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ABSTRACT Frequency channel allocation is a key technique for improving the performance of cellular
networks. In this paper, we address the channel allocation problem for a 5G multi-cell system. We consider
a heterogeneous network in which cellular users, micro-cell users, and device-to-device (D2D) communi-
cations coexist within the radio footprint of the macro cell. We maximize the aggregate transmission rate,
exploiting channel diversity and managing both the inter-cell interference, typical of cellular networks and
the intra-cell interference generated by the nonorthogonal transmissions of the small-cell and D2D users. By
modeling the allocation problem as a potential game, whose Nash equilibria correspond to the local optima of
the objective function, we propose a new decentralized solution. The convergence of our scheme is enforced
by using a better response dynamic based on a message passing approach. The simulation results assess the
validity of the proposed scheme in terms of convergence time and achievable rate under different settings.

INDEX TERMS Distributed allocation, 5G system, optimization, OFDMA, device-to-device, potential
games, message passing.

I. INTRODUCTION
Device-to-device (D2D) communication is a promising tech-
nology for enhancing the performance of next genera-
tion (5G) cellular networks. The basic idea of D2D com-
munication is to allow mobile devices in close proximity
to communicate directly, bypassing the base station (BS).
D2D technology leads to several advantages compared to the
conventional cellular communications, such as offloading the
BS [1], improving cell coverage, throughput and transmission
latency [2], and enhancing both the spectral and the energy
efficiency of the system [3].

Orthogonal Frequency Division Multiple Acc-
ess (OFDMA) is the current LTE technology and the main
candidate for 5G cellular networks [4]. Thus, OFDMA sys-
tems where several D2D pairs can share the uplink resources
with multiple cellular users is a scenario of great interest.1

Due to the cost and scarcity of licensed spectrum, a popular
choice is to implement D2D communication in underlay in-
band mode: the D2D users reuse the frequency resources

1The choice of sharing uplink is mainly motivated by the asymmetric
traffic loads in the two directions, and by the capacity of the BS to better
handle the interference, compared with the mobile devices [5].

assigned to the traditional cellular users. This may generate
new and more critical interference situations compared to
current LTE systems, in which transmissions within the same
cell are orthogonal. The orthogonality constraint, in fact,
limit the distance between the interfering nodes to be greater
than the cell radius. Differently, in underlay D2D-enabled
networks, interfering users can operate at any distance, poten-
tially jeopardizing the communications performance.

In dense heterogeneous 5G networks, D2D communi-
cations can be deployed as an enhanced solution to face
the intense demand for high data rates and quality of ser-
vice. In such scenarios, if micro cells also reuse the macro
cell spectrum, interference management between all differ-
ent types of transmissions involved (i.e., D2D, small-cell
and macro-cell transmissions) definitely becomes one of the
most critical challenge. Therefore, the design of appropriate
resource allocation methods is of crucial importance.

A. PRIOR AND RELATED WORKS
The resource allocation problem for D2D-enabled net-
works has attracted a lot of attention in the research
community [6], [7]. Considering the large computational
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complexity of allocating resources in a D2D-enabled cellu-
lar setting, several works limit their theoretical analysis to
a single-cell scenario, assuming that an advanced inter-cell
interference mitigation scheme works on top of the per-cell
allocation algorithms [8]–[13]. Other works incorporate the
inter-cell interference into the noise level at the receivers [14].
As of today, D2D resource sharing in the more realistic
multi-cell scenario has received less coverage in the literature
and most of the existing works focus on suboptimal solu-
tions. For instance, Belleschi et al. [15] propose a centralized
resource allocation scheme that minimizes the total power
consumption. However, because the solution is computation-
ally demanding and not implementable in a real system,
they also provide a suboptimal approach based on per-cell
allocation. Gu textitet al. [16], rather than trying to solve
the optimal allocation problem, consider a heuristic propor-
tional fair scheduling, with at most one cellular and one D2D
communication per channel. In [17], Feng et al. establish
a suboptimal tractable model for multi-cell D2D underlaid
cellular networks, and adopt exclusion regions around the
BSs tomitigate cochannel interference. A robust transmission
design in the case of imperfect channel state information
(CSI) for D2D-enabled cellular network is studied in [18].
Here, the BSs are assumed to have multiple antennas while
mobile user are equipped with single-antenna transceivers.
The original optimization problem is decoupled into two
subproblems, each of which is solved sequentially.

A different line of work spans from a game theoretic
approach to the problem of D2D resource allocation. For this
application, game theory proves to be a powerful tool. Indeed,
although most games do not guarantee optimality, they are
amenable for distributed implementation, which is a desirable
feature for such complex problems and for dense networks.
A game model for spectrum sharing has been proposed
in [19], where D2D pairs reusing the spectrum of the same
operator are regarded as coalitions, and the subchannel allo-
cation is performed according to a matching algorithm.
To simplify the analysis, the authors limit the channel reuse
to at most two transmissions per channel (either two D2D
pairs or one D2D and one cellular user). Recently, the coali-
tion formation approach has been combined with Bayesian
reinforcement learning in [20], to design a distributed scheme
in which the D2D pairs make autonomous choices only on the
basis of locally-observable information. In [21], coalition for-
mation has been employed in cloud heterogenous networks
to solve the problem of assigning subchannels of different
bandwidth to multiple D2D pairs and remote radio head
users. The work in [22] studies a game theoretic approach for
resource allocation in a 5G network where multi-cell D2D
communications interfere with small cells and macro cells.
D2D links utilize common resources of multiple cells and
each player’s transmission parameter is unknown to the other
players. The problem is formulated as an utility maximization
where the utility is a function of the bandwidths allocated to
D2D users. In this scenario, the effect of inter-cell interfer-
ence is not considered and the channel is assumed flat over

all the allocated bandwidth; that is, the subchannels allocation
problem is not addressed.

An example of joint power control and subchannel alloca-
tion can be found in [23], for a scenario where D2D and small
cells coexist with just onemacro BS. Being the optimal solu-
tion too complex for practical implementation, the authors
reformulate the problem as an exact potential game solved
by a distributed learning algorithm capable to find a good
Nash equilibrium. At most one subchannel is assigned to each
user and the channel is assumed flat over all the allocated
bandwidth. At the same time, only one D2D user and one
small cellular user can be active at the same time on the same
subchannel. This assumption allows to simplify the interfer-
ence management but, at the same time, it risks to strongly
limit the resource reuse in densely populated networks.

As highlighted in [22] and [23], the coexistence of D2D
pairs, small cells, and macro cells is going to be a typical
choice for 5G networks, where macro cells alone will not
be able to provide the high rates and reliable connectivity
required by future services. Note that in densely deployed 5G
scenarios, small cells and D2D pairs will behave similarly
in reusing the macro cell spectrum to provide service to
short-distance communications. Therefore, there are many
parallelisms in the allocation process of these two types of
user.

B. CHALLENGES AND CONTRIBUTIONS
In future 5G networks, the number of heterogeneous trans-
mitters is foreseen to grow massively, leading to allocation
problems with prohibitive complexity for centralized sched-
ulers. Furthermore, when the allocation is centralized at the
BS, the signaling overhead caused by CSI feedback from
the devices to the BS will scale linearly with the number
of D2D users and small cells. For these reasons, one of the
main challenges for 5G networks is to provide distributed
schemes capable to handle the growing number of devices
and interference. Moreover, in emerging applications like
Intelligent Transportation System services [24], it is desirable
that communications are reliable also outside the cellular
network coverage, calling for solutions where the devices
take autonomous decisions about the resources to use.

