
Hindawi
International Journal of Reconfigurable Computing
Article ID 2624938

Research Article
Translating Timing into an Architecture: The Synergy of COTSon
and HLS (Domain Expertise: Designing a Computer
Architecture via HLS)

Roberto Giorgi ,1 Farnam Khalili ,1,2 and Marco Procaccini 1

1Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
2Department of Information Engineering, University of Florence, Florence, Italy

Correspondence should be addressed to Roberto Giorgi; giorgi@dii.unisi.it

Received 6 May 2019; Accepted 20 September 2019

Academic Editor: Wim Vanderbauwhede

Copyright © 2019 RobertoGiorgi et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the
design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be
time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which
uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy,
thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this
proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design
everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads)
running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a
key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the
design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this
workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how
we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped
us reduce the development time from months/weeks to days/hours.

1. Introduction

In recent decades, applications are becoming more and
more sophisticated and that trend may continue in the
future [1–3]. To cope with the consequent system design
complexity and offer better performance, the design
community has moved towards design tools that are more
powerful. Today, many designs rely on FPGAs [4, 5] in
order to achieve higher throughput and better energy ef-
ficiency, since they offer spatial parallelism on the portion
of application characterized by data-flow concurrent exe-
cution. FPGAs are becoming more capable to integrate
quite large designs and can implement digital algorithms or
other architectures such as soft processors or specific ac-
celerators [5]. For the efficient use of FPGAs, it is essential
to have an appropriate toolchain. The toolchain provides an

environment in which the user can define, optimize, and
modify the components of the design, by taking into ac-
count the power, performance, and cost requirements of a
particular system and eventually synthesize and configure
the FPGA.

The conventional method to implement an application
code on FPGAs is to write the code in Hardware Description
Language (HDL) (e.g., VHDL or Verilog). Although
working with HDL languages still is the most reliable and
detailed way of designing the underlying hardware for ac-
celerators, their use requires advanced expertise in hardware
design as well as remarkable time. The Design Space Ex-
ploration (DSE) and debugging time of FPGAs and the
bitstream generation may reach many hours or days even
with powerful workstations. As such, moving an already-
validated architecture to the FPGA’s tool flow may save

mailto:giorgi@dii.unisi.it
https://orcid.org/0000-0003-0384-8229
https://orcid.org/0000-0003-2307-139X
https://orcid.org/0000-0002-9719-2672


significant time and effort and, as a result, facilitates the
design development.

This situation is exacerbated by the interaction with the
Operating Systems and by the presence of multicore.
Therefore, the use of full-system simulators in combination
with HLS tools permits a more structured design flow. In
such a case, a simulator can preliminarily validate an ar-
chitecture and the HLS-to-RTL time is repeated less times.

There are parameters which make simulators preferable to
reach a certain level of performance, scalability, and accuracy
as well as reproducibility and observability. Based on the
experience of previous projects such as TERAFLUX [6, 7],
ERA [8, 9], AXIOM [4, 10–13], and SARC [14, 15], we choose
to rely on the HP-Labs COTSon simulation infrastructure
[16].The key feature of COTSon that is useful in HLS design is
its “functional-directed” approach, which separates the
functional simulation from the timing one. We can define
custom timing models for any component of an architecture
(e.g., FPGA, CPU, and caches) and validate them through the
functional execution; however, the actual architecture has to
be specified by a separate “timing model” (see Section 2 for
more details). The latter is what can be migrated in a
straightforward way to HLS. Moreover, COTSon is a full-
system simulator; hence, it permits to study the OS impact on
the execution and choose the best OS configuration based on
the application requirements [17].The OS modelling is
sometimes not available in other tools (reviewed in Section 2).

In this article, we illustrate the importance of the sim-
ulation in synergistic combination with the Xilinx HLS tool
[18], in order to permit a faster design environment, while
providing a full-system Design Space Exploration (DSE).

Additionally, thanks to our DSE toolset (MYDSE)
[17, 19], we facilitate the extraction of not only important
metrics such as the execution time but also more detailed
ones such as cache miss rates and bus traffics, which help
investigate the appropriate system design. In order to il-
lustrate our methodology, we start from a driving example
related to design a simple two-way associative cache system.
The methodology is then generalized by considering the case
of the AXIOM project, in which this methodology was
actually used to design and implement a novel data-flow
architecture [20–22] through the development of our cus-
tom AXIOM board [11].

The contributions of this work are as follows:

(i) Presenting our methodology for designing FPGA-
based architectures, which consists in the direct
mapping of COTSon “timing models” into HLS,
where such models are pre-verified via our MYDSE
tools: the DSE is performed before using the HLS
tools, thus saving much design time

(ii) Illustrating a simple driving example based on the
modelling and synthesis of a simple two-way set-
associative cache in order to grasp the details of our
methodology

(iii) Presenting the bigger picture of using our proposed
methodology to design a whole software/hardware
platform (called AXIOM)

The rest of the article is organized as follows: in Section 2,
we analyze related work; in Section 3, we illustrate our
methodology and tools; in Section 4, we provide a simple
driving case study; in Section 5, we show the possibilities of
our tools in the more general context of the AXIOM project.

2. Related Work

Our design and evaluation methodology aims at integrating
simulation tools and HLS tools to ease the hardware ac-
celeration of applications, via custom programmable logic.
HLS tools improve design productivity as they may provide a
high level of abstraction for developing high-performance
computing systems. Most typically, these tools allow users to
generate a RTL representation of a specific algorithm usually
written in C/C++ or SystemC. Several options and features
are included in these tools in order to provide an envi-
ronment with a set of directives and optimizations that help
the designer meet the overall requirements. In our case, we
realized that more design productivity could be achieved by
identifying in the early stages a candidate architecture
through the use of a simulator: however, the use of a generic
simulator may not help identify the architecture, since often
the simulation model is too distant from the actual archi-
tecture or is too much intertwined with the modelling tool
[23–26]. On the other hand, the COTSon simulator uses a
different approach, called “functional-directed” simulation, in
which the functional and timing models are neatly separated
and the first one drives the latter (It is important to note that
the “timing model” implicitly defines an architecture, which
is functionally equivalent to the “functional model,” but it is
a totally separated code with different simulation speeds
[16].). The similarity of our “timing model” specification to
an actual architecture is an important feature and it is the
basis for our mapping to a HLS specification.

In our research, we used Xilinx Vivado HLS, but other
important HLS frameworks are available and are briefly
illustrated in the following; their main features are sum-
marized in Table 1. LegUp [27] supports C/C++, Pthreads,
and OpenMP as programming models for HLS [35] by
leveraging the LLVM compiler framework [36], and permits
parallel software threads to run onto parallel hardware units.
LegUp can generate customized heterogeneous architectures
based on the MIPS soft processor. Bambu [28] is a modular
open-source HLS tool, which aims at the design of complex
heterogeneous platforms with a focus on several trade-offs
(such as latency versus resource utilization) as well as
partitioning on either hardware or software. GAUT [29] is
devoted to real-time digital signal processing (DSP) appli-
cations. It uses SystemC for automatic generation of test-
benches for more convenient prototyping and design space
exploration. DWARV [30] supports a wide range of ap-
plications such as DSP, multimedia, and encryption. The
compiler used in DWARV is the CoSy commercial in-
frastructure [37], which provides a robust and modular
foundation extensible to new optimization directives. Stratus
HLS of Cadence [31] is a powerful commercial tool
accepting C/C++ and SystemC and targeting a variety of
platforms, including FPGAs, ASICs, and SoCs. Thanks to

2 International Journal of Reconfigurable Computing



low power optimization directives, the user can achieve a
consistent power reduction. It gives support for both control
flow and data-flow designs, and actively applies constraints
to trade-off speed, area, and power consumption. The Intel
HLS compiler [32] accepts ANSI C/C++ and generates RTL
for Intel FPGAs, which is integrated into the Intel Quartus
Prime design software. Xilinx Vivado HLS tool targets Xilinx
FPGAs [18], which offers a subset of optimization tech-
niques, including loop unrolling, pipelining, data flow, data
packing, function inline, and bit-width reduction for im-
proving the performance and resource utilization.

Xilinx SDSoC is a comprehensive automated develop-
ment environment for accelerating embedded applications
[33]. The tool can generate both RTL level and the software
running on SoC cores for the “bare-metal” libraries, Linux,
and FreeRTOS. Xilinx SDAccel [34] aims at accelerating
functionalities in data centers through FPGA resources. We
summarize the key features of the aforementioned HLS tools
in Table 1.

