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A Mathematical Model of the Pneumatic Force Sensor
for Robot-assisted Surgery

Chiara Gaudeni1 and Domenico Prattichizzo1,2

Abstract— Restoring the sense of touch in robotic surgery is
an emerging need several researchers tried to address. In this
paper, we focused on the slave side proposing a pneumatic sen-
sor to estimate contact forces occurring during the interaction
between surgical instruments and anatomical areas. It consists
of a tiny pneumatic balloon, which, after being inflated, appears
near the tip of the instrument during the measurement phase
only. This paper presents a mathematical method relating the
intensity of the contact force to the variation of pressure inside
the balloon. The latter was modeled as a spherical elastic mem-
brane, whose behavior during contact was characterized taking
into account both the deformation of the membrane and the
compression of the contained gas. Geometrical considerations
combined with an energetic approach allowed us to compute
the force of interest. The effectiveness of our sensing device has
been confirmed by experimental results, based on comparison
with a high-performance commercial force sensor.

I. INTRODUCTION

Over the past 20 years, robot-assisted minimally invasive
surgery (RMIS) has been increasingly developed with the aim
of improving precision, reducing errors and incision size, and
facilitating recovery after surgery [1]. However, the absence of
haptic feedback is still a limitation. During open procedures,
clinicians have direct access to anatomical surfaces and can
investigate manually their consistency to detect abnormal
tissues [2]. RMIS systems have hampered those fundamental
palpation procedures because of the physical separation
between master and slave side. Interaction forces during
robotic surgery can only be estimated by observing the
deformation of the tissue on the images of the endoscopic
cameras [3], but compensation by visual feedback does not
prevent from inaccurate discrimination. Many studies pointed
out the clear benefits of haptic feedback restoration in several
clinical applications, e.g. localization of hard inclusions or
vessels, soft tissue grasping, manipulation and incision, needle
driving [4], and also the training phase of robotic surgeons [5].

It has been demonstrated that restoring the haptic capability
in RMIS contributes to improving accuracy and safety [6].
For this reason, a great effort has been made to develop novel
interfaces able to provide haptic feedback to the surgeon,
but far fewer works exist regarding the design of sensing
systems. Indeed, any attempts to measure or estimate forces
applied during robotic surgery had to face technical challenges.
Many researchers used commercially available force sensors,
which are very effective to measure force accurately, but
not always suitable for RMIS due to constraints in terms of
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Fig. 1. Working principle and sketch of the pneumatic sensor: undeformed
(dashed) and deformed (green) states of the membrane.

size, cost, biocompatibility and sterilizability [7]. Another
research direction is to estimate mechanical properties and
interaction forces by tracking tissue deformation, for example
using deformable active contours to observe changes over
time [8]. This method, however, requires the knowledge of
physical parameters of human organs that are not always
available. Other approaches of force measurements used
light modulation techniques [9], elastomer elements [10],
or combination of vision and mechanics of the spring [11].

In this paper, we present a new pneumatic-based method
to estimate contact forces between instruments and tissues
during robotic surgery. We pursued the idea of using a tiny
pneumatic balloon developed in an earlier paper [12], by
proposing a more general mathematical model.

II. THE PNEUMATIC SENSOR

This work extends the proof of concept presented in [12],
in which we developed a pneumatic force sensor taking
advantage of an air-filled balloon. The main idea is presented
in Fig. 1. An elastic and sphere-shaped membrane is placed
in a tiny hollow inside the surgical instrument, very close to
the tip. By inflating this pneumatic balloon, it goes out from
its cavity only when force measurement is required. Once it
comes into contact with the human tissue, a change in the air
pressure inside the balloon is registered by a pressure sensor.
This value is proportional to the norm of the contact force.