In this work, we address the problem of channel allocation
for 5G heterogeneous networks, where macro cells coexist
on the same spectrum with multiple D2D pairs and sev-
eral small cells. Because of the interference and the integer
nature of the allocation variable, the considered optimiza-
tion problem is nonconvex and hard to solve to optimality.
However, extending our previous work [25], we use the con-
cept of potential games [26] to develop a tractable solution
based on better response dynamic. This distributed game-
theoretic solution is particularly suitable to be implemented
with a max-sum message passing (MP) approach [27], which
is definitely a novelty in this context. MP allocation is
based on the distributed solution of simple local optimization
problems, whose results are exchanged iteratively through
nodes until convergence is reached [28], [29]. In a different
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scenario, [30] proposes aMP strategy for user association and
resource blanking in heterogeneous networks, because of its
efficiency and distributed nature. Nevertheless, there are very
few papers whereMP schemes are employed in D2D-enabled
networks: [31] and [32] are focused on cooperative aspects of
D2D communications but in simplified single-cell scenarios.

By combining game theory and MP, we manage to imple-
ment an extremely flexible and low complexity solution.
As a matter of fact, in our approach the players of the game
can be indifferently macro cells, small cells, or D2D pairs.
Moreover, unlike most of the existing works in the literature,
we do not pose any limit to the number of cellular users
(either macro or micro) and D2D terminals that are active at
the same time on the same channel, not even in the number
of interfering cells and resources to be allocated to each
user. Additionally, for such a heterogeneous environment
where different sources of interference coexist, we propose
a resource allocation problem that converges to a local opti-
mum of the system throughput in a distributed manner.

We summarize our main contributions as follows:
• We address the problem of channel allocation in an
OFDMA 5G-like heterogeneous network, where multi-
ple D2D pairs and small cells reuse the cellular spec-
trum. Unlike most existing literature, in formulating our
problem we do not limit the number of users, nor the
number of cells in the network. Moreover, the same
cellular resource can be used by multiple D2D pairs, as
well as by users of the multiple small cells within the
macro cell.

• Leveraging the theory of potential games, we solve the
nonconvex resource allocation problem by means of an
iterative algorithm based on better response dynamics,
in which the players’ strategies are updated via dis-
tributed and low-complexity MP approach. Addition-
ally, we design a customized branch-and-bound (B&B)
solver to find the optimal solution that we use as
benchmark.

• To reduce the run-time of the solution, as well as the
overall signaling overhead, we investigate the perfor-
mance of the MP scheme with a reduced number of
message exchanges. We also provide guidelines for
its practical implementation, showing that our pro-
posed scheme requires limited complexity and a limited
amount of exchanged information.

C. PAPER ORGANIZATION
The paper is organized as follows. Sect. II introduces the
systemmodel and the allocation problemwe study. In Sect. III
we formulate the resource allocation problem as a potential
game. Sect. IV and Sect. V study how to solve the prob-
lem employing best response and better response dynamics,
respectively. In Sect. VII we design a customized solver based
on a B&B approach, with the objective of having a perfor-
mance benchmark for the algorithm we propose. Sect. VIII
presents the numerical results, while conclusions are drawn
in Sect. IX.

FIGURE 1. Illustrative scenario. Two D2D pairs, a macro cell user, and two
micro cell users assigned to the same resource, and thus interfering with
each other.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We focus on a 5G heterogeneous cellular network, where
densely deployed small cells and D2D pairs coexist within
the radio footprint of a macro cell. In this scenario, which is
illustrated in Fig. 1, we consider uplink transmissions of an
OFDMA system, where both D2D and small-cell communi-
cations are enabled to reuse the macro-cell radio spectrum.

For the sake of generalization, in our analysis we
refer to the different BSs without distinguishing between
macro or micro cells. We assume that the network is popu-
lated by a set B of BSs, each serving users within its own cell
area. The receiver of each D2D pair can be seen as virtual
base station serving a single uplink user and we denote with
D the set of all D2D receivers. With the notation K = B ∪D
we indicate the set of all BS receivers in the system. For each
receiver k ∈ K, we let Ck be the set of uplink users served
by k . Thus, Ck is a singleton if k ∈ D, while it represents
multiple users if k ∈ B.
The system has a set F of F orthogonal time-frequency

physical resource blocks (RBs), and each BS is responsible
for assigning those RBs to its users. Channel conditions vary
across both RBs and users. As customary, uplink commu-
nications towards the same BS are assigned to orthogonal
RBs, meaning that there is no intra-cell interference within
a macro or a small cell. However, frequency reuse among
different cells give rise to inter-cell interference, and uplink
transmissions in the small cells and underlay D2D com-
munications add both intra-cell and inter-cell interference,
as shown in Fig. 1.

LetGfn,k denote the channel gain between transmitter n and

receiver k on RB f , and let Pfn be the transmission power
used by transmitter n on RB f . The transmit power allocation
follows the approach used in current LTE systems. In partic-
ular, the transmission power levels of the mobile users are
computed with the Uplink Open-Loop with Fractional Path
Loss Compensation (OFPC) scheme (as described in [33]),
and updated on a slower time-scale than the RBs.
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We indicate with Xk the RB assignment to all users trans-
mitting to receiver k ∈ K. Specifically, Xk is a matrix of
dimensions |Ck |×F , whose nth row represents the user n ∈ Ck
and the f th column represents the RB f ∈ F . We label each
element ofXk with x

f
n , which is 1 if user n is assigned to RB f ,

and 0 otherwise. We let X−k be the set of |K| − 1 allocation
decisions taken by all receivers except the kth. Moreover, for
every k ∈ K, we indicate with X = (Xk ,X−k ) the overall
system RB allocation.

A Shannon-like capacity is considered as a measure of the
instantaneous achievable rate. Specifically, the normalized
rate in bps/Hz that receiver k can achieve on RB f from
transmitter n is

Rfn(X−k ) = log2

(
1+

PfnG
f
n,k

σ 2 + I fk (X−k )

)
, (1)

where I fk (X−k ) =
∑

q∈K\{k}
∑

m∈Cq P
f
mG

f
m,kx

f
m is the inter-

ference perceived at receiver k on RB f , and σ 2 is the noise
power, assumed equal for all RBs. Because of the orthogo-
nality constraint within each cell, the interference I fk (X−k )
depends on the overall allocation except the one in the cell
k ∈ K, to which user n belongs.