Although some of the HLS tools provide a general
software/hardware simulation framework, the possibility of
easily evaluating a complex architecture-oriented design
(e.g., computer organization: level and size of caches,
number of cores/nodes, and memory hierarchy) is still
missing. Moreover, before reaching a bug-free physical
design, which meets all the design specifications, the debug
and development of such designs by using the aforemen-
tioned HLS tools may require a significant time and effort
despite all benefits that HLS tools provide to the design
community. Consequently, powerful design frameworks
that simplify the verification of the design and provide an
easy design space exploration are welcome. In this respect,
many design frameworks have emerged to implement effi-
cient hardware in less time and effort. Authors in [38]
propose a framework relying on Vivado HLS to efficiently
map processing specifications expressed in PolyMageDSL to

FPGA. Their framework supports optimizations for the
memory throughput and parallelization. ReHLS [39] is a
framework with automated source-to-source resource-
aware transformation leveraging Vivado HLS tool. Their
framework improves the resource utilization and through-
put by identifying the program inherent regularities that are
invisible to the HLS tool. FROST [40] is a framework that
generates an optimized design for the HLS tool. This
framework is mainly appropriate for applications based on
streaming data-flow architectures such as image-processing
kernels.

However, whereas these tools focus on optimizing the
whole application performance, we are proposing instead an
architecture-oriented approach, where the designer can
manipulate and explore the architecture itself, before passing
it to the HLS toolchain. By using our proposed framework
(see Section 4 for more details), we can validate the design in
terms of the functional and timing models, and then define a
specific architecture, while constantly monitoring the se-
lected key performance metrics. The architecture model is
specified in C/C++ and, thanks to the decoupling from the
simulation details and functional model, it can be easily
migrated into the HLS description. This is illustrated in
Sections 4 and 5. In particular, we leverage the Vivado HLS
tool and on top of it, we build our design space exploration
tools relying on COTSon simulator, which is one of the key
components of our framework. In the following, we high-
light relevant features and compare several simulators
(Table 2), and we contrast them with our chosen simulator
(i.e., COTSon).

SlackSim [23] is a parallel simulator to model single-core
processors. SimpleScalar [24] is a sequential simulator,
which supports single-core architectures at the user level.
GEMS [25] is a virtual machine-based full-system multicore
simulator built on top of Intel’s Simics virtual machine.
GEMS relies on timing-first simulation approach, where its

Table 1: Key features of discussed HLS tools.

Tool Owner License Input Output Domain Testbench SW/
HW Simulation Floating

point
Fixed
point

LegUp [27] LegUp
computing Commercial C, C++ Verilog All Yes Yes HW Yes No

Bambu [28] Politecnico
di Milano Academic C VHDL, Verilog All Yes Yes SW, HW Yes No

GAUT [29] U. Bretagne
sud Academic C, C++ VHDL, SystemC DSP Yes No HW No Yes

DWARV
[30] TU delft Academic C VHDL All Yes Yes HW Yes Yes

Stratus HLS
[31] Cadence Commercial C, C++,

SystemC C, C++, SystemC All Yes Yes SW, HW Yes Yes

Intel HLS
compiler [32] Intel Commercial C, C++, Verilog All No No SW, HW Yes Yes

Vivado HLS
[18] Xilinx Commercial

C, C++,
OpenCL,
SystemC

VHDL, Verilog,
SystemC All Yes No SW, HW Yes Yes

SDSoC [33] Xilinx Commercial C, C++ VHDL, Verilog All No Yes SW, HW Yes Yes

SDAccel [34] Xilinx Commercial C, C++,
OpenCL

VHDL, Verilog,
SystemVerilog All Yes Yes SW, HW Yes Yes

For the nonobvious columns, Testbench means the capability of automatic testbench generation. SW/HW means the support for the software/hardware co-
design environment. Floating Point and Fixed Point are the supported data types for the arithmetic operations.

International Journal of Reconfigurable Computing 3



timing model drives one single instruction at a time. Even
though GEMS provides a complete simulation environment,
we found that COTSon simulator provides better perfor-
mance as we increase the number of modelled cores and
nodes. MPTLsim [26] is a full-system x86-64 multicore
cycle-accurate simulator. In terms of simulation rate,
MPTLsim is significantly faster than GEMS. MPTLsim takes
advantage of a real-time hypervisor scheduling technique
[42] to build hardware abstractions and fast-forward exe-
cution. However, during the execution of hypervisor, the
simulator components, such as memory, instructions, or I/
O, are opaque to the user (no statistics is available). On the
contrary, e.g., COTSon provides an easily configurable and
extensible environment to the users [43] with full detailed
statistics. Graphite [41] is an open-source distributed parallel
simulator leveraged in the PIN package [44], with the trace-
driven functionalities. COTSon permits full-system simu-
lation from multicore to multinode and the capability of
network simulation, which makes COTSon a complete
simulation environment. Both COTSon and Graphite per-
mit large core numbers (e.g., 1000 cores) with reasonable
speed, but COTSon provides also the modelling of pe-
ripherals such as disk and Ethernet card. Compared to
COTSon, the above simulators do not express a timing
model in a way that can be easily ported to HLS: COTSon is
based on the “functional-directed” simulation [16], which
means that the functional part drives the timing part and the
two parts are completely separated, both in the coding and
during the simulation. The functional model is very fast but
does not include any architectural detail, while the timing
model is an architecturally complete description of the
system (and, as such, includes also the actual functional
behaviour, of course). In this way, once the timing model is
defined and the desired level of the key performance metric
(e.g., power or performance) has been reached, the design
can be easily transported to an HLS description, as illustrated
in the next sections.

3. Methodology

In this section, we present our methodology (Figure 1) for
developing hardware components for a reconfigurable
platform, as developed in the context of the AXIOM project.

First, we define the functional and the timing model of a
desired architectural component (e.g., a cache system, as
described in Section 4). Such models are described by using
C/C++ (two orange blocks in the top left part of Figure 1).

These models are then embedded in the COTSon simulator,
which is managed in turn by the MYDSE tools in order to
perform the design space exploration [16, 17, 19]. The latter
is a collection of different tools, which provide a fast and
convenient environment to simulate, debug, optimize, and
analyze the functional and timing models of a specific ar-
chitecture and to select the candidate design to be migrated
to the HLS (top part of Figure 1).

Afterwards, we manually migrate a validated architec-
ture specification from COTSon to the Vivado HLS tool
(bottom part of Figure 1), where the user can apply the
specific directives defined in the timing model of COTSon
into the Vivado HLS. This is possible because of the close
syntax of the architecture specification in COTSon and
Vivado HLS.

Our framework has the purpose of reducing the total
DSE time to define an architecture (as input to Vivado HLS
itself ). We do not aim to define a precise RTL, but simply to
select an architecture suitable as input to Vivado HLS (see
Figure 2).

Finally, we pass the generated bitstream by Vivado to the
XGENIMAGE, which is a tool that assembles all needed
software, including drivers, applications, libraries, and
packages, in order to generate the operating system full
image to be booted on the AXIOM board. In Figure 1, we
highlight in green the existing (untouched) tools and in blue
the research tools that we developed from scratch or that we
modified (like COTSon). In our case, part of the process
involves the design of the FPGA board (the AXIOM board).
An important capability of the board is also to provide fast
and inexpensive clusterization. The simulator allowed us to
model exactly this situation, in which the threads are dis-
tributed across several boards, through a specific execution
model (called DF-Threads). To that extent, the AXIOM
board [11] has been designed to include a soft-IP for the
routing of data (via RDMA custom messages) and the FPGA
transceivers are directly connected to USB-C receptacles, so
that four channels at about 18Gbps are available for simple
and inexpensive connection of up to 255 boards, without the
need of an external switch [12].

3.1. DSE Toolset and COTSon Simulator. Based on our ex-
perience of the AXIOM project [4, 12, 13], the main mo-
tivations behind the choice of the COTSon simulation
framework resides in the “functional-directed” approach
[16]. COTSon also permits to model a complete system like a

Table 2: Interesting features of simulators for high-performance computing architectures. For the nonobvious columns, Parallel/Sequential
means the simulator core can be executed either in parallel or sequential by the host processor. Full System means taking into account all
events, including the OS.

