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Abstract - An original dataset referring to a medium-sized Italian university is implemented for analyzing 
the determinants of scientific research production at individual level. Three different indicators, based on the 
number of publications and/or citations, are considered. Their distributions are highly skewed, displaying an 
excess of zero-valued observations, thus zero-inflated and hurdle regression models are introduced. Among 
them, the Hurdle Negative Binomial model exhibits a good fitting and appears to be reasonably coherent 
with the underlying generating data process. Indeed, the performance of active researchers is described by 
the count component of the model, while the odds to be in a non-active status is modelled by the zero 
component. Individual characteristics, teaching and administrative activities, as well as the features of the 
department the researcher belongs to, are considered as explanatory variables. The analysis of the results 
highlights that scientific productivity is lower for oldest active researchers, and that there is a significant 
effect of academic position on research production. Evidence of clear-cut and significant substitution or 
complementarity effect between teaching and research activities is not found. Indeed, a major teaching load 
does not apparently affect the odds to be a non-active researcher, while it has mixed and very weak effects 
on publication performance of active researchers. A negative relationship among productivity and 
administrative tasks is highlighted. Finally, the analysis points out the effects of department composition on 
both the odds to be non-active and the value of the production indicators of active researchers.  
 

Keywords: Academic research productivity, Scientist productivity, Hurdle models, Zero-Inflated models, 
Negative Binomial distribution, Poisson distribution  
 
Acknowledgments: We would like to thank Sonia Boldrini from the Evaluation Committee of the 
University of Siena for her valuable assistance in data harvesting and database building. 

 
 
 

Alberto Baccini, Lucio Barabesi, Martina Cioni, Caterina Pisani 
Department of Economics and Statistics - University of Siena 

alberto.baccini@unisi.it, lucio.barabesi@unisi.it, martina.cioni@unisi.it, caterina.pisani@unisi.it 

mailto:alberto.baccini@unisi.it
mailto:lucio.barabesi@unisi.it
mailto:martina.cioni@unisi.it


1 

 

1. Introduction 

In the last thirty years, there has been a growing interest in the role of academic research 

activity and in its contribution to economic growth and social development. One of the least studied 

and most puzzling feature of this debate is the question of individual scientific productivity. 

Researcher’s activity is basically a multi-output activity, producing outcomes as research, teaching 

and others products (newspapers articles, medical protocols, etc.) with relevant impact on society. 

This idea is so widespread that in the national research assessment exercises (for example in the 

British Research Excellence Framework 2014) information is collected about all these different 

activities to evaluate not only the quality of research produced by universities, but also their 

multifaceted societal impact. At the best of our knowledge, while no study addresses the question of 

the determinants of researchers’ overall production, many papers focus solely on one dimension of 

their multi-output activities.  

However, the idea that scientific publications represent the essence of the research activity is 

widely accepted (Wooton, 2013). In this respect, scholars have addressed two different issues. The 

first is about the development of models able to accurately describe the law governing the 

frequency distribution of researcher’s publications; the second is about the determinants of 

individual productivity. In this literature, the number of publications of a researcher is the most used 

proxy for quantifying her/his productivity. The main drawback of this indicator is that each 

publication counts for one: a short paper addressing a limited issue counts as a seminal paper. So, 

the holy grail of scientometric research is the construction of indicators addressing at the same time 

the issue of individual productivity and of “quality” of scientific work, also at a researcher level 

(Van Leeuwen et al., 2003). 

Indeed, the most used strategy in empirical research consists in the substitution of the notion 

of “research quality” with the one of “scientific impact”, as defined in Martin and Irvine (1983), 

that can be more easily handled using data on citations. One possible line of inquiry consists in 

counting a subset of the publications of a researcher, such as the highly cited papers or those 

published in top journals - defined in reference to the impact factor or to others similar indicators. A 

different approach aims to obtain composite indicators of productivity and impact of a researcher 

considering her/his published articles together with the citations they received. Among them, the 

most widespread indicator is the h-index (Hirsch, 2005).  

The present paper - based on an original dataset - contributes to the debate by focusing on the 

determinants of individual scientific production as proxied by three different indicators based on the 



2 

 

number of publications and/or their citations. These indicators are integer-valued and show 

distributions which are highly skewed with an excess of zeros. Since most of the scientific 

contributions are produced by few prolific researchers - as also stylized by David (1994) - the 

distribution of the indicator adopted to quantify research performance tends to display heavy tails 

and high frequency of zero values, irrespective of the proxy considered and the discipline 

investigated. Nevertheless, many existing papers dealing with modelling the determinants of 

scientific production do not specifically address the skewed and zero-inflated nature of the data 

(Carayol and Matt, 2004 & 2006; Lissoni et al., 2011; Rivera-Huerta et al., 2011). Moreover, some 

authors impose artificial smoothness to the data, although recognizing the discrete nature of the 

production indicators they use (Kelchtermans and Veugelers, 2011; Lissoni et al., 2011). 

In order to model skewed count data with an excess of zero-valued observations, we introduce 

zero-inflated and hurdle regression models, which, even if well-established in other disciplines, 

have been quite neglected in the framework of the analysis of production process of academic 

research.  

The remainder of the paper is divided into four sections. Section 2 surveys the main literature 

addressing the issues of researcher’s production. Section 3 illustrates the data and the methodology 

used. Section 4 presents and discusses the main results of our empirical analysis. Finally, in Section 

5 conclusions are drawn and avenues for further research are considered. 

 

2. Literature review 

Two alternative approaches have been considered in the analysis of scientific production: the 

first focuses on the laws underlying the frequency distribution of the number of publications (or 

citations), while the second aims to identify the determinants of scientific performance. The first 

approach dates back to the 1920s, particularly to the publication of Lotka’s seminal article (1926). 

Lotka investigated the frequency distribution of scientific productivity of chemists and physicists 

showing that “...the number (of authors) making n contributions is about l/n2 of those making one; 

and the proportion of all contributors, that make a single contribution, is about 60%...”. This kind of 

approach has survived until the recent attempts to create theoretical models able to foresee the 

future pattern of production of a scholar given her/his past performance (e.g. Wang et al., 2013 and 

the bibliography cited thereon).  