We consider the problem of allocating RBs to all users in
the network. The goal is to maximize the total rate by exploit-
ing frequency diversity and properly managing the interfer-
ence. To avoid situations in which users with favorable chan-
nel conditions take most of the available RBs, we limit the
number of RBs that can be assigned to each user. Accordingly,
the overall RB allocation problem can be formally stated as
the following integer programming problem:

max
{xfn }

∑
k∈K

∑
n∈Ck

∑
f ∈F

ωkRfn(X−k )x
f
n (2)

subject to
∑
n∈Ck

x fn ≤ 1, ∀f ∈ F , ∀k ∈ K, (2.a)

∑
f ∈F

x fn ≤ Fn, ∀n ∈ Ck , ∀k ∈ K, (2.b)

x fn ∈ {0, 1}, ∀f ∈ F , ∀n ∈ Ck , ∀k ∈ K. (2.c)

Here, {ω}k∈B is a set of no-negative real numbers that can be
tuned to differentiate the performance of the different types
of users in the network. For example, by setting ωk large,
we prioritize the resource allocation for the users in cell k;
that is, the algorithm will aim at maximizing the rate of
cell k more than the rate of the other cells and D2D pairs.
Constraints (2.a) are the orthogonality constraints within the
cell k , they are active only for k ∈ B, because if k ∈ D it holds
|Ck | = 1 and (2.a) is always verified. Finally, (2.b) limit the
number of RBs that can be assigned to each user.

III. RESOURCE ALLOCATION BASED ON GAME THEORY
The non-linear integer programming problem in (2) is in
general difficult to solve efficiently as the number of devices
increases. In particular, when considering highly dense
D2D-enabled networks, the running time for state-of-the

art nonlinear integer programming solvers quickly becomes
impractical. Moreover, resorting to a centralized scheduler
to decide the overall allocation requires a large signaling
overhead to collect the CSI of all involved links. To overcome
the above concerns, we leverage the theory of potential game
to achieve distributed and computational efficient, although
not necessarily globally optimal, solutions.

For completeness, in this section we first give some
basic definitions and fundamental properties of potential
games [26], [34]. Then, we present our strategic-game for-
mulation for the multi-cell D2D resource allocation problem.

A. PRELIMINARIES ON POTENTIAL GAMES
The interaction among autonomous decision-makers can be
modeled as a strategic game, in which each player chooses a
strategy independently from the choices of the other players.
A strategic game can be formally described by a triplet G =
〈K, {Xk}, {Uk}〉, where K is the set of players, Xk is the set
of all possible strategies for player k , and Uk is player k’s
utility function. As customary in the game-theoretic litera-
ture, we indicate with Xk a specific strategy of player k , and
we write Uk (Xk ,X−k ) to stress that the utility of player k
depends both on her own strategy and on the strategies of all
other players. Because any change of strategy of one of the
players affects all other players, the game becomes a dynamic
process where players iteratively update their own strategies
as a reaction to the changes in the strategy of the other players.
In this work, we will always refer to pure strategy. We now
recall some useful definitions.
Definition 1 (Best- and Better-Response Dynamic): The

best-response dynamic is a strategy update rule where each
player selects the strategy that maximizes her utility, assum-
ing that the other players do not change their current strate-
gies. Specifically, given a strategy profile X = (Xk ,X−k ),
player k chooses its new strategy Yk ∈ Xk such that

Yk ∈ {X̃k ∈Xk : Uk (X̃k ,X−k ) ≥ Uk (Xk ,X−k ), ∀Xk ∈Xk}.

(3)

In the less demanding better-response dynamic, the strategy
update of player k is defined by replacing condition (3) by

Yk ∈ {X̃k ∈ Xk : Uk (X̃k ,X−k ) ≥ Uk (Xk ,X−k )}. (4)

Thus, under a better response dynamic, the new strategy is
only guaranteed to be better than the previous one, but it
might not be the best among all possible strategies.
Definition 2 (Potential Game): A strategic game G =

〈K, {Xk}, {Uk}〉 is an (exact) potential game if there exists a
function 8 : X1 × X2 × · · ·X|K| → R such that for any
k ∈ K

Uk (Xk ,X−k )−Uk (X′k ,X−k )=8(Xk ,X−k )−8(X′k ,X−k ),

(5)

where Xk and X′k are two strategies of player k, and 8 is
called the potential function of G.
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Definition 3 (Nash Equilibrium (NE)): Given a strategic
game G = 〈K, {Xk}, {Uk}〉, the K-tuple (X?1,X

?
2, · · · ,X

?
|K|)

∈ X1 × X2 × · · ·X|K| is a NE if Uk (X?k ,X
?
−k ) ≥

Uk (Xk ,X?−k ), for all strategies Xk 6= X?k , for all k =
1, · · · , |K|. Put in words: at the NE no player has an incentive
to change her strategy.

Potential games possess the important property that the set
of (pure-strategy) NE points correspond to the local optima of
the potential function [26], [34].Moreover, for finite potential
games,2 whose potential function is bounded from above,
the iterative processes based on best or better response
dynamics converge to theNE set of the game, see [35, Th. 19].

In the sequel, we will use these attractive properties to
design a convergent noncooperative game that leads to the
RB allocation of the overall network.

B. POTENTIAL GAMES FOR RESOURCE ALLOCATION
To solve Problem (2) in a distributed manner, we propose a
strategic game between all receivers. The game is described
by G = 〈K, {Xk}, {Uk}〉, where Xk is the set of all possible
RB-allocation decisions for transmissions to receiver k ∈ K,
while Uk is the utility function of the kth player, given by the
sum of all the achievable rates in the system, that is:

Uk (Xk ,X−k ) =
∑
f ∈F

∑
q∈K

∑
n∈Cq

ωqRfn(X−q)x
f
n . (6)

The function Uk in (6) is a scalar function corresponding
to the objective in (2). Despite the fact that each player k
aims at maximizing Uk with respect to her own strategy
only (i.e., Xk ), all players’ utilities in (6) are chosen to be the
same, making game G an identical interest game. The choice
of this utility function implies that all users share the same
goal, which is the maximization of the weighted sum rate of
the system. By defining the function 8(X) , Uk (Xk ,X−k ),
for all k ∈ K, the next result follows immediately from
Definition 2:
Proposition 1: G = 〈K, {Xk}, {Uk}〉 is an exact potential

game with potential function 8(X).
Thus, in this game the potential function coincides with the

weighted sum rate of the system and each user selects its own
strategy aiming at maximizing the potential function.

Because G is an exact potential game, the best and better
response dynamics converge to one of its NE, which, in our
case, corresponds to a local optimum of (2). Thus, we can
design an iterative algorithm based on a receiver-alternating
allocation, meaning that the allocation is performed by rota-
tion among all cells and D2D pairs. In particular, given any
initial resource allocation, the players (receivers) take turn in
choosing their best/better response strategy until no player is
willing to change her decision; that is, until when a NE is
achieved. The iterative game among the receivers is summa-
rized in Algorithm 1.

2A finite game is a game with finitely many players, each of which has a
finite set of strategies.

