
diversity

Article

Cross Taxon Congruence Between Lichens and
Vascular Plants in a Riparian Ecosystem

Giovanni Bacaro 1,* , Enrico Tordoni 1 , Stefano Martellos 1 , Simona Maccherini 2 ,
Michela Marignani 3 , Lucia Muggia 1 , Francesco Petruzzellis 1 , Rossella Napolitano 1,
Daniele Da Re 4, Tommaso Guidi 5, Renato Benesperi 5 , Vincenzo Gonnelli 6 and
Lorenzo Lastrucci 7

1 Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
2 Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
3 Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Viale S. Ignazio, 13,

09123 Cagliari, Italy
4 Georges Lemaître Institute for Earth and Climate Research, Université catholique de Louvain, Place Louis

Pasteur 3, 1348 Louvain-la-Neuve, Belgium
5 Department of Biology, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
6 Istituto di Istruzione Superiore “Camaiti”, Via San Lorenzo 18, 52036 Pieve Santo Stefano, Arezzo, Italy
7 University Museum System, Natural History Museum of the University of Florence, Botany, Via La Pira 4,

50121 Florence, Italy
* Correspondence: gbacaro@units.it; Tel.: +39-040-5588803

Received: 23 February 2019; Accepted: 6 August 2019; Published: 13 August 2019
����������
�������

Abstract: Despite that congruence across taxa has been proved as an effective tool to provide
insights into the processes structuring the spatial distribution of taxonomic groups and is useful
for conservation purposes, only a few studies on cross-taxon congruence focused on freshwater
ecosystems and on the relations among vascular plants and lichens. We hypothesized here that, since
vascular plants could be good surrogates of lichens in these ecosystems, it would be possible to
assess the overall biodiversity of riparian habitats using plant data only. In this frame, we explored
the relationship between (a) species richness and (b) community composition of plants and lichens
in a wetland area located in central Italy to (i) assess whether vascular plants are good surrogates
of lichens and (ii) to test the congruence of patterns of species richness and composition among
plants and lichens along an ecological gradient. The general performance of plant species richness
per se, as a biodiversity surrogate of lichens, had poor results. Nonetheless, the congruence in
compositional patterns between lichens and vascular plants varied across habitats and was influenced
by the characteristics of the vegetation. In general, we discussed how the strength of the studied
relationships could be influenced by characteristics of the data (presence/absence vs. abundance), by
the spatial scale, and by the features of the habitats. Overall, our data confirm that the more diverse
and structurally complex the vegetation is, the more diverse are the lichen communities it hosts.

Keywords: biodiversity; co-correspondence analysis; conservation planning; surrogate taxon

1. Introduction

The growing impact of human-induced changes on natural ecosystems, such as land transformation
and habitat degradation, is leading to the pressing need for straightforward methodologies for
monitoring biodiversity in space and time [1–5]. Although broad-scale patterns of biodiversity are
well documented, accurate descriptions of the distribution of biodiversity which down at fine spatial,
temporal, or taxonomic scales are still missing, even for well-described groups, such as vascular plants
or vertebrates [6].
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Surrogacy can be defined as the relationship existing between a surrogate variable and an
“objective” variable (also called “target variable” [7]). In ecology, cross-taxon congruence analysis can
be expressed as the correlation in patterns of species richness and/or diversity [8] or, in a multi-species
context, as community concordance (i.e., the relationship among compositional patterns of multiple
taxonomic groups across sites [9,10]). More in general, cross-taxon congruence occurs when diversity
and/or composition patterns of different biological groups covary spatially [11]. The interest in
biological surrogates during the last decade has resulted in an increasing number of studies testing
their effectiveness, in a multiplicity of locations and at different spatial scales [12]. Rodrigues and
Brooks [13] pointed out that the use of surrogate taxa in conservation planning is substantially more
effective than that of surrogates based on environmental data only. However, the effectiveness of the
use of one taxon to predict community patterns for other taxonomic groups ultimately depends on
its underlying mechanisms and on the strength of the relationship with, and among, such groups
(e.g., [14–18]). Furthermore, the effectiveness of surrogate taxa as ecological indicators for biodiversity
assessment also depends on other factors, such as the spatial scale of analysis and the choice of predictor
variables [19]. The choice of the study scale is, in fact, also crucial to avoid spurious or undetected
relationships among the collected variables and it could influence the time/cost of the sampling effort
as well [20].