Alternative explanations of Lotka findings and, more in general, of the highly skewed nature 

of scientific production of scholars have been proposed. The simplest one - highly criticized for 
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example by Allison and Stewart (1974) and by David (1994) - is the so-called “sacred-spark 

hypothesis”, i.e. the differences in productivity reflect unequal and predetermined capabilities of 

researchers. In the late 1960s, a so called “Matthew-effect hypothesis” was advanced by Merton 

(1968). Merton highlighted that well-known researchers receive more recognition for their work 

than less well-known researchers. This hypothesis was then generalized by Cole and Cole (1973) to 

be valid not only for recognition, but, more generally, for scientific productivity. In this form, this 

hypothesis was called “cumulative advantage hypothesis”. The idea is that recognition received 

early in researchers’ career may be reinforced over time as it would enable easier access to research 

resources; this issue means that any advantage will be cumulative (Defazio et al., 2009). This kind 

of explanation exclusively focuses on the social structure in which scholars are embedded and 

deploys their works. A second approach addresses the academic research production aiming to 

identify both individual and collective determinants of scientific productivity: the former refer to 

personal characteristics of a researcher and the latter to the features of the organization in which 

she/he is active. In these works the sacred-spark and the Mattew-effect hypotheses are considered - 

so to speak - as residual or unexplained components of a roughly defined production function 

addressing all relevant explanatory variables. This explanatory approach has been applied both to 

the individual level of analysis - where the survey unit is the researcher - and to the aggregate level 

- where the survey unit is the research unit (e.g. department, laboratory, university). A complete 

review of all the elements that a broad and growing applied literature considers as possible 

explanatory variables of individual and aggregate scientific productivity is out of the aim of our 

work. We focus our attention solely on the issues used in our models. 

The set of individual determinants considered can be grouped into the following categories: 

personal characteristics of a researcher, such as gender and age; individual career features, such as 

seniority, career progress and scientific field in which a scholar is working; activities in which the 

researcher is engaged, as teaching activities and administrative tasks; and, finally, access to research 

funding. 

As to the personal characteristics, we are interested in evaluating if age affects the publication 

activity, as suggested by life-cycle models. Indeed, some studies predict a decrease of research 

production as age increases (Diamond, 1984, 1986); others find that publication activity tends to 

increase in the early career, reaches a peak, and then decreases (Levin and Stephan, 1991; Weiss 

and Lillard, 1982; Zuckerman and Merton, 1972); while others find a productivity curve with two 

peaks (Bayer and Dutton, 1977). These relationships have to be taken with caution, since it is 

difficult to distinguish between age effect and cohort effect. Indeed, the latter can be associated, for 
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example, with a progression of knowledge or a different availability of resources, as discussed by 

Stephan (1996, 2012). At the aggregate level of analysis, a study on the Italian National Research 

Council highlights a negative relationship between age and research productivity indicators 

(Bonaccorsi and Daraio, 2003), while the results by Carayol and Matt (2004) suggest an “inversed-

U shape” relationship between laboratories productivity and age. In contrast, a lack of significant 

relationship between age and publication rate within the faculties of the University of Vienna is 

claimed by Wallner et al. (2003). 

Regarding the role of gender in scientific publication performance, since 1980s - when Cole 

and Zuckerman (1984) defined the gender differences in productivity among academic scientists as 

“a puzzle” - several studies tried to address this issue (Fox, 2005; Fox et al., 2011; Leahey, 2006; 

Levine and Stephan, 1998; Xie and Shauman, 2003). Mairesse and Pezzoni (2013) revisit the 

gender gap in scientific production, offering a critical review of the empirical evidence throughout 

the analysis of what influences women scientific productivity (family engagements, marital status 

and policies in favour of women, institutional specificities, discipline specificities, etc.). Abramo et 

al. (2009) document differences in productivity between men and women, but highlight a 

progressive reduction of the performance gap over time for Italian scientists (hard sciences and life 

sciences). Similar conclusions are achieved by van Arensbergen et al. (2012) who suggest that, even 

if men outperform women in terms of scientific production in the older generations, the gendered 

differences are disappearing in the younger generations. 

As to the effects of seniority and career progress, the role of tenure and position are 

ambiguous. On one hand, an improvement in the professional status of the researcher can positively 

affect research performance, since - for example - she/he can have easier access to funding or attract 

talented young students/scientists in her/his research team (the so-called “status effect”). On the 

other hand, once a career progress has been obtained, the incentives to production can be reduced. 

The relationship between seniority or career progress and research performance is nearly 

universally addressed in this literature. Among others, Fabel et al. (2008) find a negative effect of 

career age on publications for full professors, while Rivera-Huerta et al. (2011) consider career 

years as a control variable in modelling individual research output.  

It is well known that publishing activities and citation patterns vary among scientific 

disciplines. These differences - as emphasized by Anania and Caruso (2013) - are particularly 

relevant in many areas of Social Sciences and Humanities, where scientific productivity and citation 

practices typically yield fewer citations per paper. Two strategies are used for tackling this problem. 

The first strategy tends to limit the analysis on researchers working in homogeneous scientific fields 
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(see e.g. Lissoni et al., 2011; Pezzoni at al., 2012). The second strategy aims to model the research 

performance of scientists from heterogeneous areas including control variables for the researcher 

scientific discipline - defined according to some available classification (see e.g. Carayol and Matt, 

2006; Rivera-Huerta et al., 2011). 

As to the multidimensional nature of scientists’ activity, the question to be addressed is if the 

engagement in activities - such as teaching and administrative tasks - may crowd out research. 

According to some authors (Fox, 1992; Taylor et al., 2006), these activities conflict as the more 

productive researchers spend less time for teaching and students in general. This substitutive 

relationship is also documented by a recent paper on French professors in Economics (Kossi et al., 

2013). In contrast, an analysis on business economists in Germany and Switzerland shows that 

higher teaching loads in terms of class sizes do not deteriorate research productivity (Fabel et al., 

2008) and an investigation performed by Kelchtermans and Veugelers (2011) on scientists 

employed at the KU Leuven highlights that alternative activities have very small and mostly 

insignificant effects on research output. 