Algorithm 1 Iterative Game

1 Compute Pfn,∀n ∈ ∪kCk ,∀f ∈ F with the LTE OFPC
algorithm;

2 Select an order of playing π (K); and select an initial
allocation X0

k , ∀k ∈ K;
3 Set X0

← (X0
1, · · · ,X

0
|K|) and compute 8(X0);

4 i← 1, 1← 1;
5 while 1 6= 0 do
6 for k ∈ π(K) do
7 Update Xi

k following the best/better-response
dynamic;

8 Xi
← (Xi

1, · · · ,X
i
|K|);

9 1← 8(Xi−1)−8(Xi);
10 i← i+ 1;

IV. RESOURCE ALLOCATION BASED ON BEST RESPONSE
In the previous section, we have seen that by considering the
allocation problem as a potential game, we need to iteratively
solve local (i.e., per-player) allocation problems, rather than
the overall network problem. We now turn our attention on
deriving the solution of each such local problem, that is,
determining the strategy update of each player k ∈ K.
We consider a reference overall allocation strategy X̄ =

(X̄k , X̄−k ), representing the overall network RB allocation at
the last iteration of the game. To compute her new strategy
Xk , player k has to solve the following optimization problem

max
{xfn }

Uk (Xk , X̄−k ), (7)

subject to
∑
n∈Ck

x fn ≤ 1, ∀f ∈ F (7.a)

∑
f ∈F

x fn ≤ Fn, ∀n ∈ Ck , (7.b)

x fn ∈ {0, 1}, ∀n ∈ Ck , ∀f ∈ F . (7.c)

The objective function in Problem (7) is given in (6) and it
is the same as in Problem (2). However, here it is maximized
only with respect to the RB allocation of player k (represented
by Xk ). We can rewrite the objective function in (7) explic-
itly as

Uk (Xk , X̄−k )

=

∑
f ∈F

[
ωk
∑
n∈Ck

log2

(
1+

PfnG
f
n,k

σ 2 + I fk (X̄−k )

)
x fn +

∑
q∈K,
q6=k

ωq
∑
m∈Cq

× log2

1+
PfmG

f
m,q

σ 2 + I fq (X̄−{q,k})+
∑
n∈Ck

PfnG
f
n,qx

f
n

 x̄ fm

]
,

(8)

where x̄ fm are the entries of the given reference allocation
strategy X̄, and I fq (X̄−{q,k}) =

∑
c∈K\{q,k}

∑
l∈Cc P

f
lG

f
lqx̄

f
l is
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the interference level at the qth receiver that does not include
the effect from the use of RB f in cell k , which is instead
given by the term

∑
n∈Ck P

f
nG

f
nqx

f
n .

Due to the orthogonality constraints (7.a), the inner sum of
the second term in (8) contains only a single nonzero element,
corresponding to the only user transmitting to receiver q on
RB f . We label this user with m̂(q, f ) and we rewrite (8) as

Uk (Xk , X̄−k )

=

∑
f ∈F

ωk

[ ∑
n∈Ck

log2

(
1+

PfnG
f
nk

σ 2 + I fk (X̄−k )

)
x fn +

∑
q∈K,
q6=k

ωq

× log2

1+
Pfm̂(q,f )G

f
m̂(q,f ),q

σ 2 + I fq (X̄−{q,k})+
∑
n∈Ck

PfnG
f
nqx

f
n

]. (9)

Using the best response dynamic, we have divided the
original RB allocation problem in subproblems with reduced
input size. However, the formulation in (7) is still nonconvex
in the integer variables {x fn}, for n ∈ Ck and f ∈ F . We tackle
this issue in the next section.

V. RESOURCE ALLOCATION BASED ON
BETTER RESPONSE
In the previous section, we showed how to distribute the
RB allocation problem among the players by using the best
response dynamic. The goal of this section is twofold: i) to
overcome the nonconcavity of the objective function in (9);
ii) to design a low-complexity and distributed scheme for
updating each player’s strategy.

First, we observe that by relaxing the integer constraints
in (7), the objective function becomes convex. However,
the maximization of convex functions (with or without addi-
tional constraints) is typically difficult and computation-
ally tractable only in certain special cases [36]. Usually,
we have to accept local optima and resort to methods based
on repeated linearization of the objective function. Second,
because the constraint matrix of (7) is totally unimodular [37],
even if we drop the integer constraints we obtain a 0−1 solu-
tion vector. We therefore linearize (9) by computing the first-
order Taylor approximation of the rate of the users in each
cell q 6= k , around the point corresponding to the reference
allocation X̄.

Let us consider the |Ck | × F allocation matrix X̃k , with
entries x̃ fn ∈ [0, 1], for each user n ∈ Ck and RB f ∈ F . We
define the following new utility for the kth player, dependent
on both her new strategy X̃k and the overall previous alloca-
tion X̄

Ũk (X̃k , X̄)

=

∑
f ∈F

ωk

[ ∑
n∈Ck

Rfn(X̄−k )x̃
f
n +

∑
q∈K,
q6=k

ωq

×

Rfm̂(q,f )(X̄−q)+∑
n∈Ck

∂Rfm̂(q,f )(X̄−q)

∂ x̃ fn

(
x̃ fn − x̄

f
n

)].
(10)

Here, each term

∂Rfm̂(q,f )(X̄−q)

∂ x̃ fn

= −

Pfm̂(q,f )G
f
m̂(q,f ),qP

f
nG

f
n,q

(ln 2)(Pfm̂G
f
m̂q + I

f
q (X̄−q)+ σ 2)(I fq (X̄−q)+ σ 2)

(11)

represents the sensitivity of user m̂(q, f ) to the interference
variations on RB f , caused by the new allocation X̃k of
player k . Because the rate function of each user m̂(q,f ) in (9)
is convex with respect to the allocation X̃k , the linear approx-
imation in (10) is a lower bound of the actual rate. Moreover,
this bound is tight under the reasonable assumption that
the cumulative interference experienced at each receiver is
much higher than the interference contribution from each
single transmitter. In other words, in a network with multiple
interfering links, changing the resource allocation of only one
transmitter produces, in general, a small variation in the total
interference measured at the receiver of the other links. Thus,
when considering interference levels within small intervals
around I fq (X̄−q), the linear approximation of the rate of each
user m̂(q,f ) is close to the actual rate function. We therefore
conclude that Ũk (X̃k , X̄) is a lower bound of Uk (X̃k , X̄−k )
and, in general, the difference between the two values is
small.

Neglecting the terms in (10) that do not depend on the
optimization variables x̃ fn , and defining

δ
f
m̂(q,f )(X̄−q)

, −
Pfm̂(q,f )G

f
m̂(q,f ),q

(ln 2)(Pfm̂G
f
m̂q + I

f
q (X̄−q)+ σ 2)(I fq (X̄−q)+ σ 2)

, (12)

we obtain the function

Ũ ′k (X̃k , X̄)

=

∑
f ∈F

∑
n∈Ck

[
ωkRfn(X̄−k )+

∑
q∈K,
q6=k

ωqδ
f
m̂(q,f )(X̄−q)P

f
nG

f
n,q

]
x̃ fn

=

∑
f ∈F

∑
n∈Ck

Ẽ fn (X̄)x̃
f
n , (13)

in which each weight Ẽ fn (X̄) depends on the previous refer-
ence allocation X̄ = (X̄k , X̄−k ) for all k ∈ K, and not on
the new allocation X̃k of player k . Considering Ũ ′k (X̃k , X̄)
as the new utility function that player k aims at maximizing,
we reformulate the per-player optimization problem in (7) as

max
{x̃fn }

Ũ ′k (X̃k , X̄) (14)

subject to
∑
n∈Ck

x̃ fn ≤ 1, ∀f ∈ F , (14.a)
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F∑
f=1

x̃ fn ≤ Fn, ∀n ∈ Ck , (14.b)

x̃ fn ∈ [0, 1], ∀f ∈ F , ∀n ∈ Ck . (14.c)

It is worth mentioning that the computation of Ũ ′k (X̃k , X̄)
relies on the collection from each other player q 6= k of
the F terms given in (12), one for each RB. These quantities
are interference-dependent and they can be measured at each
player q 6= k (being she a receiver) and sent to player k on a
control channel.