Simulator Parallel/sequential Single-core/multicore Full system Simulation methodology
COTSon [16] Parallel Multicore yes Decoupled-functional first
GEMS [25] Sequential Multicore Yes Decoupled- timing first
Graphite [41] Parallel Multicore No Not decoupled- trace-driven
SimpleScalar [24] Sequential Single-core No Not decoupled- execution driven
MPTLsim [26] Sequential Multicore No Not decoupled- timing first
SlackSim [23] Parallel Single-core No Not decoupled- timing first

4 International Journal of Reconfigurable Computing



Timing
behaviour

(C)

Functional
behaviour

(C++) Apps +
inputs

+
COTSon

+
MYDSE

GTCOLLECT
+

GTGRAPH
Measurements

DB

KPIs
met

?

No

Yes

Timing
behaviour

(C for HLS)
Vivado HLS XGENIMAGE

Apps, inputs
drivers

libraries
packages

SD-IMAGE

Actual hardware/software prototyping

Simulator-based design feedback loop (rapid prototyping)

USB-C
cable

Existing
drivers

libraries
packages

Research models

(Our) research tools

Existing tools

AXIOM board

Figure 1: Design and test methodology of the AXIOM involved a mix of simulation (via the COTSon simulator and other custom tools) and
FPGA prototyping (via our custom AXIOM board and hardware synthesis tools (like Vivado HLS)) [11].

Application
specification in

C/C++/SystemC

HLS classical workflow

∗Same tool-chain

Optimization
directives

User
constraints,

library,

Formal
model

Allocation
Scheduling

Binding

RTL generation

GTCOLLECT
GTGRAPH

COTSon

MYDSE

Proposed workflow

MYINSTALL

DSE cycle
in minutes!

DSE cycle
in hours!

Application
specification in

C/C++/SystemC

∗

VHDL/verilog

Optimization
directives

User 
constraint,

library,

Formal
model

GCC/G++
compiler

Allocation
Scheduling

Binding
RTL generation

Architecture
description in C/C++

VHDL/verilog
∗

GCC/G++
compiler

Figure 2: Differences between classical and proposed architecture modelling frameworks. Workflows to generate VHDL/Verilog hardware
description language from the application specification written in C/C++. On the left, a typical workflow of existing HLS tools. On the right,
we leverage the HLS tool, and on top of it, we build our framework to simulate and validate the design specification.

International Journal of Reconfigurable Computing 5



cyber-physical system (CPS), i.e., including the possibility to
run a real software performing Input/Output (I/O) and an
off-the-shelf Linux distribution (or other operating systems).
Since the performance of a CPS is affected also by the
Operating System (OS) and libraries [17], it is important to
model not only the memory hierarchy and cores but also all
the devices of the system: this is possible in the COTSon
framework.

In Section 5.1, we show that the OS influence can be
detected earlier in the DSE by using our methodology.
Moreover, COTSon permits building a complete distributed
system with multi-cores and multiple nodes, where we can
observe and analyze any aspect of the application and, e.g.,
the OS activity. In order to guarantee a proper scientific
methodology for studying the experimental results that are
coming from the framework, we designed a DSE toolset
(called “MYDSE”) [19], through which it is possible to easily
set up a distributed simulation, as well as automatically
extract, calculate the appropriate averages, and examine the
key metrics. MYDSE addresses the designer’s needs mostly
on the first part of the workflow represented on the top of
Figure 1.

Moreover, MYDSE represents a higher abstraction level
in the design (Figure 3), in which existing architectural
blocks (e.g., caches) can be combined and parameterized for
a preliminary design exploration. TheMYDSE phase permits
us to answer questions such as the following: “How large
should be the cache in the target platform?” “How many
cores I need in my design?” “What would be the overhead of
distributing the computation across several FPGAs?”

3.2. COTSon Framework. In this subsection, we briefly
summarize the features of the essential component of our
toolchain–the COTSon–for the sake of a more self-con-
tained illustration of our framework. More details can be
found in [16, 17, 19, 43].

The COTSon framework has been initially developed by
HP-Labs and its simulation core is based on the AMD
SimNow virtualization tool, which is an x86_64 virtual
machine provided by AMD to test and develop their pro-
cessors and platforms [16]. COTSon relies on the so-called
functional-directed simulation approach, where the func-
tional execution (top part of Figure 4) runs in the SimNow
Virtual Machine (VM) and the detailed timing (bottom part
of Figure 4) is totally decoupled and reconstructed dy-
namically based on the events coming from the functional
execution.

COTSon can also model a distributed machine com-
posed of several nodes: each SimNow VMmodels a complete
multicore node with all its peripherals, and an additional
component (called “Mediator”), which models a network
switch. The virtual machines can run in parallel, thus
speeding up a simulation consisting of several nodes.
Moreover, we can use different available simulation accel-
eration techniques, such as dynamic sampling or SMARTS
[46], and perform other accounting activities, such as
tracing, profiling, and (raw) statistic collection. The in-
struction stream coming out from each SimNow functional

core is interleaved for a correct time ordering. The COTSon
control interface extracts the instruction stream, passing it to
the timing simulation (Figure 4).

In the “Timing Simulation” portion of the COTSon (see
the bottom part of Figure 4), we can model any architectural
components (i.e., CPU, L1 cache, network switch, acceler-
ator, etc.) with a few lines of C++ codes. The architecture of
the modelled system is customizable by setting all the rel-
evant information in a configuration file (written in the Lua
scripting language) [47] as illustrated in the bottom part of
Figure 3). Other aspects of the simulation can be custom-
izable as well in the configuration file: e.g., the sampling
method, how to log statistics, and which kind of Operating
System (OS) image to use.

3.3. DSE ToolSet. In this subsection, we describe the tools
that we have designed for the DSE. A detailed overview of
these tools has been introduced in a previous work [19].
Here, we recall the main features.

Design Space Exploration (DSE) and its automation are a
significant part of modern performance evaluation and
estimation methodologies to find an optimal solution among
the many design options, while respecting several con-
straints on the system (e.g., a certain level of performance
and energy efficiency).

In order to facilitate and speed up the DSE, we developed
a set of tools (called “MYDSE”), through which it is possible
to easily configure the relevant aspects of our simulation
framework and automate the routine work. Thanks to
MYINSTALL, a tool included in the MYDSE, the installation
and validation phase of the overall environment (which was
previously taking a lot of human effort and many hours of
work) now takes less than 10 minutes, minimizing the
human interaction and giving us the possibility to set up
several host machines in a fast and easy way. At the end of
the installation phase, a set of regression tests is performed to
verify if the software is correctly patched, compiled, and
installed (see Figure 5–left). This permits a fast deployment
of different machines with possibly different characteristics
and, at the same time, has a monitoring of the actual re-
sources that are available for an optimal utilization of them.

Another critical aspect of the simulation is the automatic
management of experiments, mostly in the case when a large
number of design points need to be explored: this is
managed by the MYDSE tool. Using a small configuration
file, we can define the Design Space of an experiment by
using a simple scripting syntax (In our case, we refer to
“bash.” “bash” is a popular scripting language for Linux.):
<key>�<value>. For example, it is possible to define not
only a modelled architecture (e.g., number and types of
cores, cache parameters, and multiple levels of caches), the
Operating System image, and other parameters of the
COTSon simulator, but also other higher level parameters
related to the applications, their inputs, and the standard
libraries to be used. The MYDSE configuration file also
permits listing a set of values for each parameter so that the
design points are automatically generated. Once the design
points are generated, the tools manage the execution of the

6 International Journal of Reconfigurable Computing



experiments by scheduling and distributing the simulations
on, e.g., a cluster of simulation hosts, by collecting the results
of each simulation and inserting them in a database, where
off-line data mining can be performed afterwards. Moreover,
the tools constantly monitor the simulations: if one of them
is failing, then it is automatically retried (thresholds are
applied to limit the re-trials).

A large number of output statistics are produced during
the simulations; thus, a database is necessary to store such
data. Statistical processing can also be selected to give a
quantification of the goodness of the collected numbers (e.g.,
the coefficient of variation and the presence of outliers). Other
tools in Figure 5 (GENIMAGE, ADD-IMAGE, GTCOL-
LECT, and GTGRAPH) are described in more detail in [19].