However, as suggested by Stephan (1996), given the collaborative nature of science, 

individual determinants solely represent a part of the drivers of scientific production. Thus, 

determinants relating to the organization in which the researcher operates have to be considered. 

Allison and Long (1990) highlight the role of prestigious departments in encouraging individual 

scientific productivity. The composition of laboratories or departments in terms of type of 

researchers (full professors, assistant professors, PhD students, etc.) and their average age are also 

considered in literature (Carayol and Matt, 2006), as well as the quality of colleagues’ production 

(Lissoni et al., 2011; Mairesse and Turner 2006), and the fundraising ability (Carayol and Matt, 

2006). At the aggregate level of analysis, some scholars concentrate on the organization size, 

showing a positive size effect on laboratory productivity (Cainelli et al., 2006; Fabel et al., 2008); 

others find that small-sized departments are more productive (Carayol and Matt, 2004 & 2006) 

while others focus on the effects of the composition and average age of the research unit 

(Bonaccorsi and Daraio, 2003). On one side senior researchers may enhance the productivity of the 

younger due to co-author works or informal contacts; on the other side, the younger can act as 

incentives to stimulate the research activities of the older (Carayol and Matt, 2004 & 2006). 
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3. Material and methods 

3.1. Data 

In order to address the issues raised in the previous section, our analysis is based on a large 

original dataset implemented by using either internal administrative sources or external sources. 

The data refer to the University of Siena (Italy), one of the oldest (established in 1240) publicly-

funded universities in Italy. It is a medium-sized university with about 17,000 students covering 8 

scientific areas: Arts and Humanities, Economics, Engineering, Law, Mathematical, Physical and 

Natural Sciences, Medicine and Surgery, Pharmacy, Political Sciences. The dataset is composed by 

942 individual records referred to permanent researchers of the University of Siena. For each 

researcher, we collected information dealing with personal characteristics, research activity, 

teaching activity, administrative tasks and departmental affiliation. The composition of such a 

database allows us to assess the determinants of researchers’ publication productivity. 

3.1.1 Response variables 

In order to quantify publication production, three different response variables are considered: 

i. number of publications in Anagrafe.UNISI, denoted by repository. The Anagrafe.UNISI is 

the research repository of the University of Siena. It is used by researchers in order to record all 

their outlet and therefore it is filled with a broad range of outputs: scientific publications, teaching 

materials and informative articles - such as newspapers and magazine articles. The variable 

repository is constructed by counting - for each scholar - the number of scientific outputs recorded 

in the repository during the period 2008-2010 and classified as articles, books, chapters in books, 

conference proceedings; 

ii. number of publications in Scopus, the bibliographic database developed by Elsevier 

(http://www.scopus.com), denoted by scopus. This variable is the number of publications in the 

database referred to the period 2008-2010. In order to get this information for each researcher, the 

last and first names were queried in the Scopus Author search. If the author’s name was not unique, 

the results were refined to ensure that the correct publications were attributed to the researcher. The 

database was accessed in July 2011; 

iii. h-index score, described by the variable h_index. This index - introduced by Hirsh (2005) - 

combines the author’s article count and citation count into a single value. The value of the h-index 

http://www.scopus.com/
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was extracted from the Scopus database and refers to December 31st, 2010. The database was 

accessed in July 2011 using the same procedure adopted for the variable scopus. 

It must be pointed out that the variable scopus supplies a measure of the outcome of research 

production more rigorous than the variable repository, since in the Scopus database solely peer-

reviewed literature appears. On the contrary, the h-index is an indicator mixing a proxy of scientific 

production (i.e. the number of publications) and research impact (i.e. the number of received 

citations). Moreover, as stressed by Hirsch (2005, p.16572), the h-index “... gives an estimate of the 

importance, significance, and broad impact of a scientist’s cumulative research contributions ...”. 

Figure 1 displays the box-plots of the three variables. 

Finally, it is worth noting that, since the h-index completely ignores the issue of co-

authorship, for the variables repository and scopus we collected in turn the number of publications 

for each researcher without considering the co-author number.  
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Figure 1. Box-plots of the number of publications in the research repository of the University of 
Siena (repository), of the number of publications in Scopus database (scopus) and of the h-index 
value (h_index). 
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3.1.2 Explanatory variables 

The explanatory variables are collected from internal administrative sources and they are 

aimed to highlight the individual determinants of academic productivity in terms of the features of 

the researchers, i.e. their personal characteristics, their teaching activities, their participation to the 

university governance and the research working context. Among the variables describing researcher 

personal characteristics, gender (indicated as the variable gender) is the first considered. The 

database also includes the age of the researcher at December 31st, 2010. In order to achieve a better 

understanding of the age effect on production, we considered age quartiles which turned out to be 

45.93, 53.77 and 60.80 years. Subsequently, each researcher was assigned to one of the four groups 

defined by the quartiles according to her/his age (say, the variable age). Moreover, the number of 

years since she/he got a permanent position (indicated as the variable tenure) and her/his position 

(indicated as the variable position) are considered. The latter variable gives the professional role in 

the University of Siena at December 31st, 2010, as contemplated by the Italian academic system: 

“ricercatore universitario” (assistant professor), “professore associato” (associate professor) and 

“professore ordinario” (full professor). Research and teaching activities, as well as wages, are 

defined by national legislation. Also the recruitment and career promotion system, from assistant 

professor to associate or full professor, and from associate to full professor, are ruled by national 

laws and based - at least on principle - on scientific productivity. Moreover, to take into account 

that Italian legislation allows for choosing between full-time or part-time academic positions, the 

variable full-time (providing this information at December 31st, 2010) is considered. Part-time 

researchers have a teaching load of about one-half with respect to full-time researchers. It is 

mandatory that researchers involved in private practice (such as lawyers, engineers or doctors, as an 

example) have a part-time contract. 