From an ecological perspective, the factors that affect cross-taxa relationships include the
following: (1) a similar but independent response from two taxonomic groups to the same set of
environmental conditions [9,21,22], (2) trophic interactions or functional interdependence [9], (3) a
shared bio-geographical and evolutionary history at a large/global scale [23], and (4) species–energy
relationships (e.g., [3]; for a summary see [24,25]). Thus, potential surrogate taxa should have the
following properties [26,27]: (i) a well-known and stable taxonomy so that populations can be defined
in a reliable way; (ii) a well understood biology and general life history; (iii) occur over a broad
geographical range and breadth of habitat types at higher taxonomic levels (order, family) so that
results will be broadly applicable; (iv) specialization of each population (at lower taxonomic levels, e.g.,
species, subspecies), within a narrow habitat, which is likely to make them sensitive to habitat change;
(v) some evidence that patterns observed in the surrogate taxon do replicate in other taxa, which are
more difficult to investigate in the overall biodiversity at different spatial scales. Since vascular plants
play a crucial role in land management, they can be a convenient choice as surrogate taxa. Furthermore,
plants are fundamental structural and functional components of terrestrial ecosystems, having the major
role in net primary productivity. Vascular plants are widely used for depicting biodiversity hotspots
to address the institution of natural reserves, to identify priorities for conservation actions, and, more
in general, for environmental planning [28–31]. Since their sampling is relatively easy [32–34] and
their taxonomy is sufficiently well described and standardized, they may reflect the diversity of other
important, and less known and/or inconspicuous taxa, such as cryptogams.

Cryptogams, such as bryophytes and lichens, are rarely included in floristic and vegetation
assessments for management and monitoring purposes due to difficulties encountered in their
identification. Vascular plants are therefore of great interest to be used as a proxy for these groups
of cryptogams. Some authors have tested the possible congruence between vascular plants and
cryptogams for different habitats, locations, and spatial scales, but the results are fragmentary and
conflicting [35]. For instance, contrasting results were observed in several studies using vascular
plants as a surrogate group for lichens in forest ecosystems [36–39]. Vascular plants proved to be
effective surrogate taxa to select sites for conservation purposes, especially if used in combination
with other factors [37]. In contrast, another study showed that vascular plants can be ineffective as
surrogate taxa for cryptogams [38], even though this could be explained by an over simplification of
the forest structure as a consequence of human management. Contrasting patterns were also observed
in the Mediterranean area, even though only a few studies tested for the congruence between vascular
plants and cryptogams [19,34,40,41]. These studies highlighted a limited effectiveness of cross-taxon
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estimates in a nature reserve in Tuscany, even though vascular plants may be useful surrogates of other
organisms [34,42].

Despite the considerable amount of studies and meta-analyses on cross-taxon congruence [12], few
examples deal with freshwater ecosystems: to the best of our knowledge, the effectiveness of vascular
plants as a surrogate group for lichens has never been specifically addressed in riparian freshwater
communities in the Mediterranean area. Though Heino [25] highlighted that cross-taxon congruence
does not appear to be particularly relevant for conservation purposes in freshwater habitats, more
recently Nascimbene et al. [43] strengthened the importance of riparian woods for lichen conservation
in riparian forests, providing important evidence of their role as hotspots of biodiversity [44], as these
fragile ecosystems are subjected to a high number of pressures and threats [45].

In this study, then, we hypothesized that if the composition of lichen communities was consistently
correlated to that of riparian vascular plants, the latter can be used as surrogate group when assessing
lichen diversity of riparian habitats.

Since plants are generally easier to identify in the field than lichens, they could be efficiently
used in preliminary and cost-effective biodiversity assessments. This would allow the collection of
large-scale datasets on biodiversity and ecological indicators of the quality of river edges within a
relatively short period of time, if compared to that required to survey and identify lichen taxa as well.

To assess whether plant communities can be a suitable surrogate group for lichen community
composition and diversity, we surveyed vascular plants and lichens from five different habitats,
located along a strong gradient of water flood, on a stretch of the Tiber river (Arezzo, central Italy).
We aimed at the following: (1) assessing cross-taxon congruence in composition between lichen
and plant communities, (2) quantifying the effectiveness of plant communities as surrogates of
lichen communities, and (3) assessing if the degree of cross-taxon congruence is consistent along
an environmental gradient in the riparian habitat. The predictive strength of vascular plants was
evaluated using both species richness and species composition. Furthermore, the degree of cross-taxon
congruence in species composition was assessed considering presence/absence and abundance data.
To the best of our knowledge, this is the first in-depth analysis reporting the congruence in composition
between plants and lichens in freshwater habitats which considers the variation of different parameters
(data type, variation in environmental gradient, and scale of species abundances).

