagerine or (E)-2-((3aS,5R,7S)-7-hydroxy-3-methyl-1,2,3,3a,4,5,6,7-octahydro-3,7a-
diazacyclohepta[jk]fluoren-5-yl)but-2-enal) showed NMR spectra identical to those reported in the
literature [63].
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Compound 28 (canthin-6-one or 6H-indolo[3,2,1-de][1,5]naphthyridin-6-one) was purchased from
MolPort (CAS: 479-43-6, Beacon, NY, USA) and used without further purification.

Compound 29 (α-carboline or 9H-pyrido[2,3-b]indole) was purchased from MolPort (CAS: 244-76-8,
Beacon, NY, USA) and used without further purification.

Compound 30 (harmane or 1-methyl-9H-pyrido[3,4-b]indole) was purchased from Sigma-Aldrich
(CAS: 486-84-0, St. Louis, MO, USA) and used without further purification.

Compound 31 (norharmane or 9H-pyrido[3,4-b]indole) was purchased from Sigma-Aldrich (CAS
Number: 244-63-3, St. Louis, MO, USA) and used without further purification.

Compound 32 (harmine or 7-methoxy-1-methyl-9H-pyrido[3,4-b]indole) was purchased from
Sigma-Aldrich (CAS: 442-51-3, St. Louis, MO, USA) and used without further purification.

Compound 33 (ibogaine or (6R,7S,11S)-7-ethyl-2-methoxy-6,6a,7,8,9,10,12,13-octahydro-5H-6,9-
methanopyrido[1’,2’:1,2]azepino[4,5-b]indole) showed NMR spectra identical to those reported in the
literature [38].

Compound 34 (mitragynine or (E)-methyl 2-((2S,3S,12bS)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-
octahydroindolo[2,3-a]quinolizin-2-yl)-3-methoxyacrylate) was purchased from BOC Sciences (CAS:
4098-40-2, Shirley, NY, USA) and used without further purification.

Compound 35 (nigritanine or (2S,3R,12bS)-3-ethyl-2-(((S)-2-methyl-2,3,4,9-tetrahydro-1H-pyrido
[3,4-b]indol-1-yl)methyl)-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine) showed NMR spectra
identical to those reported in the literature [64]. The chemical characterization of compound 35 is
reported below: Brown solid, m.p. 202-204◦C; 1H-NMR (CDCl3, 400 MHz): 0.93 (t, J = 7 Hz, 3H, Me-C),
2.46 (s, 3H, Me-N), 3.56 (m, 1H, H-3), 6.40 (s, 1H, H-1 or H-1’), 7.80 (s, 1H, H-1 or H-1’); 13C-NMR
(CDCl3, 101 MHz): 11.2 (C18), 20.7 (C6’), 21.5 (C6), 23.7 (C19), 41.9 (C20), 42.7 (N-CH3), 34.9 (C14),
35.0 (C16), 35.8 (C15), 51.3 (C5’), 53.0 (C5), 58.6 (C17), 59.1 (C3), 60.2 (C21), 107.1 (C7), 108.8 (C7’), 110.8
(C12), 110.9 (C12’), 117.5 (C9 or C9’), 117.7 (C9 or C9’), 118.8 (C10 or C10’), 119.3 (C10 or C10’), 120.4
(C11 or C11’), 121.4 (C11 or C11’), 126.7 (C8), 127.0 (C8’), 134.7 (C2), 135.5 (C2’), 135.6 (C13 or C13’),
135.7 (C13 or C13’); m/z (ESI+) 452 (M+, 82%), 437 (6), 408 (10), 267 (8), 253 (12), 199 (27), 185 (100).

Compound 36 (paynantheine or (E)-methyl 3-methoxy-2-((2S,3R,12bS)-8-methoxy-3-vinyl-1,2,3,4,
6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acrylate) was purchased from BOC Sciences (CAS:
4697-66-9, Shirley, NY, USA) and used without further purification.

Compound 37 (rhynchophylline or (E)-methyl 2-((1’R,6’R,7’S,8a’S)-6’-ethyl-2-oxo-3’,5’,6’,7’,8’,8a’-
hexahydro-2’H-spiro[indoline-3,1’-indolizin]-7’-yl)-3-methoxyacrylate) was purchased from BOC
Sciences (CAS: 76-66-4, Shirley, NY, USA) and used without further purification.

Compound 38 (speciociliatine or (E)-methyl 2-((2S,3S,12bR)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-
octahydroindolo[2,3-a]quinolizin-2-yl)-3-methoxyacrylate) was purchased from BOC Sciences (CAS:
14382-79-7, Shirley, NY, USA) and used without further purification.