With the formulation (14) we have achieved our first goal,
namely we have overcome the nonconvexity of the best
response dynamic.We now show that althoughwe are consid-
ering an utility function different from the one in the original
problem, the solution to (14) represents a better response
for the kth player. This means that we can still guarantee
convergence to a NE of game G.
Proposition 2: Given any allocation profile X̄, and indi-

cating with X̃?k ∈ Xk the solution to Problem (14), it holds
that Uk (X̃?k , X̄−k ) ≥ Uk (X̄k , X̄−k ). That is, X̃?k is a bet-
ter response of player k for the potential game G =

〈K, {Xk}, {Uk}〉.
Proof: Solution X̃?k is integer and belongs to the set Xk

because of the total unimodularity property of the problem
constraint in (14). Being X̃?k the maximizer of Ũ ′k (X̃k , X̄),
it also maximizes the function Ũk (X̃k , X̄) in (10). Therefore,
Ũk (X̃?k , X̄) ≥ Ũk (Xk , X̄) for all Xk ∈ Xk , and in particular
Ũk (X̃?k , X̄) ≥ Ũk (X̄k , X̄). Because Ũk (X̃k , X̄) is a lower
bound of Uk (X̃k , X̄−k ), it also holds that Uk (X̃?k , X̄−k ) ≥
Ũk (X̃?k , X̄). By combining the inequalities above, we have
Uk (X̃?k , X̄−k ) ≥ Ũk (X̃?k , X̄) ≥ Ũk (X̄k , X̄). Moreover,
at the linearization point X̄, the two functions Ũk (X̄k , X̄) and
Uk (X̄k , X̄−k ) have the same value. Thus, we conclude that
Uk (X̃?k , X̄−k ) ≥ Uk (X̄k , X̄).

A. STRATEGY UPDATE BASED ON MESSAGE PASSING
In this subsection, we design a low-complexity solution to the
per-player allocation (14) that distributes the computational
effort among all nodes belonging to the same cell or D2D
pair.

We first observe that when player k is a D2D receiver,
with d indicating its D2D transmitter, the constraints set
of (14) reduces to the single constraint

∑F
f=1x̃

f
d ≤ Fd for

x̃ fd ∈ [0, 1] and for all f ∈ F . Thus, the solution to (14) is
straightforwardly obtained by selecting the at most Fd RBs
corresponding to the largest positive utilities. For this reason,
in what follows we focus on solving (14) when player k is
a BS.

Message passing (MP) algorithms are attractive schemes
for solving resource allocation problem without the need
of a central controller. When applied to cellular systems,
these algorithms involve an iterative exchange of messages
between the BS and the mobile users, where every mes-
sage represents the solution to a local problem with very
low computational complexity. The Reweighted MP (ReMP)

framework is an example of MP approach applied to resource
allocation problems [28]. In the single-cell scenario, this
algorithm provably convergences to the optimal solution of
the utility maximization problem (see [38]) that we report
below for completeness:

max
{x̃fn }

∑
f ∈F

∑
n∈Ck

ωk log2

(
1+

PfnG
f
n,k

σ 2

)
x̃ fn (15)

subject to
∑
n∈Ck

x̃ fn ≤ 1, ∀f ∈ F , (15.a)

F∑
f=1

x̃ fn = Fn, ∀n ∈ Ck , (15.b)

x̃ fn ∈ [0, 1], ∀f ∈ F , ∀n ∈ Ck . (15.c)

Unlike (14), the above formulation neglects the interference.
Thus, its objective is a positive weighted sum, where each
weight corresponds to the achievable rate on the correspond-
ing RB. Moreover, because the weights in the objective
function of (14) can be negative, if we assume the inequal-
ities (14.b) instead of the equalities (15.b), the total rate can
increase because we do not force the allocation of RBs that
contribute negatively to the utility (this happens, for example,
in high-interference scenarios).

Although the optimization problem considered in [28]
and [38], and recalled in (15), differs from our formulation
in (14), we can still apply the ReMP scheme and benefit
from its properties. Let us define the new weights E fn ,
max{Ẽ fn , 0}, with Ẽ

f
n given in (13) and for all n ∈ Ck and f ∈

F . Then, we formulate the following optimization problem,
which is in the form of (15) and thus solvable via ReMP
scheme:

max
Xk

∑
f ∈F

∑
n∈Ck

E fn (X̄)x
f
n (16)

subject to
∑
n∈Ck

x fn ≤ 1, ∀f ∈ F , (16.a)

F∑
f=1

x fn = Fn, ∀n ∈ Ck , (16.b)

x fn ∈ {0, 1}, ∀f ∈ F , ∀n ∈ Ck . (16.c)

It is easy to verify that (14) is equivalent to (16). Indeed,
by indicating with {x?fn } the optimal solutions to (16), we can
construct the optimal solution {x̃?fn } to (14) by setting x̃

?f
n = 0

if Ẽ fn < 0, and x̃?fn = x?fn otherwise. Thus, we are now in the
position of using the ReMP approach to solve Problem (14)
by referring to the formulation in (16), instead.
Let us recall the ReMP routine. For the sake of notation,

we omit the cell index k . We indicate with µfn the message
sent by user n to the BS related to RB f , and with µ̃nf the
message sent in the opposite direction. These messages give
a measure of the benefit for each RB-user assignment. At
each iteration t of the algorithm, the messages are updated
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as follows:

µ
(t+1)
nf = E fn − ρ(E

j
n + µ̃

(t)
jn )Fnth\f − (1− ρ)(E fn + µ̃

(t)
fn ),

(17a)

µ̃
(t+1)
fn = −ρmax

i,i6=n
µ
(t+1)
if − (1− ρ)µ(t+1)

nf , (17b)

where ρ ∈ (0, 1] is a parameter used to smooth the message
dynamics and allowing convergence (see [28]); E fn is the
reward of user n if transmitting on RB f ; and (· · · )Fnth\f
denotes the Fnth sorted element in set {(E jn+ µ̃

(t)
jn )}j∈F , with-

out considering the term E fn + µ̃
(t)
fn related to the f th RB. The

decision variables x fn at the (t+1)th iteration are retrieved by
computing the node marginal τ (t+1)nf = µ

(t+1)
nf + µ̃

(t+1)
fn , and

by assigning x f (t+1)n = 1 if τ (t+1)nf > 0, and 0 otherwise.
The above message updating rule converges to the optimal

solution of (16) and involves simple computations at each
node. However, it requires several iterations before conver-
gence, which may lead to long running times in multi-cell
scenarios. Specifically, because we are applying the ReMP
to update the strategy of each player, it might be impractical
to wait at each round of the game for the convergence of
the ReMP scheme. Moreover, a large number of iterations
for the ReMP leads to a large signaling, resulting in both
radio-resource and device-energy consumption. To deal with
these practical concerns, we study the performance of the
ReMP when only a predefined number of iterations are
allowed. We refer to this scheme as Truncated ReMP(I ) algo-
rithm (TReMP(I )), where I indicates the allowed number of
iterations.We indicate withTReMP(∞) the ReMP algorithm
that runs until converging to the optimal solution of (16)
(which occurs in a number of iterations that depends on the
problem specifics and may change from round to round).