We consider this approach beneficial in several ways.
Primarily, the use of disposable materials already widespread
in surgery, such as latex, polyurethane, or silicone, avoids
sterilization and biocompatibility issues [13]. Another funda-
mental aspect is cost reduction. Since most of the surgical
tools in RMIS are disposable, the sensing system must not
represent a significant cost. Our device complies with this
requirement because the pressure sensor and the electronics
can be located out of the operational workspace and do
not have to be replaced after every operation. Indeed, the
only part that enters the human body is the membrane and



measurement information is transferred by means of a gas to
the sensitive components. Another advantage is the possibility
to set the inflating pressure so as to have a sensor with
different stiffnesses depending on the anatomical area. It is
important to have the balloon always more compliant than the
tissue so that the deformation caused by the contact occurs in
the sensing system only. The location of the pneumatic sensor
represents an additional benefit: it is hidden inside the body
of the instrument when force measurement is not needed, so
it does not limit the surgical workspace. Furthermore, the
elastic membrane adapts to different shapes of tissues and
can be easily miniaturized.

In this paper, we propose a novel model characterizing the
sensor’s behavior. The main outcome of our first work [12]
was that the norm of the contact force and the resultant
increase of the pressure inside the balloon were related
through a quadratic function experimentally detected. The
coefficients within this relation depended on the value of
the pressure the balloon had been inflated to. Even though
the experimental relation identified in this earlier paper was
suitable to estimate the contact force, we believe that a
mathematical model is necessary for further development
of our sensor. Thanks to a model, calibration is not needed
anymore each time size or material of any components of
the pneumatic circuit change.

III. A MATHEMATICAL MODEL

To derive the mathematical model we assumed that:
• the considered pressure range allows us to treat the

behavior of the membrane using linear elasticity theory,
since deformations are reversible and relatively small;

• the shape of the inflated balloon is a sphere, whose
radius is known for each value of inflating pressure;

• the tissue of interest is always stiffer than the sensor
and is considered to be flat (with a radius of curvature
much bigger than the radius of the balloon).

The contact between the pneumatic balloon and the human
tissue was modeled as the one between a deformable,
homogeneous, elastomeric, spherical membrane and a solid.
Fig. 1 shows the membrane before and after the contact.

The balloon is initially inflated with a certain overpressure
of gas ∆Pi, which is the difference between the internal
pressure Pi and the atmospheric pressure P0. Therefore, it
is characterized by a radius Ri and a membrane thickness
h, both proportional to ∆Pi. After the contact, due to the
compression of the internal gas and the elasticity of the
membrane, the pneumatic balloon adopts the shape of a
sphere characterized by a wider radius R f > Ri, with two
flattened areas. We supposed these two contact surfaces are
equivalent. The balloon balances the increased pressure Pf by
stretching, increasing surface area and diminishing h. Since
internal pressure is equally distributed in the whole circuit,
the contact force we aim to compute is

F = ∆Pf πa2 (1)

with a the radius of the circular contact surface and ∆Pf the
difference between Pf and P0. Defining as d the deformation

as depicted in Fig. 1, the contact radius a is
√

R f
2− (Ri−d)2.

Since ∆Pf is measured, the only unknowns are d and R f .

A. State of the art in modeling deformation of spheres

Lulevitch et al. evaluated the contact force leading to
deformation of microcapsules using an energetic method
and the assumption of constant volume before and after the
contact, reasonable only for small deformations. The total
reaction force proposed in their paper has two components
(stretching and bending) and reads [14]:

F = Fstr +Fbend =
2πEhd3

(1− v)Ri
2 +

π√
2

Eh2
√

d
Ri

(2)

where E is Young’s modulus and v is Poisson’s coefficient of
the membrane. In our application, for deformations leading
to a small reduction of the volume, we might neglect the
compression of the balloon and assume to be in the same
conditions described in [14]. An approach to compute the
force of interest consists in equalizing (2) to (1). The two
unknowns in this equation are d and R f , but, from volume
conservation, R f could be approximated to Ri +d2/(2Ri) [14].

Shanahan [15] proposed another formula to compute the
difference between R f and Ri, knowing Pf and Pi:

∆R =
R2

i (1− v)(Pf −Pi)

2Eh−Ri(1− v)(Pf −Pi)
(3)

Also his work is limited to small deformations, but it is not
based on volume conservation. Thus, another option is to use
(3) in the computation of the contact radius a and equalize
the contact force in (1) and (2). Since (2) has not been
obtained from simplifications based on volume conservation,
the computation takes into account the variation of the volume
of the balloon. Both these reasonings are effective, but for
larger deformations the assumptions at their roots are no
longer valid. For this reason, we studied a new mathematical
method taking into account also the variation of volume
due to the contact. The approach proposed in this paper is
based on the elasticity theory combined with the evaluation
of compression of the gas.