Since publishing activities and citation practices are deeply different across disciplines, we 

consider the sector of activity of the researcher. To this aim, we re-classified the scientific 

disciplines, as defined in the Italian academic system, into the European Research Council Sectors 

in such a way to give rise to the variable erc, which categorizes the disciplines in Life Sciences 

(LS), Physical and Engineering Sciences (PE), and Social Sciences and Humanities (SH).  

Prin projects - acronym of “Progetti di Ricerca di Interesse Nazionale” - are three-years 

research projects granted by the Italian Ministry of University and Research on a competitive basis, 

open to all disciplines. Each project is evaluated by peer reviewers. Projects receiving positive 

evaluation are grouped on scientific fields and ranked and solely a small minority of them are 
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funded. The dummy variable prin indicates if a researcher has been involved at least in one 

positive-evaluated Prin project during the period 2008-2010. Thus, the variable prin is a proper 

proxy of the ability of the researcher to be involved in well-evaluated projects, rather than a proxy 

of financial resources available for her/his research.  

In order to tackling the question if teaching and research are complementary or conflicting 

activities, we gathered information on researchers teaching activity through three variables. The 

variable teaching is the average number of teaching hours per month during the period 2008-2010, 

computed excluding months on leave. The variable thesis is the number of bachelor and master 

dissertations supervised by each researcher in the period 2008-2010, while the variable students is 

the average number of students attending lectures in the same period. Similarly, we would assess if 

the time devoted to the governance could badly affect the individual productivity. To this purpose, 

we introduce the variable presence_faculty_meeting, i.e. the proportion of faculty meetings attended 

by a researcher during the period 2008-2010. This variable can be considered as a rough proxy of 

the institutional duties of a researcher. Finally, we wonder if research productivity is affected by the 

research context and, particularly, by the characteristics of the department staff, i.e. the so-called 

“departmental effect”. In order to contemplate the department composition, we include two 

variables, denoted by young_ratio and taw_ratio. The former variable represents the ratio of the 

number of PhD students and research fellows to the number of permanent researchers (assistant, 

associate and full professors). The latter variable is the ratio of the number of non-research staff 

units (i.e. technical and administrative workers) to the number of permanent researchers. Table 1 

reports the definition of the explanatory and response variables adopted in the analysis, as well as 

some corresponding descriptive statistics.  

 

3.2 Method  

From Figure 1, it is at once apparent that the distributions of the three response variables 

show the presence of a remarkable number of zeros and a high level of skewness. When dealing 

with modelling skewed count data with an excess of zeroes, it is well known that the usual Poisson 

(P) regression can be inappropriate. Indeed, the data tend to exhibit over-dispersion, i.e. a larger 

variance than that predicted by the mean, and a large number of zero counts. In order to address 

over-dispersion, the Negative Binomial (NB) regression can be alternatively used. However, when 

the major source of over-dispersion is related to a preponderance of zero counts, more flexible 

count data models - such as zero-inflated or hurdle models - have to be adopted. 
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Table 1. Definition of variables. Mean, median, minimum and maximum values, Standard 
Deviation (S.D.) are reported for quantitative variables; relative frequencies are reported for 
categorical variables. 
 

Response variables Description Mean Median Min. Max. S.D. 

repository number of publications in Anagrafe.UNISI 8.47 6.00 0 87.00 1.11 

scopus number of publications in Scopus database 6.45 2.00 0 176.00 2.11 

h_index h- index 6.12 3.00 0 57.00 1.28 

       Quantitative explanatory 
variables Description Mean Median Min. Max. S.D. 

tenure years in permanent position  18.11 18.00 2.00 42.00 0.58 

teaching average number of hours of teaching per 
month  worked 7.39 7.22 0 52.00 0.53 

thesis number of thesis as supervisor 2.60 1.30 0 44.00 1.51 

students number of students attending lectures 35.16 26.50 0 415.00 0.98 

presence_faculty_meeting proportion of presence to the Faculty meeting 0.50 0.55 0 1.00 0.55 

young_ratio ratio of PhD students and research fellows  
and permanent researchers  1.09 1.11 0 2.21 0.47 

taw_ratio ratio of technical and administrative workers 
and permanent researchers 0.51 0.43 0.08 1.41 0.71 

       
Categorical explanatory 
variables Description Frequency 

    
age age of the scholar      

1 age ≤45.93 0.25     
2 45.93<age ≤53.77 0.25     
3 53.77<age ≤60.80 0.25     
4 age>60.80 0.25     

gender gender      
M male  0.66     
F female 0.34     

position role at the university      
AR assistant professor 0.41     
AP associate professor 0.29     
FP full professor 0.30     

erc European Research Council Sectors      
LS Life Sciences 0.29     
PE Physical and Engineering Sciences  0.28     
SH Social Sciences and Humanities 0.43     

prin positive evaluation in Prin project      
0 no positive evaluation 0.26     
1 yes positive evaluation 0.74     

full-time full-time service to the university      
0 no full-time  0.06     
1 yes full-time 0.94     
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3.2.1 Poisson and Negative Binomial models 

The Poisson regression is the simplest regression model for count data, assuming a log-linear 

dependence between the mean of a Poisson distribution and a set of covariates (see e.g. McCullagh 

and Nelder, 1989). More precisely, let us assume that Y  be the random variable (r.v.) representing 

the response variable and that nYY ,,1   be a sample of n stochastically independent counts. In the 

Poisson regression, the r.v. Y  has a Poisson distribution with parameter )(zλ , where z  denotes a 

suitable covariate vector. If iz  denotes the value of the covariate vector for the i-th individual, the 

r.v. iY  has probability function (p.f.) given by 
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Hence, by adopting log-linear regression, the model assumes that  
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where γ  denotes an unknown parameter vector. It must be pointed out that assuming a Poisson 

distribution has several implications which cannot be neglected: first, the expectation and variance 

are equal, even if count data often exhibit over-dispersion. Alternatives - overcoming this violation - 

include the Poisson regression with over-dispersion parameter or the use of the Negative Binomial 

regression (Hilbe, 2011). Under the Negative Binomial model,  the r.v. Y  has a Negative Binomial 

distribution with parameter )(zλ , i.e. the p.f. of the r.v. iY  is given by 
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where θ  represents the dispersion parameter, while )(⋅Γ  represents the usual Euler’s Gamma 

function. In this case, similarly to the Poisson model, the mean is )( izλ , while the variance is given 

by 21 )()( ii zz λθλ −+ , thus allowing the modelling of over-dispersed data. In turn, log-linear 

regression is commonly adopted to describe the dependence with the covariate vector. 