COTSon
control

interface

Timing simulation

SimNow instances
(Node Functional-Mode)

core
1

core
2

core
N

…

SimNow instances
(Node Functional-Mode)

core
1

core
2

core
N

…

SimNow instances
(Node functional-mode)

Core
1

Core
2

Core
N

…

Device

Disc, NIC, …

Mediator instances
(Inter-node network/switch model)

Network,
functional 

models,
congestion, …

Timing interface

Sampling driver

Timing 
Model

1,2, … ,n 
Timing 
Model

1,2, … ,n 
Timing 
model

1, 2, …, n 

CPU,
memory,

interconnects,
timing-models

Trace collection,
profiling,
hooks, …

Sampling,
interleaving, …

Time synchronization, simulation 
parallelization, network 

instrumentation, network statistics, …

Functional simulation

Instruction stream

Instruction stream

Instru
ction stre

am

Figure 4: The COTSon simulation framework architecture [19, 45].

while i < cpus() do
cpu:timer{ name=‘cpu’..i, type=“timer_simple”}
l2=Cache{ name=“l2cache”, size = “512KB”, line_size=64, latency=5, next=bus, write_policy = “WB”}
ic=Cache{ name=“icache”, size=“32kB”, line_size=64, latency=2, next=l2, write_policy=“WT”}
dc=Cache{name = “l1cache”, size=32kB”, line_size=64, latency =3, next=l2, write_policy=“WT”}
……
i=i+1;

end

MYDSE mapping (automatic)

listarch = “mem-bus.l2-ic+l2-dc+ic-cpu+dc-cpu”
listcpu =“timer_simple”
listl2c =“512+64+5”
listic =“32+64+2”
listdc =“32+64+3”

Cache size Line_size

COTSon mapping (manual)

HLS

Level-2
architecture
description

Level-1
architecture
description

Level-0
architecture 
description

MYDSE

COTSon

Vivado HLS

Latency

Figure 3: The relation between the higher level MYDSE description, the COTSon configuration file, and the final HLS translation: At the
higher level, we specify the parameters in a compact way (level 2 architecture description), and we can indicate several instances of such
parameters so that MYDSE can generate the design space points to be explored. In the COTSon configuration (level 1), the MYDSE points
will be automatically mapped to the parameter of the corresponding architectural element (bottom part of the figure: the “next” field
specifies the position in the architecture tree, WB means write-back, and WT is the write-through policy). Finally, the architecture de-
scription is mapped manually from COTSon description to HLS (level 0).

International Journal of Reconfigurable Computing 7



3.4. Mapping an Architecture to HLS. High-level synthesis
(HLS) aims at enhancing design productivity via facili-
tating the translation from the algorithmic level to RTL
(register transfer level) [48, 49]. In the current state of the
art, given an application written in a language like C/C++
or SystemC, an HLS tool particularly performs a set of
successive tasks to generate the corresponding register
transfer level (RTL, e.g., VHDL or Verilog) description
suitable for a reconfigurable platform, such as an FPGA
[49] (Figure 2–left). This workflow typically involves the
following steps:

(i) Compiling the C/C++/SystemC code to formal
models, which are intermediate representa-
tions based on control flow graph and data-flow
graph.

(ii) Scheduling each operation in the generated graph to
the appropriate clock cycles. Operations without
data dependencies could be performed in parallel, if
there are enough hardware resources during the
desired cycle.

(iii) Allocating available resources (LUTs, BRAMS, FFs,
DSPs, and so on) in regard to the design constraints.
For instance to enhance the parallelism, different
resources could be statistically allocated at the same
cycle without any resource contention.

(iv) Binding each operation to the corresponding
functional units, and binding the variables and

constants to the available storage units as well as
data paths to data buses.

(v) Generating the RTL (i.e., VHDL or Verilog).

All these operations continue to be performed in our
proposed framework, but the designer would like to avoid
excessive iterations through them, since they may require
many hours of computing processing or even more,
depending on the complexity of the design, even on pow-
erful workstations and with not-so-big designs. However,
COTSon and MYDSE tools (illustrated above) act like a
“front-end” to the HLS tool, as outlined in Figure 2. We use
HLS also for defining a specific architecture to accelerate the
application. Our tools allow the designer to explore possible
options for the architecture, without going to the synthesis
step: only when the simulation phase has successfully se-
lected an architecture (output of the blue block in Figure 2),
the model will be manually translated by the programmer as
an input to the HLS tools. Doing this step automatically is
out of the scope of this work.

A comparison of the total time of the DSE loops between
our framework (Figure 2-right) and HLS (Figure 2-left) is
reported here for different benchmarks (Table 3). For ex-
ample, a blocked matrix multiplication benchmark (matrix
size 864 and block size 8) and a Fibonacci benchmark (order
of up to 35) are executed based on our DF-Threads execution
model (data-flow model). As a result, thanks to our frame-
work, we were able to reduce the required time for validating
and developing the architecture compared with solely HLS

MYINSTALL MYDSE
GTCOLLECT

GTGRAPH

Environment setup Experiment phase Result and analysis

COTSon

ADD-IMAGE

Packages

GEN-IMAGE

Simulation.1
timer.log

Simulation.N
timer.log

Simulation.1
out

Simulation.N
out

Raw metrics 
results

Execution
loop

check

Statistics 

Tabular 
representation

Graphical 
representation

Automated 
regression 

tests

Ok/fail 
report

Validation 

Figure 5: Tool flow of the Design Space Exploration tool. The MYINSTALL tool prepares the whole environment and performs automated
regression tests in the end. The MYDSE tool takes care of the experiment loop and the reordering of several output files generated by each
simulation. Finally, the GTCOLLECTS and GTGRAPH tools collect the results, perform validation and statistical operations on the results,
and plot the data in a tabular or graphical format [19].

8 International Journal of Reconfigurable Computing



workflow, through which applying any changes in the source
codes may require many hours for the synthesis process.

4. Case Study

In this section, first, we explain our workflow by using a
simple and well-known driving example, i.e., the design of a
two-way set-associative cache in a reconfigurable hardware
platform through our methodology. Afterwards, we illus-
trate the more powerful capabilities of our framework for a
more complex example, which is the design of the AXIOM
hardware/software platform. In both cases, first, we design
the architecture in the COTSon simulator and then we test
its correct functioning and achieve the desired design goals.
Finally, we migrate the timing description of the desired
architecture into the Xilinx HLS tools.

4.1. From COTSon to Vivado HLS–A Simple Example. In
COTSon, the architecture is defined by detailing its “timing
model.” A timing model is a formal specification that defines
the custom behaviour of a specific architectural or micro-
architectural component; in other terms, the timing model
defines the architecture itself [16, 19]. The timing model in the
COTSon simulator is specified by using C/C++. The designer
defines the storage by using C/C++ variables (more often
structured variables). The timing model behaviour is specified
by explicating into C/C++ statements the steps performed by
the control part and associating them with the estimated la-
tency, which can be defined through our DSE configuration
files (see Figure 3) easily. After defining the model, we can
simulate and measure the performance of it. This is illustrated
in Figure 6 and discussed in the following paragraphs.

Let us assume here that we wish to design a simple two-
way set-associative cache: we show how it is possible to
define the timing model of a simple implementation of it in
COTSon and then how we can map it in HLS. We start from
a conceptual description of such cache, as shown in Figure 6.
In particular, for each way of the cache, we need to store the
“line” of the cache, i.e., the following information:

(1) Valid bit or V-bit (1 bit): used to check the validity of
the indexed data

(2) Modify bit or M-bit (1 bit): used to track if data has
been modified.

(3) LRU bits or U-bits (e.g., 1 bit in this case): used to
identify the Least Recently Used data between the
two cache ways.

(4) Tag (e.g., 25 bits): used to validate the selected data of
the cache.

(5) Data (e.g., 512 bits, 64 bytes, or 16 words): contains
the (useful) data.

The data structure to store this information in COTSon
is given by the “Line” structure, which is shown in Figure 7
(left side).

When we want to read or write data, which are stored in
a byte address (X in Figure 6), we check if the data are
already presented into the cache. The cache controller im-
plements the algorithm to find the data in the cache. Al-
though not visible in the left part of Figure 6, there is a
control part also for identifying the LRU block. We can
implement this control in COTSon by using the two
functions (shown in the right part): one named “find”
(Figure 7), which is a simple linear search, and the other
named “find_lru” (Figure 8).

From the timing model of the implemented cache in
COTSon, we migrate the design into the Xilinx HLS tools.
One minor restriction in Vivado HLS is to use fixed size
arrays instead of dynamic data structures because of the
direct transformation of the structures to the available
hardware resources.