B. Energetic approach

The contact force we aim to estimate both deforms the
membrane and compresses the gas contained within it. Thus,
the contributions influencing the force are the stretching and
the bending of the membrane, together with the compression
force. The stretching energy is

Estr =
h
2

∫
σε dS

where ε is the two-dimensional strain tensor, σ is the two-
dimensional stress tensor, and the integration is over the
balloon’s surface. The thickness of an inflated balloon depends
on its radius. Since the volume of the membrane itself
(4πR2h) remains essentially constant [15], the thickness is
(h0R0

2)/Ri
2, where R0 and h0 are the radius and the thickness

of the deflated membrane. We supposed that h remains
constant during the compression. Being an isotropic spherical
membrane, the relation between stress and strain tensors
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Fig. 2. Sketch of membrane while stretching. The pink area indicates the
contribution of the spherical cap in low pressure cases.

is σ = (Eε)/(1− v). To estimate the stretching energy, we
made two different evaluations.

For small deformations, from the assumption that the
deformed balloon has a spherical shape too, the strain is
ε = (R f −Ri)/Ri and the stretching energy corresponds to

Estr ≈
4Ehπ

(1− v)
(R f −Ri)

2 (4)

Instead, to compute the stretching energy for larger defor-
mations, we assumed that it was reasonable to split the two
contributions of i) the spherical caps and ii) the remaining
surface of the sphere, as depicted in Fig. 2. We supposed that
the two spherical caps stretch to become the two flat contact
areas (pink). Defining as s half the length of the cap’s arc,
the strain is ε = (a− s)/s. To simplify the computation, s
can be approximated to the chord

√
2Ri d. Apart from the

spherical caps, the balloon’s surface stretches increasing the
radius of the sphere. The resulting stretching energy is

Estr ≈
4Ehπ

(1− v)

[(
R f −Ri

Ri

)2
(R2

i −Rid)+
(

a− s
s

)2
(Rid)

]
(5)

To distinguish between small and large deformations, we
analyzed the initial inflating pressure value. At the same
exerted force, higher pressure balloons are subject to a smaller
indentation, and thereby a smaller contact area. Thus, if the
inflating pressure value is higher than a certain threshold, we
can assume that the balloon maintains a spherical shape. If it
is smaller than the threshold, the contribution of the final flat
surfaces to the stretching energy is not negligible anymore.
In this case, the large contact areas are supposed to be given
from the stretching of the spherical caps.

The contribution of the bending to the whole elastic energy
is negligible for a thin membrane, except near the edge of
the contact area. An estimation of the bending energy can be
made treating the membrane locally using beam theory [16].
Then, the elastic energy of bending is

Ebend =
E I
2

hL
ρ2 (6)

where I = h3/12 is the second moment of area of ’beam’
cross-section, L = 2π a is the length of the contact circle,
and ρ is the local radius of curvature, of order h/θ , with
θ the contact angle. Manipulating (6) and approximating
(θ ≈ sinθ = a/R f ), the bending energy is

Ebend =
E h2 π

12
a3

R f
2

C. Compression of the gas

Together with the elastic energy of the membrane, we
considered also the work related to the compression of the

internal gas. Since it is assumed to be ideal, the increase in
free energy due to compression is

Ecompr =−
∫ V f

Vi

∆P dV =−
∫ V f

Vi

(
Pi Vi

V
−P0

)
dV

=−Pi Vi ln
Vf

Vi
+P0 (Vf −Vi)

(7)

with Vi and Vf the volume of the whole circuit before and
after contact, respectively. Vi is given by the sum of the
volume of all the pipes, defined as Vc, and the volume of the
sphere of radius Ri, defined as Vsi. The balloon after contact is
modeled as a sphere of radius R f (Vs f ), without two symmet-
rical spherical caps. Thus, Vf =Vc +Vs f −2πH2(R f −H/3),
where H = d +∆R is the height of the spherical cap. Pressure
variation involves the whole pneumatic circuit. Hence, the
contact geometry can not be described by looking only at a
close neighborhood of the contact surface. However, Vc is
a constant value and it should be computed once for every
identical systems.