2. Materials and Methods

2.1. Study Area and Sampling Design

The study area (Figure 1) is located in a stretch of 3 km from the Montedoglio dam along the Tiber
river, (Arezzo, Tuscany, Italy). This area lays on alluvial lacustrine-fluvial deposits and is altered by
human activities, such as gravel mines, which cause strong modifications to the original landscape.
The construction of the dam and other infrastructures modified the track of Tiber several times [46].
The river regulation influenced the stream flux, leading to the disappearance of seasonal water
availability, with consequent reduction of solid carriage due to rapid sedimentation [46]. Furthermore,
the dam deep water temperature is a few degrees lower than in natural conditions (approximately
7.7 ◦C vs. 12 ◦C), reaching its natural temperature only some kilometers downstream [46]. Even in
the presence of these disturbances, hygrophilous vegetation shows a high level of conservation and
naturalistic value [47] and the study area has been included among the protected areas in the Region
(ANPIL, Protected Natural Area of Local Interest).
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Within each transect, “secondary sampling units” were delimited using a 
stratified random sampling. The strata corresponded to the five habitats previously 
identified and visually delimited through field survey. The following classification 
was adopted to characterize the sampled habitats (strata, see [46] for details): 

• (R) Flooded Banks: Transitional area between the wet and dry river bed; 
• (GR) Dry Banks: Composed by gravel and sand, mostly colonized by 
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• (AR) Shrublands: Thick shrublands dominated by Salix eleagnos and Salix 

purpurea; 
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and Salix alba; 
• (P) Swamps: Depressions and river side branches with backwater and mud 

substrate; vegetation characterized by helophytes and hygrophilous species.  

On the basis of the total area occupied by each habitat, a proportional number 
of randomly selected squared plots of 1 m2 were sampled as follows: If the habitat 
area was lower than 25 m2, three plots were sampled; when the habitat area was 
greater than 25 m2, two more plots were added for each increase of 25 m2 (e.g., for a 
habitat surface of 75 m2, seven plots were displaced) for a total of 188 plots (Table 1). 
Presence and percentage coverages of vascular plants (proportion of the area 

Figure 1. Location of the study area. Sampled transects are drawn as black lines.

Species richness and the composition of plant and lichen communities were surveyed along 12
transects (defined as “primary sampling units” following Lastrucci et al. [46]), each 5 m wide and with
a variable length according to the width of the riparian zone (see Figure 1). These were randomly
displaced along the riverside (6 on the left bank and 6 on the right one) and they were placed at 250 m
from each other in order to avoid the effect of spatial autocorrelation.

Within each transect, “secondary sampling units” were delimited using a stratified random
sampling. The strata corresponded to the five habitats previously identified and visually delimited
through field survey. The following classification was adopted to characterize the sampled habitats
(strata, see [46] for details):

• (R) Flooded Banks: Transitional area between the wet and dry river bed;
• (GR) Dry Banks: Composed by gravel and sand, mostly colonized by xerophilous vegetation;
• (AR) Shrublands: Thick shrublands dominated by Salix eleagnos and Salix purpurea;
• (B) Riparian woods: Woodlands dominated by Populus nigra, Alnus glutinosa and Salix alba;
• (P) Swamps: Depressions and river side branches with backwater and mud substrate; vegetation

characterized by helophytes and hygrophilous species.

On the basis of the total area occupied by each habitat, a proportional number of randomly
selected squared plots of 1 m2 were sampled as follows: If the habitat area was lower than 25 m2, three
plots were sampled; when the habitat area was greater than 25 m2, two more plots were added for
each increase of 25 m2 (e.g., for a habitat surface of 75 m2, seven plots were displaced) for a total of 188
plots (Table 1). Presence and percentage coverages of vascular plants (proportion of the area occupied
by a species on the plot total surface) and lichens (visual estimation of the % coverage on the plot)
were recorded within each plot.
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Table 1. Summary statistics of the analyzed dataset.