Stopping the ReMP before reaching the convergencemight
lead to a solution where the problem constraints are not all
satisfied. In particular, it can be proven that at each iteration
the ReMPmechanism always satisfies Constraints (16.a), but
not necessarily Constraints (16.b). To ensure that TReMP(I )
achieves a feasible solution, and that the better response
dynamic based on TReMP(I ) converges to a NE of game G,
from now we refer to TReMP(I ) as the iterative scheme
in (17) compelled with the following two forcing rules:

1) Forcing rule no.1: After I iterations, if the number of
RBs assigned to user n exceeds the maximum value Fn,
only the first Fn RBs with the highest marginals are
selected.

2) Forcing rule no.2: After applying the Forcing rule no.1,
player k updates the strategy profile only if the obtained
solution increases the utility with respect to using the
strategy profile of the previous iteration of the game.

Lemma 1: If in the iterative game G each player k updates
her strategy profile by solving (14) with the TReMP(I ) algo-
rithm and with a given I , then, game G will convergence to
a NE.

Proof: Because of Forcing rule no.2, the strategy X(i)
k

selected by player k at any iteration i of the game is such

Algorithm 2 TReMP(I )

Input: X̄, Ẽ fn ∀n ∈ Ck , ∀f ∈ F
Output: X∗k

1 Initialize: i← 0; µ(0)
nf ← 0;

µ̃
(0)
fn ← 0, ∀n ∈ Ck , ∀f ∈ F ;

2 Set E fn ← max{Ẽ fn , 0};
3 while i ≤ I do
4 BS k computes µ(i+1)

nf , ∀n ∈ Ck , ∀f ∈ F ;

5 each user n ∈ Cp computes µ̃(i+1)
fn , ∀f ∈ F ;

6 each user n ∈ Cp and BS compute τ (i+1)nf and

x f (i+1)n , ∀f ∈ F ;
7 i← i+ 1;

8 x fn ← x f (I )n , τnf ← τ
f (I )
nf , ∀n ∈ Ck , ∀f ∈ F ;

9 for n ∈ Ck , f ∈ F do
10 if Ẽ fn < 0 then
11 x fn ← 0;

12 for n ∈ Ck do
13 define the sorted set

Sn = ({τnf }Ff=1,≥) = {si}
F
i=1;

14 define In = {f : τnf ∈ {si}Fi=Fn};

15 if
∑F

f=1 x
f
n > Fn then

16 x fn = 0, ∀f ∈ In;

17 compute U =
∑

f ∈F
∑

n∈Ck E
f
n (X̄)x

f
n ;

18 if U ≥
∑

f ∈F
∑

n∈Ck E
f
n (X̄)x̄

f
n then

19 X∗k ← Xk

20 else
21 X∗k ← X̄k

that Ũk (X
(i)
k ,X

(i−1)) ≥ Ũk (X
(i−1)
k ,X(i−1)), where X(i−1)

=

(X(i−1)
k ,X(i−1)

−k ). At iteration i, the function Ũk (X
(i)
k ,X

(i−1))
is the linearization of the function Uk (X

(i)
k ,X

(i−1)
−k ) around

the previous allocation point X(i−1). This means that at
X(i−1) the two functions have in fact the same value,
that is, Ũk (X

(i−1)
k ,X(i−1)) = Uk (X

(i−1)
k ,X(i−1)

−k ). Therefore,
it holds that Ũk (X

(i)
k ,X

(i−1)) ≥ Uk (X
(i−1)
k ,X(i−1)

−k ). Moreover,
because Ũk (X

(i)
k ,X

(i−1)) is a lower bound of Uk (X
(i)
k ,X

(i−1)
−k ),

it also holds thatUk (X
(i)
k ,X

(i−1)
−k ) ≥ Ũk (X

(i)
k ,X

(i−1)). By com-
bining the last two inequalities, we obtain Uk (X

(i)
k ,X

(i−1)
−k ) ≥

Uk (X
(i−1)
k ,X(i−1)

−k ), meaning that Condition (4) of performing
a better response dynamic of the game is fulfilled.

The TReMP(I ) algorithm used to solve Problem (14) is
summarized in Algorithm 2.

VI. COMPLEXITY AND PRACTICABILITY OF TReMP(I )
A. COMPLEXITY ANALYSIS
Let us assume that game G requires IG rounds to converge,
where one round is completed when all players have updated
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their better response. We recall that I is the number of
allowed iterations for the ReMP algorithm, and F is the total
number of RBs. Considering an efficient sorting algorithm
(e.g., Mergesort or Timsort) to compute the messages µnf
in (17a), the time complexity at each node of the network is
O(IG · IF2 logF).

B. IMPLEMENTATION GUIDELINES
In order to assess the practical feasibility of the proposed
algorithm, we provide some general insights into its possible
implementation in an LTE-like network.

First, we look at the information needed to implement
TReMP(I ). To compute (17a), each transmitter n connected
to receiver k needs to evaluate, for all f ∈ F , the weights

E fn (X̄) = ωkR
f
n(X̄−k )+ P

f
n

∑
q∈K,q6=k

ωqδ
f
m̂(q,f )(X̄−q)G

f
n,q.

(18)

The rate Rfn(X̄−k ) can be estimated by knowing the direct
channel gain Gfn,k and the interference level I fk (X−k ).
In LTE, the direct gains towards the BS are estimated by
means of sounding reference signals (SRS), while the direct
gain between the users of a D2D pair can be assumed known
from the mode selection decision [39]. The interference level
can be estimated at the receiver k after the previous round
of the game, and fed back to the transmitters on a control
channel.

For each RB f ∈ F , the second term on the right-hand
side of (18) encompasses the information that transmitter n
needs from the other players. Because collecting the CSI of all
cross-links results in a large overhead, here we take advantage
from the fact that transmitter n only needs an aggregate
information related to the other players (represented by the
summation), rather than every single cross-gain Gfn,q for all
q 6= k . A way to leverage this aspect consists in letting each
receiver broadcast a sounding signal on a narrow in-band
control channel, without interfering with data transmissions.
In our scheme, we assume that at the end of each iteration of
the game, every receiver q 6= k measures δfm̂(q,f ) for all f inF ,
and transmits a narrow SRS with power proportional to such
measurement (e.g, a power−ωqPδ

f
m̂(q,f ), for a given P known

to all users). Then, the desired quantity
∑

q6=k ωqδ
f
m̂(q,f )G

f
n,q

can be directly measured by transmitter n without requiring
any information exchange.

We consider a synchronized system, where all players
know the order of playing the game, as well as the time
slots during which they have to transmit the SRS signals,
referred to as pilot signals. As in [19], we assume that the
communication of all cellular and D2D users is synchronized
by the timing signals sent by themacro cellular network, or by
the global positioning system (GPS). Fig. 2 illustrates the
proposed signaling to implement the algorithm.