D. Contact force

The total reaction force, applying Castigliano’s theorem, is

F =
∂

∂ (2d)
(Estr +Ebend +Ecompr) (8)

where the unknowns are the deformation d and the new
incremented radius R f . To find a relation between them, the
ideal gas law can be used

Vc +Vsi =
Pf

Pi
[Vc +Vs f −2πH2(R f −

H
3
)] (9)

obtaining R f as a function of d. Then, equalizing (8) to (1)
we obtain an equation where d is the only unknown. Solving
this equation, we can compute the contact radius a and finally
the reaction force from (1).

IV. MODEL VALIDATION

A. System description

The balloon we chose was a latex membrane 0.2 mm
thick, embedded in a 3D-printed housing made of ABSPlus
(Stratasys Inc., USA), including an opening to let the sensor
come out. Natural rubber latex typically has a Poisson’s
coefficients of 0.5 meaning the membrane keeps a constant
volume while being deformed, and a Young’s modulus of
2 MPa [17]. The pneumatic circuit was composed of an air
compressor Ciao 25/185 (FNA, IT), two solenoid valves
L172 2/2 G1/8 (Asco Numatics Sirai, IT), a differential
pressure sensor MPXV5050DP (Freescale Semiconductor,
USA), an Arduino UNO board combined with a 4 Relays
Shield (Arduino, IT), and some pipes and airtight fittings to
connect the different components. Vc was 12.68×103mm3.
To avoid blast air waves during the inflating phase, undesired
pressure variations, and sensor noise, the tank air compressor
was equipped with a pressure regulator, the couplings were
leakproof, and pressure sensor readings were processed
through a first order exponential filter. After giving the
desired pressure value as input to the system, the air flow
was controlled by two solenoid valves. The electronic board
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Fig. 3. Pneumatic circuit exploited in the experimental validation.
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Fig. 4. Empirical relationship between diameter of the balloon and inflating
pressure.

managed their opening to inflate, deflate or lock the circuit
when reached one of the two thresholds, corresponding to the
preset pressure value ± the hysteresis of 0.1 kPa. The latter
was introduced to prevent malfunction due to oscillations
of the internal pressure when close to the chosen value. In
Fig. 3 the pneumatic circuit is shown. For the scope of this
paper, a simple prototype of the tool has been used.

To validate our method we conducted an experimental eval-
uation, comparing the estimation of the force performed by
our sensor with the measures of a high resolution commercial
one, the ATI Nano17 F/T sensor (ATI Industrial Automation,
USA), considered as ground truth. We implemented the
algorithm in MATLAB 2015b (MathWorks Inc., USA).

B. Experimental evaluation

First, the relationship between the inflating pressure ∆Pi and
the radius of the inflated balloon Ri had to be found. We car-
ried out a preliminary experiment measuring the balloon diam-
eter in 22 trials at different inflating pressures. To accurately
measure its value, we used a high-precision caliber (0.01 mm
res.) and a magnifying glass ensuring that the contact was not
affecting measurements. Then, data were interpolated to find
the relation Ri = (5.9695∆Pi

2 +44.652∆Pi)×10−3 +7.503.
In Fig. 4 the quadratic fitting is shown. The radius of the
deflated membrane R0 was 7.503 mm.

Then, an experiment was conducted to validate the method
explored in Section III. We performed 27 trials testing
different values of inflating pressure ∆Pi, limiting the possible
range to [4.95-11.45] kPa. For lower values, the membrane
is so deflated that its shape under deformation can not be
approximated to a sphere and its behavior is considered to

Fig. 5. Experimental procedure: the pneumatic sensor is manually pushed
toward the ATI F/T sensor, considered as ground truth.

be unpredictable. On the other hand, for higher values than
12 kPa, it starts expanding more easily, increasing quickly its
volume and leading to a reduction of the internal pressure.