Taxon N◦ Sampled
Plot

N◦ Sampled
Species

Mean Species
Richness Min–Max

Whole dataset
Plants 184 193 10.57 2–21

Lichens 184 45 2.79 0–15

Shrublands (AR)
Plants 47 95 10.61 2–21

Lichens 47 33 3.91 0–15

Riparian woods (B) Plants 58 98 11.05 4–21
Lichens 58 34 3.29 0–12

Dry Banks (GR) Plants 46 98 9.36 3–17
Lichens 46 20 2.65 0–8

Swamps (P) Plants 15 55 13.2 3–21
Lichens 15 2 0.33 0–2

Flooded Banks (R)
Plants 18 59 9.77 2–18

Lichens 18 4 0.72 0–4

Nomenclature followed Conti et al. [48] for vascular plants and Nimis and Martellos [49] for lichens.

2.2. Data Analyses

2.2.1. Congruence in Species Richness

The Spearman correlation coefficient (ρ) was used to measure congruence in species richness
between plants and lichens, for the whole dataset and for each habitat. Similarly, patterns in species
richness for the two groups were also compared using plot-based rarefaction curves [50]. Rarefaction
curves were calculated, for plants and lichens, both collectively and for each sampled habitat type,
using the “exact” formula proposed by Kobayashi [51] (but see [52]):

Si = Sn −

(
n
i

)−1 ∑
k∈G

(
n− nk

i

)
, i = 1, ......, n (1)

where G is the set of species observed in the collection of n samples (plots), Sn is the total number of
observed species, nk is the number of samples containing at least one individual of species k ∈ G, and
Si is the expected species richness for the sub-sample i out of the total number of samples N. Since
coordinates of each plot were not collected in the field, the application of spatially explicit rarefaction
curves [53,54] was not possible.

The ratio between the species rarefaction curve for plants and for lichens was also calculated to
compare patterns of rarefaction for the two taxa [18,52,55], both separately and collectively.

2.2.2. Congruence in Species Composition

Congruence in species composition was evaluated using three independent tests, as follows: (1)
Mantel test, (2) co-correspondence analysis, and (3) differences in beta diversity between plants and
lichens among habitats.

Mantel tests were performed using the non-parametric approach based on the Spearman rank
correlation [56]. Monte Carlo randomizations based on 9999 permutations [57,58] were used to test for
significance of the correlation between the two resemblance matrices. These were calculated using (a)
the Bray–Curtis dissimilarity [59,60] for square rooted abundances of plants and lichens and (b) the
Jaccard dissimilarity [59,60] for presence/absence data.

Co-correspondence analysis (hereafter Co-CA, see [10,61] for a full description of this method) was
applied to quantify the ability of the plant community data in predicting lichen species composition.
This method directly related the composition of two communities by maximizing the weighted
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co-variance between weighted average (WA) species scores of one community (plants) and WA species
scores of the other (lichens). Hence, Co-CA attempts to identify the ecological gradients that are
common to both communities. Here we used the asymmetric, predictive form of Co-CA, which
combines weighted averaging and the partial least squares approach (PLS; [62]). A leave-one-out
cross-validatory fit (%) was performed to obtain the minimum number of axes to retain and to select
the minimal adequate predictive models.

Co-CA was performed both on incidence and abundance-based matrices for the two taxa. In the
latter case, a square root transformation was applied to plant and lichen species composition.

Finally, a procedure to test for differences in beta diversity among distinct sets of plots (also called
betadispersion) was applied. This procedure creates a distribution of null values of the statistic test, which
is compatible with the null hypothesis of no significant differences in multivariate dispersion between
two or more groups. The test is based on any pairwise plot-to-plot dissimilarity matrix of choice and,
given that, the beta diversity of a certain group of plots can be defined as the mean of the plot-to-plot
dissimilarities within the groups [63,64]. A distribution of values of the test-statistic under the null
hypothesis is then obtained by Mantel randomization of the dissimilarity matrix [65,66]. Differences in
beta diversity between plant and lichen assemblages were tested for the whole set of plots, and for
each sampled habitat separately, by comparing the average of the calculated dissimilarities (both the
Bray–Curtis and the Jaccard matrices) between the two groups (plants and lichens) using the F-test
described above. P-values were computed from 999 permutations of the plot-to-plot dissimilarities
between the two groups.

All statistical analyses were performed using R 3.5.1 [67]. Plot-based rarefaction curves were
calculated using R package ‘vegan’ [68], Co-CA was performed using R package ‘cocorresp’ [69], and
beta dispersion was assessed using the R function ‘betadispersion2’, available in Bacaro et al. [66].

3. Results

3.1. Congruence in Species Richness

The total amount of species recorded in the 184 plots was 238, of which 193 were vascular plants
and 45 were lichens (Table 1). Riparian woods (B) and dry banks (GR) showed the highest values of
plant species richness (98), whereas shrublands (AR) and riparian woods (B) were the richest in lichens.
Conversely, swamps (P) were characterized by the lowest number of both lichens and plants (Table 1).