A second issue deals with the observed number of zero counts, which highly exceeds the predicted 

number. This drawback should be addressed by means of more refined count data models, such as 

zero-inflated or hurdle models. 
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3.2.2 Zero-inflated models 

In the zero-inflated models, the response variable is modelled as a mixture of a Dirac mass at 

zero and an integer-valued distribution - usually referred to as the count component. Among them, 

the most widely applied model is arguably the Zero-Inflated Poisson model (ZIP) (see e.g. Bohning 

et al., 1999; Dalrymple et al., 2003; Hall, 2000; Lambert, 1992; Rathbun and Fei, 2006). In the ZIP 

regression, the response variable Y  is assumed to be zero with probability )(xp  - where x  denote a 

further covariate vector - while it displays a Poisson distribution of parameter )(zλ  with probability 

)(1 xp− . Thus, If ix  denotes the value of the covariate vector for the i-th individual, the p.f. of the 

r.v. iY  is given by 

))(exp())(1()(),0( iiiiii zxpxpzxYP λ−−+==  

and 
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zzxpzxkYP
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From the previous expressions, it is at once apparent that - as is typical in zero-inflated setting -  

zero counts arise from the Dirac distribution describing the excess of zero counts as well as from 

the Poisson distribution modelling the remaining zero and non-zero counts. Thus, two regression 

expressions are actually considered: a logistic regression predicting whether an “inflated” zero 

occurs and a log-linear regression predicting the remaining zero and non-zero counts, i.e. 

βT
i

i

i x
xp

xp
=

− )(1
)(log  

and 

γλ T
ii zz =)(log ,  

where β  and γ  denote parameter vectors to be estimated. However, count data often exhibit a high 

variability, which precludes the use of a Poisson distribution - even after accounting for inflated 

zeros. Subsequently, an alternative way of modelling such a data is to assume a Zero-Inflated 

Negative Binomial model (ZINB) (see e.g. Minami et al., 2007; Rose et al., 2006; Zhang et al., 

2012) for the r.v.Y . In this case, the probability of obtaining an inflated zero is in turn given by 
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)(xp , even if the r.v. Y  shows a Negative Binomial distribution of parameters )(zλ  and θ  with 

probability )(1 xp− . Hence, the model reduces to 
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where the parameter )( izλ  and θ  respectively denote the mean number of counts and the dispersion 

parameter. Similarly to the case of ZIP, both the logistic and the log-linear regressions are 

considered for predicting “inflated” zeros and the remaining counts. 

3.2.3 Hurdle models 

The hurdle models, originally introduced by Mullahy (1986), are two-component models: the 

first component is constituted by a Dirac distribution at zero, while the second component - i.e. the 

count component - is a truncated integer-valued distribution modelling strictly positive counts. In 

the framework of the Poisson distribution, the Hurdle Poisson model (HP) postulates that the r.v. Y  

is equal to zero with probability )(xp , while with probability )(1 xp−  has a truncated Poisson 

distribution of parameter )(zλ , i.e. the p.f. of the r.v. iY  is given by 
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Alternatively, when dealing with a marked variability, the count component can be modelled by 

means of a truncated Negative Binomial distribution of parameters )(zλ  and θ , in such a way to 

obtain the Hurdle Negative Binomial model (HNB) (Dalrymple at al., 2003; Zhang et al., 2012), i.e. 

)()0( iii xpxYP ==  

and 
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Similarly to the framework of zero-inflated models, )( ixp  and )( izλ  are generally modelled by 

means of logit and log-linear regression, respectively. It is worth noting that - even if the hurdle 

model may apparently resembles the zero-inflated model - since they essentially mixture a Dirac 

mass at zero with a count distribution - their interpretation is rather different. Indeed, hurdle models 

assume that zero counts can solely arise with probability )( ixp , while under zero-inflated models 

)( ixp  represents the probability of getting “excess zeros”. More precisely, in the last case zero 

counts may be obtained from the Dirac distribution as well as from the count component.  

3.2.4 Parameters estimation and model selection 

In the present case study, the P, NB, ZIP, ZINB, HP, HNB models were considered. The 

vectors of parameters γ  and/or β  - and the shape parameter θ  when dealing with Negative 

Binomial distribution - were estimated by means of the maximum-likelihood method. The 

computational procedures needed for the estimation were carried out by means of the R software (R 

Development Core Team, 2012). The glm( ) function (Chambers and Hastie, 1992) in the stats 

package and the glm.nb( ) function in the MASS package (Venables and Ripley, 2002) were 

adopted with Poisson and Negative Binomial regression respectively, while the functions 

zeroinfl( ) and hurdle( ) in the pscl package (Zeileis et al., 2008) were used for dealing 

with zero-inflated and hurdle regression models. The models were subsequently compared on the 

basis of the log-likelihood values, as well as on the Akaike Information Criterion (AIC).  

 

4. Results 

We estimated the parameters of the zero-inflated and hurdle models for the three response 

variables - i.e. repository, scopus and h_index - by adopting the same explanatory covariate vectors 

x and z for the two components. The log-likelihood and AIC values of the estimated models are 

reported in Table 2. The analysis of this table highlights that, on one hand, the AIC values of the 

zero-inflated and hurdle models are rather similar and, on the other hand, the superiority of 

Negative-Binomial-based models over Poisson-based models is apparent for fitting purposes. 

Particularly, the lowest AIC values are observed for the ZINB and HNB models. 
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Table 2. Log-likelihood (log-L) and Akaike’s information criterion (AIC) values of the fitted 
models for the three response variables. 
 