The same procedure was repeated for each trial. At the
beginning, the operator set the desired pressure value to
be provided to the system. Starting from the first value of
the range, the initial pressure was increased by 0.25 kPa in
each trial. For each inflating pressure value, 12 subsequent
making/breaking contact actions with the ATI sensor were
carried out, for a total of 324 interactions. The balloon in
its housing was manually pushed toward the ATI, which
in turn was rigidly attached to a flat surface (see Fig. 5).
During real palpation the orientation of the sensing system
will not be constrained to be always perpendicular to the
anatomical surface. For this reason, we carried out manually
the experimental validation, taking into account all the
uncertainties due to the surgeon’s behavior. For each trial we
obtained a force profile as the ones depicted as examples at the
bottom of Figs. 6, representing the norm of the force measured
by the ATI. Although the norm corresponds approximately
to the force in the user’s movement direction, for the sake of
accuracy we preferred not to ignore the minimum components
in the other directions. The friction torque components at
the contact site were negligible. As well as the pressure, the
measurements collected by the ATI were processed through
a first order exponential filter.

At the top of Figs. 6 the data gathered by the differential
pressure sensor are depicted. For each contact action we
identified ∆Pi as the minimum value before the pressure
peak (yellow star), ∆Pf as the maximum (red star), and the
ground truth as the ATI force peak. Because of the aim of
the evaluation, i.e. validate the system in the most uncertain
environment, the time elapsed between two subsequent contact
actions has been chosen randomly. When faster movements
were executed, after breaking contact, the pressure inside
the balloon started decreasing without reaching the initial
inflating value, since a new contact occurred in the meanwhile.
Thus, for the sake of accuracy we did not approximate the
new ∆Pi as the inflating value, but it was measured for each
contact, and the correspondent Ri was computed again.

In the stretching energy computation, to distinguish the
two cases requiring (4) and (5) we used as threshold the
pressure value of 8.85 kPa, identifying the last two fifths of
the range. For higher inflating pressures, the variation of
volume with respect to the initial sphere is very small. This
value, computed as (1− Pi

Pf
)Vi/Vsi ranges from 0.01 to 0.18

(mean 0.095) for ∆Pi >8.85 kPa, while it reaches twice that
amount for lower pressures.
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Fig. 6. On the top, the pressure measured by Freescale MPXV5050DP. The yellow stars represent the ∆Pi values, while the red stars are the peak
values reached after contact ∆Pf. On the bottom, the norm of the force measured by the ATI. The first two figures are representative trials where contact
actions were executed at (a) low speed, (b) higher speed. For each contact action, the red dashes indicate the peak force values estimated by our sensor.
(c) Representative trial where the contact force was estimated during the transient also. For each contact action we obtained a whole force profile.
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V. RESULTS

A. Peak force estimation
The red dashes in Figs. 6a and 6b represent the estimated

peak force for each contact action. While the results in Fig. 6a
were obtained moving slowly the sensor, in Fig. 6b a case
where Ri changes time to time is shown. Also in this second
condition, our system achieved promising results. The mean
errors normalized over the force ground truth are (a) 2.88%
and (b) 6.19%. Considering the whole experiment, the mean
error is 9.14%. We excluded from the evaluation those trials
in which the contact did not result in an appreciable variation
of pressure (Pf −Pi <0.5 kPa). In Fig. 7 the mean percentage
errors divided among five pressure subsets are depicted. The
last two columns have been colored in blue to highlight
they have been obtained following a different procedure
for the stretching energy computation. The accuracy of our
estimations clearly decreases at about ∆Pi <6 kPa.

B. Comparison to other methods
We evaluated the results obtained applying Lulevich’s

method (Section III-A) to those trials where the assumptions
of volume’s conservation and small deformations are reason-
able (∆Pi >8.85 kPa). In this case, the mean normalized error
using Lulevich’s formula is 14.15%. Applying Shanahan’s
adjustment (3), it is 14.12%. Under the same conditions, our
approach lead to an error of 6.77%. The better performance

achieved by our method is due more to the use of (9) to
compute R f than to the small contribution of gas compression
obtained from (7). In fact, stretching is the most contributing
to the contact force, compression has negligible values, and
the ratio between bending and stretching forces grows with
the compliance of the balloon, from around 0.5% to 2%.

This comparison allows us to believe our approach is
meaningful. It can be used also to prove that the initial
inflating pressure value is fundamental to distinguish contacts
leading to small or large deformations. Using the variation
of volume as the only threshold (i.e. ∆V/Vi < 0.2), mean
errors increased to 43.88% for Lulevich’s case and 52.27%
for Shanahan’s adjustment. It is clear that the assumption of
low variation of volume is not sufficient to guarantee small
deformations, while high pressure is more likely assuring a
spherical shape after contact.