Compound 39 (yohimbine hydrochloride or (1R,2S,4aR,13bS,14aS)-methyl 2-hydroxy-1,2,3,4,4a,
5,7,8,13,13b,14,14a-dodecahydroindolo[2’,3’:3,4]pyrido[1,2-b]isoquinoline-1-carboxylate hydrochloride)
was purchased from Sigma-Aldrich (CAS: 65-19-0, St. Louis, MO, USA) and used without
further purification.

4.2. Microorganisms and Cell Line

The reference Gram(+) and Gram(-) strains used for the antimicrobial tests were S. aureus ATCC
25923 and E. coli ATCC 25922, respectively. The multidrug-resistant clinical isolates of S. aureus (1a, 1b,
and 1c) were kindly provided by Professor Giammarco Raponi (Sapienza, University of Rome).

HaCaT cells (AddexBio, San Diego, CA, USA) were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 4 mM glutamine (DMEMg), 10% heat-inactivated fetal bovine serum
(FBS), and 0.1 mg/mL of penicillin and streptomycin at 37 ◦C and 5% CO2, in 25 cm2 or 75 cm2 flasks.
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4.3. Antimicrobial Assays

A bacterial culture inoculum was incubated at 37 ◦C in Luria–Bertani (LB) broth until reaching an
optical density (O.D.) of 0.8 at 590 nm. For the inhibition zone assay, the bacterial culture was diluted
1:2000 and plated in LB-agarose plates. An aliquot (3 µL) of each compound at 5 mM was loaded into
holes previously made in the agarose plates [65,66]. Afterwards, the plates were incubated overnight at
30 ◦C. Afterwards, the diameters of the inhibition zone were measured and reported in Tables 2 and 3.

For the determination of the MICs, 50 µL of bacterial suspension (2 × 105 cells/mL) in
Mueller–Hinton broth (MH) was added to 50 µL MH containing serial dilutions of the compounds
(from 256 µM to 2 µM) previously prepared in a 96-well plate. Controls consisted of vehicle-treated
bacterial cells [67]. The plate was then incubated for 16 hours at 37 ◦C, and MIC was defined as the
lowest concentration causing 100% visible inhibition of microbial growth. Afterwards, aliquots from
the wells corresponding to the MIC of nigritanine (35) and to the control were withdrawn and plated
onto LB agar plates for colony forming unit (CFU) counting and MBC determination.

4.4. Cytotoxicity Assays

To evaluate short-term cytotoxicity, selected alkaloids were tested on sheep red blood cells (OXOID,
SR0051D). Aliquots of erythrocyte suspension (O.D. of 0.5 at 500 nm) in 0.9 % (w/v) NaCl were incubated
for 40 min at 37 ◦C with three different concentrations (MIC, 2 ×MIC, and 4 ×MIC) of nigritanine
(35) or the same concentrations of speciociliatine (38). The treated samples were then centrifuged for
5 min at 900× g. The amount of hemoglobin released in the supernatant by lysed red blood cells was
measured at 415 nm using a microplate reader (Infinite M200; Tecan, Salzburg, Austria). The complete
lysis was obtained by suspending erythrocytes in distilled water according to [68–70].

To evaluate the in vitro long-term cytotoxicity of nigritanine (35), a colorimetric method was
employed. This assay is based on the intracellular reduction of the yellow tetrazolium salt MTT
(Sigma-Aldrich, St. Luis, MO, USA) to purple formazan crystals by mitochondrial dehydrogenases
of metabolically active cells. Therefore, the amount of purple color is directly proportional to the
number of viable cells. About 4 × 10 4 HaCaT cells resuspended in DMEMg supplemented with 2%
FBS, without antibiotics, were plated in each well of a 96-well plate. After overnight incubation in a
humidified atmosphere containing 5% CO2 at 37 ◦C, the medium was removed, and fresh serum-free
DMEMg containing the compound at different concentration was added in each well. For controls,
cells were treated with vehicle. The plate was incubated for 24 h at 37 ◦C and 5% CO2. Afterwards,
the medium was discarded, and 0.5 mg/mL of MTT in Hank’s buffer (136 mM NaCl, 4.2 mM Na2HPO4,
4.4 mM KH2PO4, 5.4 mM KCl, 4.1 mM NaHCO3, pH 7.2, supplemented with 20 mM D-glucose) was
added to each well. After 4 h incubation at 37 ◦C and 5% CO2, 100 µL of acidified isopropanol was
added to each well, in order to dissolve the formazan crystals [71,72]. Absorbance was measured by a
microplate reader (Infinite M200; Tecan, Salzburg, Austria) at 570 nm, and cell viability was calculated
with respect to the control (cells in medium supplemented with vehicle).

4.5. Statistical Analysis

All data are expressed as the mean ± SD or SEM. Statistical analyses were performed using
Student’s t-test with the Prism software package (GraphPad, 6.0, San Diego, CA, USA), and the
differences were considered to be statistically significant for p < 0.05.
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