Models 
repository  scopus h_index 

log-L AIC  log-L AIC  log-L AIC 
P 

-4404.08 8844.10  -4068.33 8172.70  -2490.77 5017.50 

NB -2861.43 5760.90  -2103.64 4244.10  -2090.73 4219.50 

ZIP -4070.00 8211.71  -3623.00 7317.44  -2265.00 4602.92 

ZINB -2829.00 5731.99  -2037.00 4148.35  -1979.00 4031.34 

HP -4070.00 8212.99  -3623.00 7317.81  -2265.00 4601.11 

HNB -2831.00 5735.59  -2036.00 4145.84  -1981.00 4036.65 

 

 

These findings are further supported by the predicted frequencies of the models, as is shown 

in Figures 2, 3 and 4. Indeed, the simple Poisson model cannot account for the large proportion of 

zero counts, while the Zero-Inflated and Hurdle Poisson models can address this lack of fitting, 

even if they are not able to predict the nonzero frequencies correctly. The ZINB and HNB models 

exhibit the best fittings. Moreover, these models not solely produce rather similar AIC values, but - 

as is common with zero-inflated skewed data (see e.g. Rose et al., 2006; Zhang et al. 2012) - also 

give rise to similar parameter estimates. 

Notwithstanding that zero-inflated and hurdle models are sometimes indistinguishable on the 

basis of goodness-of-fit statistics, one model type may be more appropriate in order to describe the 

underlying generating data process. In our framework, zero-inflated models allow for zeros to arise 

either from “potentially productive” or “unproductive” populations: unproductive researchers can 

never produce a research outcome, thus giving rise to structural zeros, while those potentially 

productive can either produce or not produce a research outcome. In contrast, under hurdle models, 

all the researchers are considered potentially productive so that no structural zeros are assumed, but 

solely some researchers “pass the hurdle”. If a researcher has passed the hurdle producing at least 

one research outcome, she/he becomes an “active” researcher, and her/his performance is described 

by the count component of the hurdle model. Since the Italian recruitment system is based on 

scientific productivity as previously remarked, there is no reason to assume the existence of an 

unproductive population and hence - in presence of similar goodness-of-fit statistics - the use of 

hurdle models might be preferred. Thus, in Table 3 we present the parameter estimates, their 

standard errors and the corresponding significance values when the HNB model is adopted (the 

same quantities for the other models are available from the authors upon request).  
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Table 3. Estimated parameters, Standard Errors (S.E.) and Significance (Sig.), log-likelihood (log-
L) and Akaike’s information criterion (AIC) values for HNB model. 
 

Variables repository scopus h_index 
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig. 

Count component of the model  

      Intercept 2.672 0.232 *** 3.352 0.331 *** 2.625 0.202 *** 
age_1 Ref. 

        age_2 -0.168 0.093 . 0.102 0.132 
 

0.114 0.086 
 age_3 -0.504 0.123 *** -0.484 0.189 * -0.213 0.114 . 

age_4 -0.501 0.153 ** -0.542 0.235 * -0.468 0.144 ** 
gender_F Ref. 

        gender_M 0.141 0.067 * 0.223 0.098 * 0.031 0.061 
 position_FP Ref. 

        position_AP -0.478 0.084 *** -0.709 0.123 *** -0.493 0.076 *** 
position_AR -0.991 0.100 *** -1.281 0.146 *** -0.900 0.089 *** 
erc_LS Ref. 

        erc_PE -0.043 0.088 
 

-0.192 0.102 . -0.285 0.061 *** 
erc_SH -0.305 0.099 ** -2.089 0.177 *** -1.795 0.124 *** 
tenure -0.009 0.005 . -0.020 0.008 ** -0.003 0.005 

 teaching_per_month -0.015 0.010 
 

-0.001 0.012 
 

-0.002 0.007 
 thesis 0.033 0.008 *** 0.015 0.016 

 
-0.010 0.011 

 students 0.002 0.001 * -0.003 0.001 * -0.002 0.001 * 
prin_0 Ref. 

        prin_1 0.262 0.080 *** 0.753 0.120 *** 0.396 0.073 *** 
full-time_0 Ref. 

        full-time_1 -0.048 0.149 
 

0.079 0.208 
 

0.001 0.127 
 presence_faculty_meeting 0.048 0.125 

 
-0.605 0.174 *** -0.013 0.107 

 young_ratio -0.023 0.067 
 

-0.114 0.094 
 

0.128 0.055 * 
taw_ratio 0.432 0.120 *** 0.132 0.156 

 
0.264 0.093 ** 

Log(theta) 0.543 0.076 *** 0.308 0.094 *** 1.394 0.099 *** 
          Zero component of the model  

      Intercept -2.088 0.781 ** -3.578 0.740 *** -4.088 0.847 *** 
age_1 Ref. 

        age_2 -0.248 0.429 
 

0.591 0.317 . 1.024 0.352 ** 
age_3 0.111 0.511 

 
0.946 0.403 * 1.533 0.453 *** 

age_4 0.556 0.619 
 

1.216 0.501 * 1.827 0.561 ** 
gender_F Ref. 

        gender_M -0.052 0.265 
 

-0.331 0.223 
 

-0.513 0.256 * 
position_FP Ref. 

        position_AP 0.568 0.350 
 

1.077 0.287 *** 1.061 0.320 *** 
position_AR 1.597 0.373 *** 1.985 0.340 *** 2.160 0.386 *** 
erc_LS Ref. 

        erc_PE 1.304 0.392 *** 1.157 0.351 *** 1.158 0.494 * 
erc_SH 1.063 0.417 * 4.742 0.428 *** 5.078 0.528 *** 
tenure 0.046 0.020 * 0.042 0.017 * 0.011 0.019 

 teaching_per_month 0.040 0.028 
 

0.015 0.028 
 

0.020 0.040 
 thesis -0.030 0.039 

 
0.007 0.025 

 
0.017 0.027 

 students -0.001 0.005 
 

-0.003 0.004 
 

-0.002 0.004 
 prin_0 Ref. 

        prin_1 -1.291 0.261 *** -1.082 0.267 *** -1.009 0.302 *** 
full-time_0 Ref. 