The advantage of using our hybrid methodology is that
the DSE (see Figure 2 and Table 3) of the architecture of this
small cache takes a few seconds in the COTSon, while it takes
approximately four hours on a powerful workstation to
synthesize and perform the DSE with the HLS version of the
same architecture (right side of Figures 7 and 8).

In the next section, we will illustrate how, thanks to our
methodology, we were able to reduce significantly the DSE
cycles and development time of a relatively large project like
the AXIOM project, and produce reliable specification to be
implemented on the AXIOM board.

4.2.COTSonConfigurationandTiming. One more feature of
our environment, based on COTSon+MYDSE, is the ca-
pability of easily integrating the modelled components (i.e.,
the simple two-way set-associative cache of the previous
subsection). As we can see in Figure 9, we can build the
overall architecture by specifying how to integrate the
component in a higher level configuration file (“Level 2” in
Figure 9, the “MYDSE” configuration file).

In particular, we define the following simple syntax: the
character “− ” is the link between two architectural COTSon
blocks and the “+” character separates different links be-
tween such blocks. The architectural blocks are implicitly
defined, since they appear in the link specification. The “.”
character serves to replicate a set of architectural blocks,
which follow the “.” for m times, where, by default, “m” is the
number of cores. This is shown in the “listarch” variable of

Table 3: Comparison of different total DSE time of the classical design workflow for FPGAs (Figure 2-left) and our proposed methodology
(Figure 2-right).

Application HLS + Synthesis (hours) (Figure 2-left) Our framework (seconds) (Figure 2-right)
2-way cache 3 : 50 5
Blocked matrix multiplication (DF-Threads, matrix
size� 864, block size� 8, integer) 4 : 25 8

Fibonacci (DF-Threads, N� 35) 1 : 40 8

International Journal of Reconfigurable Computing 9



// basic cache -find implementation 
cacheLine∗ cache_find(uint64_t address) {

cacheLine∗ xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs= cache[address]; // get the set (xs)
for(int i=0; i< i<num_ways; i++){

if(xs->tag ==tag && xs->v_bit == 1 ) {
t_hit = cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss = cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

typedef struct {
uint64_t tag; 
bool v_bit, m_bit;
uint64_t u_bits;

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp (“find” function)

Vivado HLS cache_line.h

typedef struct {
uint64 tag;
uint1 v_bit, m_bit;
uint64 u_bits;

}cacheLine;

// basic cache-find implementation
cacheLine∗ cache_find (uint64 address) {

cacheLine∗ xs=NULL;
// get the tag
uint64 tag=cache.group_id(address);

// get the set (xs)
xs = cache.main(address);
for (int i=0; i<num_ways; i++) {

if (xs[i]->tag == tag && xs[i]->v_bit == 1) {
return xs[i];

}
}
return NULL; //null pointer (i.e., miss)

}

Vivado HLS cache_impl.cpp

From COTSon to 
Vivado HLS 

Figure 7: Example of the timing model of the cache “find” function, which is translated from the COTSon to the Vivado HLS. The
implementation of this function for both the COTSon (left) and Vivado HLS (right) environments is shown in the bottom part of the figure.

XT XS

X = address

31 7 6 5 2 1 0

25 1 XO
4

V0 M0 U0 TAG0 DATA0 V1M1 U1 TAG1 DATA1

WAY-0 WAY-1

H

Decoded multiplexer
(2 a 1)

25

Multiplexer
(16 to 1)

512

D
32

512

4

25

512

= =

M = Modify bit
U = LRU bits ([log2 (A)])

// basic cache-find implementation 
cacheLine∗ cache_find(uint64_t address) {

cacheLine∗ xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs= cache[address]; // get the set (xs)
for (int i=0; i< i<num_ways; i++) {

if (xs->tag ==tag && xs->v_bit== 1 ) {
t_hit= cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss= cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

// implementation of the least recently used policy
cacheLine∗ cache_find_lru(uint64_t address) {

cacheLine∗ xs= cache[address];
cacheLine∗ last_lru = xs[0];
int i=0; 
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits< last_lru->u_bits) last_lru = xs[i];
}
t_lru= cache.latency_lru(); //COTSon only
return last_lru;

}

typedefstruct {
uint64_t tag; 
bool v_bit,m_bit; 
uint64_t u_bits; 

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp

FSM
cache

controller

Figure 6: Example of the logic scheme of a two-way set-associative cache. Given the byte address X on 32 bits, in this example, the cache
indexes four 64-byte blocks (2 words in 2 sets). This implies that the last 6 bits are needed to select a byte inside the block: the first 25 bits of
the address (XT) are used for tag comparison and the remaining 1 bit (XS) is used for cache set indexing. The cache hit (signal H) is set if the
tag of the X is present in the cache at the specified index and if the valid bit is equal to one.

10 International Journal of Reconfigurable Computing



Figure 9: i.e., the part “l2-ic + l2-dc + ic-cpu + dc-cpu” will be
instantiated “m” times.

As depicted in Figure 3, at the higher level, we specify the
parameters in an even compact way, and we can indicate
several instances of such parameters so that MYDSE can
generate the design space points to be explored. In the
COTSon configuration, the MYDSE points will be assigned
to the parameter of the corresponding architectural element.
Moreover, we can specify the latencies of an architectural
block, which are used by its timing model for the execution
time estimation.

5. Generalization to the AXIOM Project
and Evaluation

The aim of the AXIOM project was to define a software/
hardware architecture configuration, to build scalable em-
bedded systems, which could allow a distributed compu-
tation across several boards by using a transparent scalable
method such as the DF-Threads [20–22].

In order to achieve this goal, we rely on RDMA capa-
bilities and a full operating system to interact with the OS
scheduler, memory management, and other system re-
sources. Following our methodology, we included the effects
of all these features, thanks to the COTSon+MYDSE full-
system simulation framework. We will present in the next
subsection the results that we were able to obtain through
this preliminary DSE phase reasonably quickly.

After the desired software and hardware architecture was
selected in the simulation framework, we started the mi-
gration to the physical hardware: we had clear evidence that
we needed at least the following features:

(i) Possibility to exchange rapidly data frames via
RDMA across several boards: this could be imple-
mented in hardware, thanks to the FPGA high-speed
transceivers;

(ii) Possibility to accelerate portions of the application
on the programmable logic (PL), not only on one
board but also on multiple FPGA boards: this could

// implementation of the least recently used policy
cacheLine∗ cache_find_lru (uint64_taddress) {

cacheLine∗ xs= cache[address];
cacheLine∗ last_lru = xs[0]; //get LRU-line 
int i=0;
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits< last_lru->u_bits) last_lru = xs[i];
}
t_lru = cache.latency_lru(); //COTSon only
return last_lru;

}

COTSon cache_impl.cpp (“LRU” function) Vivado HLS cache_impl.cpp

From COTSon to Vivado HLS

// implementation of the least recently used policy
cacheLine∗ cache_find_lru(uint64 address) {

cacheLine∗ xs = cache.main(address);
cacheLine∗ last_lru = xs[0]; //get LRU-line 
int i=0;
for (++i; i < num_ways; i++) {

if (xs[i]->u_bits< last_lru->u_bits) last_lru =xs[i];
}
return last_lru;

}

Figure 8: Example of translation of the timing model of the LRU (least recently used) function from the COTSon (left side) to the Vivado
HLS (right side).

listarch=“mem-bus.l2-ic+l2-dc+ic-cpu+dc-cpu”

Becomes…

dc

cpu

Dot syntax (“.”) implies “m” 
replications of the next blocks

ic

l2

bus 

mem 

MYDSE
architecture 
description 

level 2

…

m times

cpu0 cpu1 cpum–1

Figure 9: Level 2 architecture description of the cache model in COTSon by using the MYDSE toolset. In this design, the CPU is directly
connected to both an Instruction Cache (“ic”) and a Data Cache (“dc”). The “ic” and “dc” caches are then connected to another level of
caching, the L2 cache (“l2”), which is connected to the main memory (“mem”) through the “bus.”

International Journal of Reconfigurable Computing 11



be implemented by providing appropriate network
interface IPs in the FPGA.

In this way, we preselected the basic features of the
AXIOM board (Figure 10-left) through the COTSon
framework and the MYDSE toolset. Then, once the DSE was
completed, we migrated the final architecture specification
with the Vivado HLS tool into the AXIOM distributed
environment (Figure 10-right).