When the whole dataset was considered, correlation in species richness resulted as not significant
(Table 2). In contrast, when correlations were considered for each habitat separately, different patterns
were observed. A moderate positive (but statistically significant) correlation was obtained between the
two taxonomic groups in the AR habitat, while the opposite was observed for the P (swamps) habitat,
for which we observed a negative (but significant) correlation coefficient (Table 2).

Table 2. Spearman correlations (ρ) between plant and lichen species richness for the whole set of data
and for each habitat separately. (** p < 0.01; * p < 0.05).

Data ρ

Whole Dataset 0.050
Shrublands (AR) 0.407 **

Riparian woods (B) 0.208
Dry Banks (GR) 0.011

Swamps (P) −0.587 *

On average, rarefaction curves for both lichens and plant communities did not reach any asymptotic
pattern (Figure 2a,b), except for lichens in habitat R and P. Furthermore, a completely different trend
characterized the relationships between lichen and plant rarefaction curves. A general agreement
characterized rarefaction curves for plant communities in the five habitats (Figure 2b).
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Figure 2. (a,b) Plot-based rarefaction curves calculated for lichens (a) and vascular plants (b), recorded
from 184 plots sampled along the Tiber river for each riparian vegetation habitat vegetation types,
showing the expected number of species, S, as a function of the number of plots. The plot-based
rarefaction curve for the pooled sample of all the 184 plots is also shown (dashed line).

In plants, the random rarefaction curve is higher than the habitat-based rarefaction curves,
suggesting that an equal contribution to the total complementarity is accounted for each habitat type.
In contrast, lichens were characterized by a completely different pattern. Differences in species richness
between AR and B (the richest communities) were higher than those between P and R habitats (the
poorest communities). Furthermore, AR and B habitats displayed very diverse lichen communities
since their rarefaction curves were higher than the random curve. The ratio between lichen and plant
rarefactions (Lichens S/Plants S, Figure 3) suggested that both groups displayed some differences in
species accumulation patterns across the five habitats and a decreasing trend was observed for R, GR,
and AR; whereas the converse was observed in B and P.Diversity 2019, 11, x FOR PEER REVIEW 10 of 22 
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3.2. Congruence in Species Composition

Mantel tests (Table 3) showed that lichen and plant dissimilarities were significantly and positively
correlated along the whole gradient irrespective of the dissimilarity metric, with the exception of
riparian woods (B) and swamp habitats (P) (Spearman ρ > 0.05).

Table 3. Correlation (Spearman’s ρ) between the Bray–Curtis (log-transformed abundance data) and
Jaccard dissimilarity matrices (occurrence data) of plants and lichens. p-values were calculated by
using Monte Carlo randomization tests (999 permutations). Significant correlation coefficients are in
bold. AR—Shrublands, B—Riparian woods, GR—Dry Banks, P—Swamps, R—Flooded Banks.

Dataset Dissimilarity Metric ρ p

Whole Dataset
Bray–Curtis 0.238 <0.001

Jaccard 0.153 <0.001

AR
Bray–Curtis 0.349 <0.001

Jaccard 0.272 <0.001

B
Bray–Curtis 0.088 0.007

Jaccard 0.039 0.171

GR
Bray–Curtis 0.346 <0.001

Jaccard 0.202 0.006

P
Bray–Curtis 0.195 0.088

Jaccard 0.267 0.052

R
Bray–Curtis 0.258 0.038

Jaccard 0.339 0.014

Predictive Co-CA (Figure 4a,b) showed a moderate degree of congruence between plant and
lichen composition and, more importantly, showed that plant communities significantly predict lichen
composition. The first two Co-CA axes were significant, with a cumulative explained variance of ~11%
and ~14% for presence/absence and abundance data, respectively (Table 4).

Table 4. Significance of Co-CA axes for lichens and plants considering both presence/absence and
abundance data. Significant cross-validatory fit is shown in bold.