C. Continuous force estimation
To further demonstrate the usability of our sensor we tested

its response in computing a continuous force profile, during
the final steady-state interaction as well as the transient. The
procedure followed was the same as described previously,
but ∆Pf at each instant corresponded to the current value of
internal pressure, as indicated by the red stars in Fig. 6c. As
expected, the results for (Pf −Pi)<0.5 kPa were affected by
larger errors. Excluding those values, the force profile can be
reconstructed by interpolating data obtained for higher ∆Pf
with the zero value of force before the contact. To clarify the
presentation of results, the delay of the estimated force has
been artificially removed introducing a time shift of −0.12 s,
computed by aligning the peaks. As shown in Fig. 6c, the
estimated force trend is similar to the ground truth, with a
RMSE of 0.578 N most due to the low forces interpolation.

VI. DISCUSSION AND CONCLUSIONS

This paper explores a model-based approach to estimate
contact forces occurring at the slave side during robotic



surgery. The proposed sensor consists of a pneumatic balloon
placed inside the robotic instrument. In this work, we define
the relationship between the contact force and the subsequent
variation of pressure inside the balloon, modeled as an elastic
air-filled sphere and treated using linear elasticity theory. The
deformation of the membrane due to the contact with the
anatomical surface has been modeled as a radius increment
and the occurrence of two flattened areas. Internal pressure,
displacement due to compression, and radius of the extended
sphere were required to compute the reaction force. While the
first value is real-time measured, to estimate indentation and
radius we evaluated the forces acting on the balloon to balance
the effect of the contact force, i.e. stretching, bending and
compression. Moreover, the ideal gas law was used to take
into account the variation of volume due to the contact. The
mathematical model of the deformation was validated through
experiments consisting in consecutive contact actions with a
commercial force sensor, used as ground truth. The results
showed agreement between model predicted and experimental
data, with a mean error correspondent to the 9.14% of the real
force value in the range [1-3.5] N. In addition to estimating
contact force peak values, we demonstrated the feasibility
of this method in continuous measurements, proving a high
reliability of the system both in the transient and in the
steady-state interaction.

Other approaches related the interaction force between an
object and a rigid surface to the variation of some geometrical
parameters, but they were limited to very small deformations
and led to larger errors if compared to our method.

Compared to our previous work [12], the model-based
approach here presented results to be more general, accurate
and reliable. The force-pressure relationship is the result of a
mathematical model and it is easy to tune against changes of
components or design parameters. The only element requiring
an experimental detection when size or material change is
the balloon radius, but it is far simpler than a complete
characterization of the system behavior empirically performed.
Future development will also consider using other techniques,
for example based on vision, to estimate the initial radius.

The resolution and the range of our sensor are customizable,
depending on the material the membrane is made, the pressure
it is inflated at, the balloon size, and the resolution of
the pressure sensor. Our device has a simple mechanical
miniaturizable structure. Hence, the prototype described in
this paper will be able to meet the size limitations for RMIS.
After miniaturization, we will properly characterize the sensor
evaluating its force range and resolution at different pressure
values. The use of a gas as a means to estimate interaction
forces represents a major advantage in terms of delocalization
of the electronics, cost, sterilizability, and biocompatibility.

However, we are aware of the limitations affecting the
present study. The experimental validation we conducted
relies only on tests on a rigid surface (the ATI) at the contact.
For future development, experiments with softer surfaces
will be considered. In addition, our pneumatic sensor is not
capable of measuring very small values of force (<1 N) nor
giving information about the direction of the applied force.
Future work will involve characterizing the usability of the

proposed device while displaying the estimated forces at
master side. Feasibility in practical usage will be explored to
investigate also if the delay due to the slightly slow dynamics
might represent an issue for high quality haptic feedback. The
limitations of the sensor in low pressure case will be addressed
by exploring different biocompatible elastic materials. Then,
one of the future objectives will be the actual integration with
surgical tools. Besides our sensor was developed for robotic
surgery, the sensing principle can be used to compute contact
forces occurring in other teleoperation scenarios.
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