The DF-Threads execution model is a promising
approach for achieving the full parallelism offered by
multi-core and multi-node systems, by introducing a
new execution model, which internally represents an
application as a direct graph named data-flow graph.
Each node of the graph is an execution block of the
application and a block can execute only when its inputs
are available [20].

5.1. Designing the AXIOM Software/Hardware Platform.
During the AXIOM project, we analyzed two main real-
world applications: Smart Video Surveillance (SVS) and
Smart Home Living (SHL) [50]. These applications are
very computationally demanding, since they require an-
alyzing a huge number of scenes coming from multiple
cameras located, e.g., at airports, home, hotels, or shop-
ping malls.

In these scenarios, we figured out that one of the
computationally intensive portions of those applications
relies on the execution of the matrix multiplication kernel.
For these reasons, the experiment results presented in this
section are based on the execution of the block matrix
multiplication benchmark (BMM) using the DF-Threads
execution model. The BMM algorithm is based on the
classical three nested loops, where a matrix is partitioned
into multiple submatrices, or blocks, according to the block
size.

As we generalized the methodology described in the
previous section to the AXIOM project [10–12], we were able
to experiment on the simulator our DF-Threads execution
model [15, 20, 21] before spending time-consuming de-
velopment on the reconfigurable hardware. We show here
some evaluations that are possible within the MYDSE and
COTSon framework once applied to the test case of the DF-
Threads modelling. In such a test case, we aim to understand
the impact of architectural and operating system choices on
the execution time of our novel data-flow execution model
[21].

Thanks to the MYDSE, we were also able to easily explore
different architecture parameters, e.g., for the L2 cache size
(from 2 to 1024 kB) and for the number of nodes/boards
(ranging from one to four). Thus, in the case of deploying a
soft processor and its peripherals on the FPGA, the designer
can choose safely a well-optimized configuration for, e.g., the
L2 cache size.

Moreover, we choose different operating system (OS)
distributions to analyze the overhead produced by the OS in
a target architecture: four different Ubuntu Linux distri-
butions have been used: Karmic (or Ubuntu 9.10–label
“karmic64”), Maverick (or Ubuntu 10.10–label “tfxv4”),

Trusty (or Ubuntu 14.04–label “trusty-axmv3”), and Xenial
(or Ubuntu 16.04–label “xenv0”). The different architecture
configurations used in the experimental campaign are
summarized in Table 4.

The simulation framework permits exploring the exe-
cution of our benchmark easily, while we vary, e.g., the
number of nodes (1, 2, 4), the OS. The input size of the shown
example is fixed (matrix size� 512 elements).

As can be seen in Figure 11, there is a large variation of
the kernel cycles between “xenv0” (Linux Ubuntu 16.04) and
the other three Linux distributions. This indicated us to
focus attention on the precise configuration of many dae-
mons that run in the background and that may affect the
activity of the system. While doing tests directly on the
FPGA, it would not have been easy to understand that most
of the time taken by the execution was actually absorbed by
the OS activity: a designer could have taken it for granted or
he/she could have not even had the possibility of changing
the OS distribution for testing the differences, since the
whole FPGA workflow is typically oriented to a fixed de-
cision for the OS (e.g., Xilinx Petalinux). The situation is
even worse for cache parameters or for the number of cores,
since the designer might be forced to choose a specific
configuration.

However, the important information for us was to
confirm the scaling of the DF-Threads model, while we
increase the number of nodes/boards. We can observe that
the number of cycles is decreasing almost linearly–except the
case of “xenv0,” which is decreasing sublinearly–when we
use two and four nodes compared to the case of a single
board/node (Figure 12). Moreover, we were able to un-
derstand the size of the cache that we should use in the
physical system in order to properly accommodate the
working set of our applications.

We further explored the reasons why we can obtain a
good scaling in the execution time with more nodes by
analyzing the behaviour of L2 cache miss rate (Figures 13
and 14).

Again, this type of measurement was conveniently
done in the simulator, while it is more difficult to perform
on the Xilinx Vivado HLS model, especially when it comes
to design a soft processor and choose the best configu-
ration (e.g., size of L2 cache, and OS). In particular, we
varied again the number of nodes (1, 2, and 4), the OS
distribution as before, and the cache size for L2 with larger
values (64 KiB, 256 KiB, and 1024 KiB, to allow a wider
range of exploration of the L2 cache). As we can see from
Figure 14, the L2 cache miss rate is decreasing for all OS
distributions while we vary the number of nodes, thus
confirming that this is one of the main factors of the
improvement of the execution time. Moreover, we can
analyze which OS distribution leads to best performance.
For example, the “xenv0” produces a huge amount of
kernel activity during the computation (Figure 11).
However, the combined effect of the kernel activity
(Figure 11) and the average data latency (Figure 15)–
considering L1, L2, and L3 caches–may affect the total
execution time (Figure 12) quite heavily. Thanks to this
preliminary DSE, we found that the OS distribution with

12 International Journal of Reconfigurable Computing



the best trade-off between memory accesses and kernel
utilization is the “trusty-axmv3.”

Figure 16 shows our evaluation setup of two AXIOM
boards interconnected via USB-C cables, without the need of
an external switch. By using synergistically our framework
and Vivado toolchain, we synthesized the DF-thread exe-
cution model on programmable logic (PL). Table 5 reports
resource utilization of the key components of the imple-
mented design on PL in order to perform BMM benchmark
across two AXIOM boards.

5.2. Validating the AXIOM Board against the COTSon
Simulator. An important step in the design is to make sure

that the design in the physical board is matching the system
that was modelled in the COTSon simulator. As an ex-
ample, we show in Figure 17 the execution time in the case
of the BMM and RADIX-SORT benchmarks, when run-
ning on the simulator and on the AXIOM board, while we
vary the input data size. The timings are matching closely,
thus confirming the validity of our approach. We scaled the
inputs in such a way that the number of operations doubles
from the left to right (input size). On the left (Figure 17), we
have the BMM benchmark, where the input size represents
the size of the square matrices, which are used in the
multiplication. On the right (Figure 17), we have the Radix-
Sort benchmark, where the input size represents the size of
the list to be sorted.

Table 4: COTSon architectural parameter.

Parameter Description

SoC 1 core connected by shared-bus, IO-bus, MC, high-
speed transceivers

Core 3GHz, in-order super-scalar

Branch predictor Two levels (history length� 14 bits, pattern history
Table� 16KiB, 8-cycle miss-prediction penalty)

L1 cache Private I-cache 32KiB, private D-cache 32KiB, 2
ways, 3-cycle latency

L2 cache Private 2, 8, 32, 64, 256, 1024KiB, 4 ways, 5-cycle
latency

L3 cache Shared 4MiB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main memory 1 GiB, 100-cycle latency
I-L1-TLB, d-L1-TLB 64 entries, direct access, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/read queues 200 Bytes each, 1-cycle latency

PL

Core
0

Core
1

Core
m–1

Node1/ board1

. . . 

PL

Core
0

Core
1

Core
m–1

Noden/boardn

. . . 

PS

PS

AXIOM board

Interconnects

SimNow node1

Core
0

Core
1

Core
m–1. . . 

COTSon mediator

DSE 
architecture 
translation

PL – COTSon timing model

PS - COTSon timing model

Core
0

Core
1

Core
m–1. . . 

PL – COTSon timing model

PS - COTSon timing model

SimNow noden

AXIOM distributed systemAXIOM evaluation platform

Figure 10: From COTSon Distributed System definition to AXIOM Distributed System by using the DSE tools. The processing system (PS),
the programmable logic (PL), and the interconnects of the AXIOM board are simulated and evaluated into the COTSon framework with the
definition of the respective timing models.

International Journal of Reconfigurable Computing 13



10

20

30

40

50

60

0

70

1 2 4
%

 o
f k

er
ne

l c
yc

le
s

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 11: Percentage of kernel cycles (over total number of cycles) in the COTSon framework when using the matrix multiplication benchmark
with 512 as the matrix size and 32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution
(“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). This DSE test permitted to
detect a much larger kernel activity of the “xenv0” distribution compared to the other three Linux distributions in both single-node and multiple-
node configurations.