Co-CA Model Axis Cross-Validatory (%) Fit p

Presence/Absence data

1 5.528 0.01
2 5.486 0.01
3 7.172 0.06
4 6.965 0.17

Abundance Data

1 8.270 0.01
2 5.970 0.01
3 3.472 0.06
4 2.552 0.24

The first Co-CA axis well describes the gradient from dry and xeric herbaceous plant communities
(GR on the right) to shrubs and woody dominated plantCalibri communities (AR, B), while the second
axis separates the ecotonal transitional area between wet and dry river bed (R, lower part of the graph)
to the more stable and structured plant communities (AR and P, upper part of axis 2, Figure 4a,b.
Appendix A presents the abbreviation list for lichens and vascular plant species).
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Figure 4. (a,b) Predictive Co-CA biplot of plant species composition (a) and lichen species composition
(b) using abundance data. In each plot, species are positioned according to their loadings, with respect
to normalized plot scores derived from the plant composition data. Symbols show the type of riparian
vegetation habitat of each plot. The axes were rescaled to the same ranges so that sites occupy the same
position in both plots. Explanations of species abbreviations are reported in Appendix A.

On average, beta diversity was slightly higher for plant than for lichen communities considering
the whole dataset; these differences increased a bit considering each habitat separately (Table 5, Table 6).
In particular, we observed similar values in plant dissimilarity values across all the habitats. Conversely,
both the Jaccard and Bray–Curtis indices drastically decreased in lichens, moving from more structured
habitats (AR, B) to those closer to (or in contact with) water (P, R). Notably, significant differences in
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beta diversity between lichens and plant assemblages were observed both for the whole dataset (but
only using presence/absence data) and for each habitat separately (Table 6).

Table 5. Mean beta diversity measures calculated for plants and lichens, separately. AR—Shrublands,
B—Riparian woods, GR—Dry Banks, P—Swamps, R—Flooded Banks.

Dataset Dissimilarity Measure Average Beta Diversity
Lichens

Average Beta Diversity
Plants

Whole Dataset
Bray–Curtis 0.823 0.830

Jaccard 0.664 0.885

AR
Bray–Curtis 0.807 0.679

Jaccard 0.694 0.817

B
Bray–Curtis 0.781 0.680

Jaccard 0.649 0.770

GR
Bray–Curtis 0.694 0.812

Jaccard 0.501 0.860

P
Bray–Curtis 0.389 0.719

Jaccard 0.249 0.783

R
Bray–Curtis 0.503 0.767

Jaccard 0.337 0.834

Table 6. Differences in beta diversity between lichen and plant assemblages obtained using the following
two measures of dissimilarity: Bray–Curtis dissimilarity (square root transformed species abundance
data) and Jaccard dissimilarity (for presence/absence data). Analyses were carried out both for the
whole set of 184 plots as well as for each habitat. p-values were obtained by Mantel randomization of the
original plot-to-plot dissimilarity matrices (999 permutations); significant differences were highlighted
in bold. AR–Shrublands, B–Riparian woods, GR–Dry Banks, P–Swamps, R–Flooded Banks.

Data set Dissimilarity
Metric

Source of
Variation Df SSs MSs F Model p

Whole Dataset
Bray–Curtis Group 1 0.46 0.46 8.439 0.495

Residuals 33670 1853.43 0.05

Jaccard Group 1 411.94 411.94 10584 0.001
Residuals 33670 1310.49 0.04

AR
Bray–Curtis Group 1 8.89 8.89 209.56 0.001

Residuals 2160 91.66 0.04

Jaccard Group 1 8.19 8.19 299.18 0.001
Residuals 2160 59.16 0.02

B
Bray–Curtis Group 1 8.43 8.43 156.57 0.001

Residuals 3304 177.91 0.05

Jaccard Group 1 12.23 12.23 320.37 0.001
Residuals 3304 126.16 0.03

GR
Bray–Curtis Group 1 7.16 7.16 161.63 0.001

Residuals 2068 91.72 0.04

Jaccard Group 1 66.46 66.46 1643.90 0.001
Residuals 2068 83.61 0.04

P
Bray–Curtis Group 1 5.71 5.71 51.18 0.001

Residuals 208 23.21 0.11

Jaccard Group 1 15.00 15.00 302.83 0.001
Residuals 208 10.30 0.04

R
Bray–Curtis Group 1 5.32 5.32 43.40 0.001

Residuals 304 37.26 0.12

Jaccard Group 1 18.90 18.90 324.15 0.001
Residuals 304 17.72 0.05
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4. Discussion

The usefulness of surrogate taxon approaches is still controversial in ecological literature,
with some studies showing strong cross-taxon congruence which is promising for their practical
utilization, whereas others have found no congruence among taxa, limiting their use in conservation
planning [23,70–75]. In a recent study on pattern of congruence among taxa in European Temperate
Forests, Burrascano et al. [39] summarized the high variability in cross-taxon relationships and how
the effect of spatial scale (grain and extent) could be pivotal for the observed variability. As an
example, scarce relationships were observed between vascular plants and cryptogams in boreal
forests [76,77], where bryophytes and lichens often constitute a major proportion of the species richness
and biomass [78,79]. Disagreements in cross-taxon congruence are probably linked to differences
among investigated studies in several key characteristics, such as the spatial scales, the study area
location, and the analytical methods adopted [19], on which the effectiveness of congruence among
two or more taxa depend.