        full-time_1 -0.760 0.422 . -0.768 0.400 . -1.311 0.476 ** 
presence_faculty_meeting -1.370 0.438 ** -0.119 0.385 

 
1.219 0.428 ** 

young_ratio -0.433 0.239 . 0.108 0.207 
 

0.224 0.238 
 taw_ratio -0.954 0.478 * -0.768 0.413 . -1.824 0.556 ** 

log-L -2831.000 

  

-2036.000 

  

-1981.000 

  
AIC 5735.591 

  
4145.838 

  
4036.646 

  . Significant at 10% 
* Significant at 5% 
** Significant at 1% 
*** Significant at 0.1% 
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Figure 2. The observed distribution of the number of publications in the research repository of the 
University of Siena along with the predicted distributions obtained using the P, NB, ZIP, ZINB, HP 
and HNB models. Values greater than 40 are omitted for improving readability. 
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Figure 3. The observed distribution of the number of publications in Scopus along with the 
predicted distributions obtained using the P, NB, ZIP, ZINB, HP and HNB models. Values greater 
than 40 are omitted for improving readability. 
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Figure 4. The observed distribution of the h-index value along with the predicted distributions 
obtained using the P, NB, ZIP, ZINB, HP and HNB models. Values greater than 35 are omitted for 
improving readability. 

 

The analysis of Table 3 motivates the following conclusions. Age has a different effect on the 

three measures of research output. By considering the number of publications in the repository, this 

variable is significantly and negatively affected by age for the active researchers, i.e. those passing 

the hurdle. This result especially holds for the researchers whose age is greater than the median. 

Similar - even if less significant - conclusions also hold when the number of publications in Scopus 

is considered. Such findings are not in contrast with the hypothesis of an inversed U-shape 

productivity-age relation. As to the h-index value, the negative effect of age on the active 

researchers turns out to be significant solely for the oldest scholars. Moreover, the variable age has 

a strong impact on the probability of having a zero h-index value, i.e. the estimated odds become 

larger as the researcher age increases. Considering the cumulative nature of the h-index as a 

production measure, this finding is slightly puzzling. The issue might be interpreted as the result of 

two connected processes. The first refers to the different publication strategies (probably) adopted 

by older and younger scholars, respectively. The younger researchers are more sensible to the 

“publish-or-perish” pressure and they usually pay more attention to the outlet in which their works 

are published. In such a case, the choice of journals - where articles are submitted - is driven by the 

Impact Factor or by other similar indicators. Journals indexed in bibliographic databases, such as 

Scopus, are usually preferred with respect to non-indexed journals. The second process refers to the 
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coverage of the Scopus database. Older researchers - particularly the oldest - have publications 

dating back up to 35-45 years and which could have been appeared in journals not indexed in the 

Scopus database. Moreover, citations to oldest articles could not be recorded in Scopus.  

The gender effect is moderately significant, concerning all the research production measures. 

In fact, gender is slightly significant in the case of repository and scopus with respect to the count 

component and for the variable h_index when considering the zero component - suggesting that 

women face with more difficulties than men in publishing. 

As to the academic position, its effect is highly significant for all the response variables. In 

particular, referring to the model count component, the number of publications and h-index value of 

the active researchers decrease for associate professors and assistant professors with respect to full 

professors. Moreover, as is evidenced by the zero component of the model, the academic position 

has a marked effect even on the probability to be a non-active researcher. Indeed, when the variable 

h_index is considered, the odds of having a zero value for associate professors and assistant 

professors are approximately 3 and 9 times the odds of the full professors, respectively. In turn, 

similar results hold for the variables scopus, while for the variable repository the effect is 

significant on the odds only for assistant professors.  

As expected, the scientific sector of activity significantly impact on research performance: the 

researchers who have passed the hurdle and belong to the LS sector show a higher level of 

production than those belonging to the SH sector. This result also holds for the PE sector for 

h_index and - with a lower significance level - scopus variables. Analogously, in the zero 

component part of the models, the odds of the non-active status is significantly smaller for the 

researcher of LF sector. However, such results should be cautiously interpreted owing to the 

different coverage of the Scopus database, as well as the different publication and citation patterns 

in the sectors (Iglesias and Pecharroman, 2007). As is well known, the Scopus database has a 

weaker coverage for SH, especially for non-English language countries, such as Italy. In the SH 

sector, research results are communicated to the academic community mainly by means of books 

and chapters in books. Subsequently, for this sector, the bibliographic databases, such as Scopus, 

are largely incomplete in terms of publications and citations (Hicks, 2004). It is also worth 

remembering that co-authorship patterns are very different across scientific sectors. It can be argued 

that for sectors where articles have usually dozens of authors, the probability to be non-active is 

lower than in other sectors - such as SH - where groups of co-authors are very small and single 

authorship often prevails. 
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As to the connection between teaching and research activities, when the zero component of 

the model is considered, teaching activities do not seem to affect the probability to be a non-active 

researcher. However, if active researchers are considered, it is worth noting that, for the three 

explanatory variables adopted to proxy teaching tasks (i.e. teaching_per_month, thesis and 

students), only students weakly significantly affects the research performance in terms of a weak 

decrease in the number of publication in the Scopus and h-index value. On the contrary, when the 

number of publications in the repository is considered, there is a weak evidence that the variable 

students positively influences the research output and a strong evidence that the number of thesis 

increases the number of publications. It may be argued that the results achieved in the thesis can be 

used by supervisors to produce a research outcome suitable to appear in the repository, but not in 

peer-reviewed journals indexed by the Scopus database. 

As to the connection between the administrative duties of a researcher and her/his research 

activities, we found that the participation to Faculty meetings has a significant negative effect on the 

number of publications in the Scopus database for active researchers. Moreover, it increases the 

odds of having zero h-index value, while significantly reduces the odds of having zero publications 

on the research repository. The mixed evidence of our analysis does not allow to draw a clear-cut 

conclusion about the relation between teaching and research activities, while administrative tasks 

appear to negatively affect research productivity, especially when research outcomes filtered by a 

reviewing process are considered. 