1000

2000

3000

4000

5000

6000

0

7000

1 2 4

To
ta

l c
yc

le
s ×

10
E0

6

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 12: Total number of cycles in the COTSon framework when using the matrix multiplication benchmark with 512 as the matrix size and
32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution (“xenv0”�Ubuntu 16.04,
“karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). The DSE allows us to determine that the four Linux
distributions permit to obtain a good scalability when we increase the number of nodes. However, the “xenv0” confirms the worst performance
in terms of executed cycles due to the huge number of kernel cycles shown in Figure 11.

2
4
6
8

10
12
14
16

0

18

1 2
Nodes
64KiB 512KiB 1024KiB

4 1 2
Nodes

44 11 22
Nodes

44

D
at

a c
ac

he
 ac

ce
ss

 la
te

nc
y 

xenv0
karmic64

trusty-axmv3
tfx4

Figure 13: Evaluation of the data access latency in the COTSon framework when using the matrix multiplication benchmark by varying
cache size, number of nodes of the distributed system, and different Linux distribution (“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu 9.10,
“trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). The DSE shows that the data-cache access latency is almost similar in each
Linux distribution, but it is lowering when we increase the number of nodes. Thus, multiple-node configuration can be more convenient in
the DF-Threads execution model.

14 International Journal of Reconfigurable Computing



5

10

15

20

0

25

1 2 4

A
ve

ra
ge

 d
at

a a
cc

es
s l

at
en

cy

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 15: Average data latency in the COTSon framework when using the matrix multiplication benchmark with 512 as the matrix size and
32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution (“xenv0”�Ubuntu 16.04,
“karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). The data access latency of “xenv0” is improved
when we have more nodes. This improvement has less impact on total cycles (Figure 12) than the impact of kernel activity (Figure 11).

xenv0
karmic64

trusty-axmv3
tfx4

0.1

0.2

0.3

0.4

0.5

0

0.6

1 2 4 1 2 4 1 2 4

L2
 ca

ch
e m

iss
 ra

te

Nodes
64KiB 256KiB 1024KiB

Nodes Nodes

Figure 14: Evaluation of the L2-cache miss rate in the COTSon framework when using the matrix multiplication benchmark by varying
cache sizes, number of nodes of the distributed system, and different Linux distribution (“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu
9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). The Linux distribution “xenv0” shows the lowest L2 miss rate compared
to the other Linux distributions for all the presented configurations.

USB-C Cable
(custom lossless protocol)

4 high-speed
ports

(direct access to
FPGA

transceivers)

2 AXIOM-boards 
in a cluster

Figure 16: Two AXIOM boards interconnected up to 18Gbps via inexpensive USB-C cables. The AXIOM board is based on a Xilinx Zynq
Ultrascale + ZU9EG platform, four high-speed ports (up to 18Gbps), an Arduino socket, and DDR4 extensible up to 32GiB. As can be seen
from the picture, we do not need any external switch but just two simple USB-C cables to connect the two systems.

Table 5: Resource utilization of the key components of the implemented programmable logic on ZU9EG FPGA (AXIOM board).

Component LUT LUTRAM FF BRAM GT
DF-Threads 10.03 1.8 6.01 5.43 —
NIC [4] 41.36 8.96 19.29 15.19 50

International Journal of Reconfigurable Computing 15



6. Conclusions

In this article, we presented our workflow in developing an
architecture that could be controlled by the designer in order
to match the desired key performance metrics. We found
that it is very convenient to use synergistically the Xilinx
HLS tools and the COTSon+MYDSE framework in order to
select a candidate architecture, instead of developing ev-
erything just with the HLS tools.

We illustrated the main features of the COTSon simu-
lator and the “MYDSE” toolset, and we motivated their
purpose in our simulation methodology. Thanks to the
“functional-directed” approach of the COTSon simulator,
we can define the architecture of any architectural com-
ponents (i.e., a cache) for an early DSE and migrate to HLS
only the selected architecture. Our DSE toolset facilitates the
modelling of architectural components in the earlier stages
of the design.

We have modified the classical HLS tool flow, by
inserting a modelling phase with an appropriate simulation
framework, which can facilitate the architecture definition
and reduce significantly the developing time.

We described the simple example of defining a two-way
set-associative cache through the timing model of COTSon.
Afterwards, we illustrated the code migration from COTSon
to Xilinx HLS tool, showing that the timing description
made in the COTSon simulator is conveniently close to the
final HLS description of our architecture. However, syn-
thesizing of the HLS description of the cache design in
Vivado HLS takes about four hours on a powerful work-
station, while we were able to simulate it in COTSon in a few
seconds.

By using the workflow presented in this article, we were
able to successfully prototype a preliminary design of our
data-flow programming model (called the DF-Threads) for a

reconfigurable hardware platform leading to the AXIOM
software/hardware platform, a real system that includes the
AXIOM board and a full software stack of more than one
million lines of codes made available as open source (https://
git.axiom-project.eu/).

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The author(s) declare(s) that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was partly funded by the European Commission
through projects AXIOM H2020 (id. 645496), TERAFLUX
(id. 249013), and HiPEAC (id. 779656).

References

[1] S. Mittal and J. S. Vetter, “A survey of CPU-GPU hetero-
geneous computing techniques,” ACM Computing Surveys,
vol. 47, no. 4, pp. 1–35, 2015.

[2] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and
L. Benini, “An integrated open framework for heterogeneous
MPSoC design space exploration,” in Proceedings of the De-
sign Automation and Test in Europe Conference, pp. 1145–
1150, Munich, Germany, March 2006.

[3] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan,
“Heterogeneous chip multiprocessors,” Computer, vol. 38,
no. 11, pp. 32–38, 2005.

[4] D. Theodoropoulos, S. Mazumdar, E. Ayguade et al., “The
AXIOM platform for next-generation cyber physical

256

512

1024

2048

4096

128

8192

200 252 320 400 504

Ex
ec

ut
io

n 
tim

e (
s)

Input size

BMM benchmark validation

AXIOM-board
COTSon

(a)

AXIOM-board
COTSon

256

512

1024

2048

4096

128

8192

360000 686000 1310000 2510000 4800000

Ex
ec

ut
io

n 
tim

e (
s)

Input size

RADIX benchmark validation 

(b)

Figure 17: Validation of the execution time of the simulator against the AXIOM board. We used the blocked matrix multiplication (BMM)
and Radix-Sort benchmarks with different sizes (weak scaling). The results on the actual board match closely the simulations.

16 International Journal of Reconfigurable Computing

https://git.axiom-project.eu/
https://git.axiom-project.eu/


systems,” Microprocessors and Microsystems, vol. 52,
pp. 540–555, 2017.

[5] R. Dimond, S. Racaniere, and O. Pell, “Accelerating large-
scale HPC applications using FPGAs,” in Proceedings of the
2011 IEEE 20th Symposium on Computer Arithmetic,
pp. 191-192, Tuebingen, Germany, July 2011.

[6] A. Portero, Z. Yu, and R. Giorgi, “TERAFLUX: exploiting
tera-device computing challenges,” Procedia Computer Sci-
ence, vol. 7, pp. 146-147, 2011.

[7] R. Giorgi, R. M. Badia, F. Bodin et al., “TERAFLUX: har-
nessing dataflow in next generation teradevices,” Micropro-
cessors and Microsystems, vol. 38, no. 8, pp. 976–990, 2014.

[8] S. Wong, A. Brandon, F. Anjam et al., “Early results from
ERA—embedded reconfigurable architectures,” in Pro-
ceedings of the 2011 9th IEEE International Conference on
Industrial Informatics, pp. 816–822, Lisbon, Portugal, July
2011.

[9] S. Wong, L. Carro, M. Rutzig et al., “ERA—embedded
reconfigurable architectures,” in Reconfigurable Computing,
pp. 239–259, Springer, Berlin, Germany, 2011.

[10] R. Giorgi, “AXIOM: A 64-bit reconfigurable hardware/soft-
ware platform for scalable embedded computing,” in Pro-
ceedings of the 2017 6th Mediterranean Conference on
Embedded Computing (MECO), pp. 1–4, Bar, Montenegro,
June 2017.

[11] R. Giorgi, M. Procaccini, and F. Khalili, “AXIOM: a scalable,
efficient and reconfigurable embedded platform,” in Pro-
ceedings of the Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), Florence, Italy, September 2019.

[12] D. Theodoropoulos, D. Pnevmatikatos, C. Alvarez et al., “The
AXIOM project (agile, extensible, fast I/O module),” in
Proceedings of the 2015 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 262–269, Samos, Greece, July 2015.