4.1. Congruence in Species Richness

As pointed out by the cross-taxon correlation analysis we carried out between lichens and vascular
plants richness, although the relationship resulted significant and positive in one of the five surveyed
habitats (AR, shrublands) and negative in another one (P, Swamps), the overall performance of plant
species richness per se as biodiversity surrogates of lichens was poor. Researchers working in various
regions and using coarse grain plots (e.g., 50 × 50 m) obtained similar results and did not find any
co-variation between the species richness of vascular plants and lichens [36,77]. In our study, many
factors may have contributed to the general lack of species richness congruence and, among these, the
small grain of the sampling units (1 m2) may be considered one of them. Additionally, the functional
characteristics of a particular taxon could be another factor affecting the degree of concordance
among different taxonomic groups, along with the life history of the site. For instance, McMullin &
Wiersma [80] recently pointed out that the relative richness and abundance of lichens can be effective
indicators of forest continuity and diversity. In this study, the surveyed habitats are riparian woods
and shrublands, which are not characterized by mature stands. Though lichens can rely only on these
trees and shrubs as stable substrata to develop their thalli and build communities richer in species
abundance and diversity than in the other three habitat types, lichen diversity is still limited.

In assessing congruence patterns, species richness has been often used instead of species
composition considering it is much simpler and faster to collect in the field. In surrogacy studies, it is
often discussed whether it is reasonable to use species richness of vascular plants as a proxy of total
biodiversity [39,42,81,82], even though different patterns of co-variation in lichen composition are
described in relation to the variation of composition of plants communities. Our results also confirm
the role of methodological issues, such as the type of data used (presence/absence vs. abundances)
in determining the strength of cross-taxon relationships. Specifically, we observed that the degree
of congruence in compositional patterns between lichens and vascular plants can substantially vary
across habitats and depends on the type of the data used, along with the characteristic of the vegetation
(abundance vs. presence/absence). Recent studies showed how the use of two-three taxa instead of a
single one may drastically increase surrogacy [83].

4.2. Congruence in Species Composition

In general, our findings describe different patterns of co-variation in lichen composition in relation
to the composition variation of plants communities. Our results also confirm the role of methodological
issues such as the type of data used (presence/absence vs. abundances) in determining the strength of
cross-taxon relationships. Specifically, we observed that the degree of congruence in compositional
patterns between lichens and vascular plants can substantially vary across habitats and depends on the
type of the data used, along with the characteristic of the vegetation (abundance vs. presence/absence
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data, species composition vs. variation in habitat characteristics). As for analysis at the species richness
level discussed above, we showed a strong spatial structure of the data, which is also related to the
spatial scale of the analysis. Specifically, at a coarser scale (i.e., along the ecological gradient), where
environmental and structural gradients are more pronounced, especially for plant communities, these
relationships display the strongest and clearest direction. On the other hand, at a finer scale, this signal
seems to be hampered (see Table 3).