A positive evaluation received for the Prin projects significantly increases both the expected 

output of active researchers (as highlighted by the positive coefficient estimates in the count 

component of the model) and the probability of passing the hurdle (as shown by the negative sign of 

the estimates in the zero part of the model). 

A part-time contract significantly increases the probability to be non-active, with the most 

marked effect when the variable h_index is considered. However, it is worth noting that, among the 

active researchers, a part-time contract does not significantly affect the research performance. 

By considering the collective level of department organization, the ratio between young and 

permanent researchers (young_ratio) seems to have a moderately significant positive effect solely 

for the h_index variable in the count part of the model, while an increase in the ratio between 

administrative workers and researchers (taw_ratio) has a significant positive effect on the 

production of active researchers when repository or h_index variables are considered and a 

significant effect on the reduction of the odds to be a non-active researcher. 
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5. Discussion and conclusions 

The analysis of research production has attracted a growing interest in the recent decades. We 

are contributing to the stream of literature investigating the determinants of researcher performance. 

We analyze original data referring to a medium-sized Italian university which employs 942 

researchers covering many scientific fields in Life Sciences, Physical and Engineering Sciences and 

Social Sciences and Humanities. Our analysis contributes with respect to previous literature on 

scientific production by adopting models suitable to manage count data with a zero excess, which 

are often the main features of the response variables adopted to quantify research production. The 

currently-used models impose artificial smoothness to data. In contrast, we handle data using zero-

inflated and hurdle models. Among them, the Hurdle Negative Binomial exhibits a good fitting and 

appears to be reasonably coherent with the underlying generating data process. In this case, all the 

researchers are considered as potentially productive and when a researcher passes the hurdle - 

writing a paper and becoming active - her/his performance is described by the count component of 

the model. Moreover, the odds that a researcher be non-active is modelled by the zero component of 

the model. 

In order to highlight the determinants of a researcher production, we consider her/his 

individual characteristics, her/his research, teaching and administrative activities and the features of 

the environment which she/he belongs to.  

Our models found that scientific productivity is lower for oldest active researchers. This result 

is in agreement with the life-cycle hypothesis, and with the prevailing evidence reported in the 

previous literature. We also found that the probability to be non-active in terms of h-index 

significantly increases with age. This result is slightly puzzling, given that h-index is a cumulative 

indicator of research production and impact. We suggest to interpret this evidence in terms of a 

lower coverage of the Scopus database for older papers and of a change in the publication/editorial 

strategies across generations of scholars. Younger researchers are probably more attentive and 

sensible than older scholars to the selection of the journals where their outlet is going to be 

published. 

Moreover, there is a significant effect of academic position on research production: 

researchers with higher position are more productive. At a first sight, this finding is coherent with 

organizational characteristics of the Italian university system, in which promotions are mainly based 

on research activities. Moreover, the still-surviving hierarchical organization of the university 

allows for full professors to act as both coordinators of national and international projects - which 
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generally give rise to many co-authored publications - and supervisors for PhD students and junior 

researchers - who can stimulate their production. 

As to the effects of teaching activities on research productivity, we do not find evidence of 

clear-cut and significant substitution or complementarity effects. In particular a major teaching load 

in terms of teaching hours, number of students and thesis supervised does not affect the odds to be a 

non-active researcher. Indeed, our finding tends to reject the hypothesis that the odds to be non-

active is affected by the crowding out effect between teaching and publications. Analogous 

conclusions have been achieved - using a completely different approach - by Kelchtermans and 

Veugelers (2011). The same variables have mixed and very weak effects on publication 

performance of active researchers. Indeed, the number of students attending lessons tends to 

positively affect the number of publications recorded in the repository - which, it is worth to 

remember, includes any type of publication - and to reduce the number of publications recorded in 

Scopus database and the h-index value. The number of theses supervised has a significant positive 

effect solely on the number of publication in the repository. Our results suggest that neither 

substitution nor complementarity simple hypotheses seem to adequately represent the multifaceted 

relation among research and teaching activities.  

As to the features of the department a researcher belongs to, it is worth noting that the relative 

number of PhD students and research fellows does not seem to impact the odds to be non-active. In 

contrast, it can have a positive effect on the h-index when the active researchers are considered. 

This effect can be explained by two, probably interrelated, processes. On one hand, the more 

productive researchers act as supervisors for the young non-permanent researchers, thus enhancing 

the probability to publish co-authored papers. On the other hand, the presence of productive PhD 

students widen the citation network of permanent staff improving the number of citations received 

by the latter.  

The composition of the department, in terms of the ratio of the number of non-research staff 

units to the number of permanent researchers, affects both the odds to be non-active and the value 

of the production indicators, thus evidencing a positive effects of administrative resources 

availability on scientific productivity. In this case, we can suppose that administrative staff 

conveniently help a researcher in administrative and bureaucratic tasks connected with teaching and 

with the management of projects and research activities. Moreover, we found a negative relation 

among productivity and administrative tasks, as proxied by the presence to Faculty meetings. These 

results seem to suggest that researchers productivity is negatively affected by bureaucratic and 

administrative tasks - a topic not covered in previous literature and deserving more scrutiny. 
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Finally, we caution against generalizations of our results since the adopted database include 

scientists working in a single university and we are aware that more general country-level 

investigation on the main determinants of scientific production should be undertaken.  

We believe that further research is needed in order to create improved measures of the effort 

devoted to institutional duties and university governance to better understand if and how these 

activities could affect scientific production. Similarly, additional proxies for the teaching load have 

to be exploited. Indeed, the evaluation of the effects of administrative and teaching tasks on 

scientific output is mandatory to verify if current incentive policies for stimulating research 

production are effective. To this purpose, future research could surely benefit from the availability 

of information - at national level - concerning researcher’s final outputs (publications, patents, 

products, etc.), but also projects, scientific areas, teaching and administrative and institutional 

activities.  

Our future research could address different issues emerging from this paper, such as the 

relationship of research production with career progress and academic collaborations or the effects 

of co-authorship when evaluating scientific research performance. 
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