[13] R. Giorgi, F. Khalili, and M. Procaccini, “Energy efficiency
exploration on the ZYNQ ultrascale+,” in Proceedings of the
30th International Conference on Microelectronics (ICM),
Sousse, Tunisia, December 2018.

[14] SARC, http://www.sarc-ip.org.
[15] R. Giorgi, Z. Popovic, and N. Puzovic, “Implementing fine/

medium grained TLP support in a many-core architecture,” in
Proceedings of the International Workshop on Embedded
Computer Systems, pp. 78–87, Ancona, Italy, March 2009.

[16] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and
D. Ortega, “COTSon: infrastructure for full system simula-
tion,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1,
pp. 52–61, 2009.

[17] R. Giorgi, M. Procaccini, and F. Khalili, “Analyzing the impact
of operating system activity of different linux distributions in
a distributed environment,” in Proceedings of the 2019 27th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 422–429, Pavia,
Italy, February 2019.

[18] Xilinx, https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.
pdf.

[19] R. Giorgi, M. Procaccini, and F. Khalili, “A design space
exploration tool set for future 1 k-core high-performance
computers,” in Proceedings of the Rapid Simulation and
Performance Evaluation: Methods and Tools on–RAPIDO’19,
Valencia, Spain, January 2019.

[20] R. Giorgi and P. Faraboschi, “An introduction to DF-Threads
and their execution model,” in Proceedings of the 2014 In-
ternational Symposium on Computer Architecture and High

Performance Computing Workshop, pp. 60–65, Florianópolis,
Brazil, October 2014.

[21] R. Giorgi, “Exploring dataflow-based thread level parallelism
in cyber-physical systems,” in Proceedings of the ACM In-
ternational Conference on Computing Frontiers–CF’16,
pp. 295–300, Como, Italy, May 2016.

[22] R. Giorgi, “Scalable embedded computing through recon-
figurable hardware: comparing DF-Threads, cilk, openmpi
and jump,” Microprocessors and Microsystems, vol. 63,
pp. 66–74, 2018.

[23] J. Chen, M. Annavaram, and M. Dubois, “SlackSim,” ACM
SIGARCH Computer Architecture News, vol. 37, no. 2,
pp. 20–29, 2009.

[24] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an in-
frastructure for computer system modeling,” Computer,
vol. 35, no. 2, pp. 59–67, 2002.

[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann et al., “Mul-
tifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” ACM SIGARCH Computer Architecture
News, vol. 33, no. 4, pp. 92–99, 2005.

[26] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev,
“MPTLsim: a simulator for X86 multicore processors,” in
Proceedings of the 46th ACM/IEEE Design Automation
Conference, pp. 226–231, San Francisco, CA, USA, July 2009.

[27] A. Canis, J. Choi, M. Aldham et al., “LegUp: high-level
synthesis for FPGA-based processor/accelerator systems,” in
Proceedings of the 19th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pp. 33–36, Mon-
terey, CA, USA, February 2011.

[28] C. Pilato and F. Ferrandi, “Bambu: a modular framework for
the high level synthesis of memory-intensive applications,” in
Proceedings of the 2013 23rd International Conference on Field
Programmable Logic and Applications, pp. 1–4, Porto, Por-
tugal, September 2013.

[29] P. Coussy, C. Chavet, P. Bomel et al., “GAUT: a high-level
synthesis tool for DSP applications,” in High-Level Synthesis,
pp. 147–169, Springer, Berlin, Germany, 2008.

[30] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu,
and S. Vassiliadis, “DWARV: delftworkbench automated
reconfigurable VHDL generator,” in Proceedings of the 2007
International Conference on Field Programmable Logic and
Applications, pp. 697–701, Amsterdam, The Netherlands,
August 2007.

[31] Cadence, https://www.cadence.com/content/cadence-www/
global/en_US/home/tools/digital-design-and-signoff/
synthesis/stratus-high-level-synthesis.html.

[32] Intel, https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/hls/ug-hls/pdf.

[33] Xilinx, https://www.xilinx.com/products/design-tools/software-
zone/sdsoc.html.

[34] Xilinx, https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html.

[35] J. Choi, S. Brown, and J. Anderson, “From software threads to
parallel hardware in high-level synthesis for FPGAs,” in
Proceedings of the 2013 International Conference on Field-
Programmable Technology (FPT), pp. 270–277, Kyoto, Japan,
December 2013.

[36] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the International Symposium on Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization,
p. 75, Palo Alto, CA, USA, March 2004.

[37] ACE CoSy, http://www.ace.nl.

International Journal of Reconfigurable Computing 17

http://www.sarc-ip.org
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls/pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls/pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.ace.nl


[38] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A DSL
compiler for accelerating image processing pipelines on
FPGAs,” in Proceedings of the 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT),
pp. 327–338, Haifa, Israel, March 2016.

[39] A. Lotfi and R. K. Gupta, “ReHLS: resource-aware program
transformation workflow for high-level synthesis,” in Pro-
ceedings of the 2017 IEEE International Conference on Com-
puter Design (ICCD), pp. 533–536, Orlando, FL, USA,
November 2017.

[40] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and
M. D. Santambrogio, “A unified backend for targeting FPGAs
from DSLs,” in Proceedings of the 2018 IEEE 29th In-
ternational Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), pp. 1–8, Cornell Tech, NY,
USA, July 2018.

[41] J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: a dis-
tributed parallel simulator for multicores,” in Proceedings of
the Sixteenth International Symposium on High-Performance
Computer Architecture, pp. 1–12, San Antonio, TX, USA,
February 2010.

[42] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: towards real-time
hypervisor scheduling in Xen,” in 2011 Proceedings of the
Ninth ACM International Conference on Embedded Software
(EMSOFT), pp. 39–48, Taipei, Taiwan, October 2011.

[43] A. Portero, A. Scionti, A. Yu et al., “Simulating the future kilo-
x86-64 core processors and their infrastructure,” in Pro-
ceedings of the 45th Annual Simulation Symposium, pp. 1–9,
Orlando, FL, USA, March 2012.

[44] C.-K. Luk, R. Cohn, R. Muth et al., “Pin,” ACM SIGPLAN
Notices, vol. 40, no. 6, pp. 190–200, 2005.

[45] R. Giorgi, “Exploring future many-core architectures: the
TERAFLUX evaluation framework,” in Advances in Com-
puters, vol. 104, pp. 33–72, Elsevier, Amsterdam, Netherlands,
2017.

[46] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling,” in Proceedings of the 30th
Annual International Symposium on Computer Architecture
(ISCA ’03), pp. 84–97, San Diego, CA, June 2003.

[47] R. Ierusalimschy, W. Celes, and L. H. de Figueiredo, “The
evolution of lua,” 2005.

[48] S. Windh, X. Ma, R. J. Halstead et al., “High-level language
tools for reconfigurable computing,” Proceedings of the IEEE,
vol. 103, no. 3, pp. 390–408, 2015.

[49] D. D. Gajski, N. D. Dutt, A. C. H. Wu, and S. Y. L. Lin,
High—Level Synthesis: Introduction to Chip and System De-
sign, Springer Science & Business Media, Berlin, Germany,
2012.

[50] R. Giorgi, N. Bettin, P. Gai, X. Martorell, and A. Rizzo,
“AXIOM: a flexible platform for the smart home,” in Com-
ponents and Services For IoT Platforms, pp. 57–74, Springer,
Berlin, Germany, 2017.

18 International Journal of Reconfigurable Computing



It is very important to confirm the author(s) last and first names in order to be displayed correctly
on our website as well as in the indexing databases:

Author 1
Given Names: Roberto
Last Name: Giorgi

Author 2
Given Names: Farnam
Last Name: Khalili

Author 3
Given Names: Marco
Last Name: Procaccini

It is also very important for each author to provide an ORCID (Open Researcher and Contributor ID). ORCID
aims to solve the name ambiguity problem in scholarly communications by creating a registry of persistent unique
identifiers for individual researchers.

To register an ORCID, please go to the Account Update page (http://mts.hindawi.com/update/) in our Manuscript
Tracking System and after you have logged in click on the ORCID link at the top of the page. This link will take you
to the ORCID website where you will be able to create an account for yourself. Once you have done so, your new
ORCID will be saved in our Manuscript Tracking System automatically.

Author(s) Name(s)

http://mts.hindawi.com/update/