Once the information needed for computing the messages
is obtained, transmitters and receiver start the message-
exchange procedure that leads to the strategy update. Fig. 3

FIGURE 2. Possible signaling protocol to implement the proposed
potential game.

FIGURE 3. Implementation guidelines of TReMP(I). Messages µnf and
µ̃nf are mapped into existing control signals.

illustrates how the message exchanges of TReMP(I ) can be
mapped onto the existing LTE frameworks. Similarly to the
approach proposed in [28] and [31], cellular users compute
the message µnf and send it to the BS with the scheduling
request (SR). The BS, in turn, uses the scheduling grant (SG)
to deliver the message µ̃nf to the users. Moreover, the cellular
users regularly send buffer status report (BSR) messages to
the BS, which replies with an acknowledgement (ACK). Note
that when using TReMP(I ), after I message exchanges both
nodes (BS and cellular user) are able to retrieve the allocation
decision. However, only the BS can compute the total utility
and verify if the new strategy is indeed a better response.
Thus, it is the BS that sends a final ACK to all users under its
coverage to confirm the possible update of the RB allocation.

Regarding the D2D pairs, it is reasonable to assume that the
network has already established a control channel between
the two users during the mode selection phase. Therefore,
the nth D2D transmitter collects the information to compute
the F weights E fn , selects the best Fn RBs and informs the
receiver on the allocation decision.

VII. BRANCH-AND-BOUND ALGORITHM
To evaluate the performance of the proposed better response
dynamic, we compare its solution to the optimal solution of
the original problem in (2). To obtain the overall optimal
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allocation, we design a customized solver based on B&B
approach. Although B&B is a well-established framework,
its computational efficiency, compared to a naive exhaustive
search, strongly depends on how well it is tailored to the
specific problem. Thus, our contribution here is in designing
methods to obtain tight bounds of the objective function,
which allow us to remove as many branches as possible in
the tree search on which the B&B is based on. The design
choices of our B&B algorithm are briefly described in the
sequel.

For every node of the tree, representing a partial RB allo-
cation, we first verify if the number of assigned RBs to each
user n (i.e.,

∑
f x

f
n ) exceeds the limit Fn in (2.b). If it does,

then the node and the branches below can be disregarded.
Otherwise, we obtain the upper and lower bounds of the node
as follows: i)Upper bound:We compute the interference level
on each RB given by the partial RB assignment of the node.
Then, considering those fixed interference levels as additive
noise, we solve the linear programming formulation in (2).
This is an upper bound because we neglect the possible addi-
tional interference deriving from the unassigned variables. ii)
Lower bound: We compute a feasible solution to the problem.
We consider all cells in a round-robin fashion. For each cell
we solve (7), where the interference level on each RB is fixed
and given by the partial resource assignment of the node.
As the cell are selected sequentially, the interference levels
are updated accounting for the contribution of the RB alloca-
tion in the previously selected cells. By fixing the interference
and treating it as additive noise, Problem (7) reduces to a
maximization of a weighted sum, which can be efficiently
solved by any linear programming solver. The lower bound
of the node is then the sum-rate of the entire network.

VIII. NUMERICAL RESULTS AND DISCUSSION
To study the behavior of the proposed algorithm, we simu-
late networks consisting of 7 cells (one macro and 6 micro
cells), with the BSs located in the center of the cells. All
mobile users are randomly placed within the macro-cell area.
Some cellular users are attached to the BSs of the micro
cells, others are connected to the macro BS. Without loss of
generality, we assume that the number of uplink transmis-
sions is the same in all cells. Moreover, Fn = 1 for each
user n, and ωk = 1 for each cell k . A detailed discussion
on the effect of using different weights {ωk} is presented in
Subsection VIII-C, where we also increase to Fn = 2 the
maximum number of resource assigned to user n.
Table 1 reports the main simulation parameters.

A. ALGORITHM PERFORMANCE UNDER DIFFERENT
INITIAL CONDITIONS AND ORDERS OF PLAY THE GAME
First, we analyze the effect of the initial condition (i.e., the ini-
tial strategy chosen by the players) on the achieved NE of the
game. We consider two cases:

• No Initial RB Allocation (NIA), when the players start
the game without any RB allocation;

TABLE 1. Simulation parameters.

• Optimal RB allocation with No Interference (ONI),
when the players start the game with the optimal RB
allocation computed by solving (7) when neglecting the
interference. In this case, each player solves a positive-
weighted sum maximization in the form of (15).

We run 500 independent simulations of a seven-cell net-
work with 15 cellular users in each cell and 35 D2D pairs ran-
domly located within the macro cell area. Table 2 shows the
average utility when using either TReMP(1) or TReMP(∞).
Apart from the total rate, we also display the number of
rounds of the game before converging to the NE. A sin-
gle round is completed when all players have updated their
strategy. Results show that using the ONI approach slightly
boosts the utility and reduces the number of rounds before
convergence.

Second, we investigate the impact that the players schedul-
ing has on the performance of the game. We evaluate the dis-
tribution of the utility when considering 2000 different player
orders for the same network topology used in the previous
analysis. Fig. 4 shows the results when using the NIA and the
ONI initial allocation, respectively. The reported results are
obtained as follows. After each strategy update, we compute
the mean (µ) and the standard deviation of the utility (σ )
from the 2000 outcomes. Doing so, we get a measure of
the amount by which the utilities achieved with the different
orders of playing deviate from the average. Results show
that the final dispersion with both ONI and NIA is small,
with the standard deviation decreasing with the number of
strategy updates. This indicates that the behavior of the game
does not change much with respect to the order of playing.
Furthermore, in line with the results in Table 2, we see that
the ONI initial condition slightly boosts the performance in
terms of final utility, and is even less sensitive to the choice
of the initial order of playing the game.

We conclude that both the initial strategy of the players and
the order of playing the game have a negligible impact on the
local optimum achievable with the proposed algorithm. These
results are interesting from an implementation perspective,
they allow the players to start the game with any allocation
and use any order of playing with no particular penalty.
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FIGURE 4. Average utility (µ) and three standard deviations range (3σ ) from 2000 different orders of
playing the game. Players strategies are updated with TReMP(8).

TABLE 2. Performance with different initial conditions.

B. CONVERGENCE AND PRACTICAL IMPLEMENTATION
In this subsection, we focus on the convergence behavior
of the proposed game. We compare the performance of
the TReMP(I ) algorithm with different inputs I , for a sin-
gle network realization. In particular, we apply TReMP(1),
TReMP(4), TReMP(8), and TReMP(∞) to compute the
better response of the players. We consider again a seven-
cell network with 15 cellular users per cell and 35 D2D pairs,
so that there are 42 players in total (35 D2D receivers and
7 BSs). As such, a single round of the game is given by
42 strategy updates, one for each player. We refer to a mes-
sage exchange as the action of sending a message between
the transmitter and receiver in both directions. A message
exchange is a single iteration of TReMP(I ).
We recall that when the player is a D2D receiver, the strat-

egy update requires a single message exchange, while when
the player is a BS, the strategy update requires a number of
message exchanges depending on the chosen I .

In Fig. 5, we report the sum rate after each message
exchange for the four strategy-update policies, marking the
message exchanges representing the completion of each
round of the game. As expected, regardless of the used policy,
the potential function is always nondecreasing in the number
of message exchanges, and the game converges to a NE.
All the four better response dynamics require a maximum
of four rounds to converge, but the number of message
exchanges and the utility achieved at the equilibrium increase
with the chosen I . In particular, TReMP(1) converges faster
than the other schemes, with ≈ 60 message exchanges,
compared to the minimum of ≈ 150 of the other dynamics.

FIGURE 5. Convergence behavior of the potential function. Each message
exchange corresponds to one iteration of the TReMP(I) algorithm used to
compute the better response of the player. In the plot, the completion of
each round is marked.

On the other hand, it achieves a utility that is ≈ 11% and
≈ 14% smaller than the one achieved with TReMP(4) and
TReMP(8), respectively.

Another insight is that, although TReMP(1) performs
the worst in terms of final utility, it reaches higher utility
than TReMP(8) and TReMP(∞) when the number of mes-
sage exchanges is below 30. On the contrary, TReMP(∞)
achieves the highest utility, but only after completing its sec-
ond round; that is, after ≈ 320 message exchanges. Accord-
ingly, we can conclude that using small values of I is desirable
when the number of allowed message exchanges is small.

Table 3 shows the average results for 500 independent
network realizations with the same setup as used in the pre-
vious analysis. In line with the results shown for a single
network realization in Fig. 5, both the average number of
rounds and the average utility increase with the parameter I .
Interestingly, this is not the case when using TReMP(∞), for
which the number of rounds reduces compared to when using
TReMP(8) and TReMP(4). However, the utility increment
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TABLE 3. Comparing TReMP(I) with different inputs I .

comes at the expense of more messages exchanged for each
round. In the considered setup, TReMP(∞) converges after
an average of 20 iterations.

On the basis of the above observations, and referring to
the results in Table 3, we now investigate the practical impli-
cation of using TReMP(I ) with different input I . In gen-
eral, with TReMP(I ), each round of the game is completed
after 35 message exchanges to allocate the RBs to all D2D
pairs (i.e., 1 message exchange for each D2D pair), and
7 × I message exchanges to allocate the RBs to all cellular
users (i.e., I message exchanges for each cell). Assuming that
a single message exchange takes t ms, the total time needed
for TReMP(1) to converge is approximately 3.7× (35+7)×
t = 155.4 × t ms, while for TReMP(4) and TReMP(8) it
is approximately 4.9 × (35 + 7 × 4) × t = 308.7 × t ms
and 5 × (35 + 7 × 8) × t = 455 × t ms, respectively.
The required time clearly increases for TReMP(∞) case, for
which we need, approximately, 20 iterations to converge and
thus 4.6× (35+ 7× 20)× t = 805× t .

These results suggest that small values of I are more suit-
able for dynamic networks. In particular, I = 1 becomes
preferable when the network conditions change fast, such
as, for example, in high mobility scenarios, where a short
coherence time of the channel requires fast resource alloca-
tion. Furthermore, when the number of message exchanges
necessary to update the player strategy is too large (e.g., for
I = ∞), the energy consumption for the mobile users may
become considerable. Therefore, the selection of parameter I
in the design of theTReMP(I ) algorithm is crucial to find the
desired trade-off between the achievable performance and the
practical implementation.

C. ALGORITHM PERFORMANCE FOR DIFFERENT {ωk }k∈B
In the problem formulation (2), we introduced the design
parameters {ωk}k∈B as means to differentiate the impact on
the total utility from the resource allocation in the different
cells. Here, we evaluate the achievable performance when we
increase the weight ωk for the macro cell k , while keeping ωq
equal to 1 for all q 6= k . We consider the same network setting
as before, with 15 cellular users per cell and 35 D2D pairs
within the macro cell area. We apply TReMP(8) to compute
the best response of the players, and we set Fn = 2 for each
user n.

Fig. 6 reports the average bit rate for the different types
of users (namely, macro-cell user, micro-cell user, and D2D
user) after 500 monte carlo runs. We can see that by

FIGURE 6. Achievable rates for the different type of cells with respect to
different macro-cell weight ωk l.

increasing the weight ωk , the average rate of the macro-cell
users increases aswell. This because of the larger contribution
of the macro cell to the total utility function when its utility is
multiplied by a large ωk . On the other hand, the utility of both
the micro-cell users and D2D pairs decreases with larger ωk .
Note that in the extreme case of ωk > 1000, only the macro-
cell users are allowed to transmit and the rate of all other users
reduces practically to 0.

D. COMPARISONS WITH THE GLOBAL OPTIMUM
Finally, we compare the globally RB allocation obtained
via the customized B&B solver (Opt), with the suboptimal
allocation achieved with four different schemes: i) a random
RB allocation that fulfills the problem constraints (Random);
ii) a potential game with the best response dynamic based
on the solution of (7) with exhaustive search (Best); iii)
a potential game with the better response dynamic based
on TReMP(∞); and iv) a potential game with the better
response dynamic based on TReMP(1). Although the B&B
solver allows to find the optimal solution more efficiently
than using the naive exhaustive search, there might be cases
when it is necessary to explore many nodes of the search tree
before finding the optimal solution. For these unlucky cases,
the run-time of the algorithm is still prohibitive.

To deal with a reasonable computational time, the results
presented in this subsection are related to slightly simplified
scenario with neighboring cells, where in each cell there are
3 cellular users and 2D2D pairs, andwithFn = 1 for all n.We
consider 100 independent simulations to build the histograms
in Fig. 7, which show the utility loss of the four suboptimal
solutions. We define the percentage rate loss as U?−UA

U? ∗100,
whereU? andUA represent the utility achieved with the B&B
solver and with the suboptimal approaches, respectively.

The histograms in Fig. 7 show that the performance of the
Best and of the two better response dynamics (TReMP(∞)
and TReMP(1)) are not significantly far from the global
optimum. Specifically, the Best is within 10% of the opti-
mal solution for almost all network configurations. However,
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FIGURE 7. Histogram of the percentage of utility loss when using the Best
response dynamic, the Random allocation, and the Better response
dynamic with TReMP(∞) and TReMP(1).

the computation of each Best response requires the solution
of a combinatorial problem, which leads to runtime limita-
tions for practical network sizes. The two better response
dynamics, on the other hand, perform slightly worse than
the Best, but remain more practical for all network sizes
(especially TReMP(1)) and they are still within 15% of the
optimal solution for almost all configurations. Finally, it is
worth mentioning here that because the set of NE points
achieved with the best and better response dynamics is the set
of local maxima of the potential function, playing the game
not only improves the system performance compared with
any initial allocation; in some cases, it also achieves the global
optimum as shown by the bins located at zero utility-loss in
the histograms.

IX. CONCLUSIONS
In this work, we considered the problem of uplink RB allo-
cation in a heteregeneous 5G D2D-enabled network. Using
the framework of potential games, we addressed the chal-
lenging combinatorial problem of sum-rate maximization in
an interference-limited network. Specifically, we designed a
distributed solution based on a better response dynamic and a
MP algorithm that guarantees convergence to a local optimum
of the utility function. Simulations showed the validity of the
proposed scheme under different settings.
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