Nonetheless, studies at smaller grains (e.g., 1 × 1 m) have shown relatively strong correlations
between vascular plants and lichens (see, for instance [71,84]). In general, our results corroborate
previous evidence, especially those concerning the covariation in plant and lichen composition along
the whole transitional gradient from river-to-land. In fact, it is well-known that the configuration and
heterogeneity of habitats (e.g., variation in habitat types) of an area strongly influences the number
of species found in that area [85]. Structurally complex and more mature habitats, indeed, provide
more niches and diverse ways of exploiting the environmental resources, thus increasing species
diversity [86]. However, a weak degree of association in community composition of vascular plants
and cryptogams was evidenced in other studies from Australian [36], Canadian [84], and New Zealand
forests [87] and dry grasslands in Sweden [88]. In relation to our data, a previous study pointed out
that the five habitats can be well defined and characterized using plant communities [46]. The habitats
host a specific set of plants, each with defined functional and structural features. Furthermore, our
findings suggested a low compositional similarity, both among and within sampling units collected in
the five habitats (see Tables 5 and 6). Based on these marked compositional differences, results of the
Co-CA highlighted clear ordination patterns, as follows: For vascular plants, the marshlands indicator
species group (P) is constituted mostly of water-related taxa, such as hydrophytes (Potamogeton
nodosus), helophytes, or hygrophilous species (Typha minima, Alisma plantago–aquatica, Epipactis palustris,
Scirpoides holoschoenus, Lythrum salicaria, Lycopus europaeus). Here, the few lichen species which are
present are not exclusive to this habitat and are not represented at all in the Co-CA regions identified
by (P) plots. The indicator species of the flooded banks (R) are mostly plants requiring a high ground
water content (Mentha aquatica, Veronica anagallis–aquatica), species of cool and shaded habitats of the
riparian forest fringes (Petasites hybridus, Senecio aquaticus, Schedonorus giganteus), or species resistant to
trampling (Agrostis stolonifera, Prunella vulgaris). In this habitat, the recorded lichen species are those
colonizing rocks, as the more stable substrate, and are mainly represented by the genus Verrucaria,
which is known to comprehend amphibian taxa of both fresh and salt water and to develop thin
partially or completely endolithic thalli.

The floristic component characterizing the dry banks (GR) is instead mostly composed of
xerophilous vascular plant species such as Bromus erectus, Sanguisorba minor, Ononis natrix, Plantago
sempervirens, and Scabiosa columbaria. These species are not strictly linked to the presence of water and
indicate habitual long emersion times, which clearly differentiates this type of environment. Due to the
instability of the substrate, characterized by sandy soil and pebbles, and the lack of shrubs or trees as
substrate, the lichen communities are species poor and only few epilithic taxa were mainly surveyed,
such as Sargogye regularis and Verrucaria spp.

The indicator species of riparian woods (B) are mostly trees which characterize the physiognomy
of this habitat (Populus nigra and Alnus glutinosa) and a large number of shrubs, such as Cornus sanguinea,
Ligustrum vulgare, Fraxinus ornus, and Rubus caesius. The presence of the invasive alien species Robinia
pseudoacacia is also particularly significant [46]. Here, instead, lichens are mainly represented by
epiphytic species, among which the few more generalist, nitrophilous taxa, such as Xanthoria parietina,
Lecidella elaeochroma, and Lecanora hagenii, are frequently recorded.

A general consideration of the collected lichens relies on the fact that foliose macrolichens, such as
those represented by the genera Parmelia and Ramalina, have been seldom surveyed across the five
habitats. This might likely be due to the young forest/shrubs stands, in which the large foliose lichens
did not have still time to develop conspicuously. The surveyed communities are mainly characterized
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by crustose species, which easily develop on the rather smooth bark of the tree and shrub species, such
as those of the genera Lecanora, Lecidella, and Calopaca.

Finally, in our analysis we observed that the degree of cross-taxon congruence in species
composition does not change strongly, regardless of the type of predictor variable used (abundance vs.
presence/absence). Although it has been suggested that abundance data provide relatively detailed
information concerning composition and structure of the communities [19,89], the collection of this
type of data is labour and cost intensive. On other hand, the presence/absence data are less precise but
much more cost effective. Our results showed that presence/absence data, for almost all the selected
methodologies, provided similar results than those achieved by using abundances even if, on average,
relationships were strongest when abundances were considered [19,90].

5. Conclusions

Recently, a new impulse to the study of cross-taxon relationship has been promoted, especially for
nature conservation purposes [91]. Monitoring programs often use plants as general indicators of the
conservation status of habitats, though plant species richness may be a poor indicator for the richness
of other species groups, as also demonstrated and discussed above. Nevertheless, the use of plants
in this context may represent a cost-effective approach to estimate environmental conditions [90,92]
and habitat quality [93]. Our study strengthens the idea that cross-taxon congruence between plants
and lichens is strongly habitat dependent. For sure it may provide useful information for biodiversity
managers, although its use in real conservation contexts is far to be reliable. In conclusion, as
emerged from this study, a stand-alone vegetation-driven conservation planning approach is likely
to be ineffective to protect lichens diversity overall. In order to be effective, a detailed habitat-based
assessment should be performed. This study then confirmed that cross-taxon congruence patterns are
highly complex; thus, it is crucial to increase the spatial scale of the observations along with performing
taxon-specific assessments.
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Appendix A

Table A1. Abbreviation list of Lichens and Vascular Plants, as presented in the Co-Correspondence
analysis (Fig. IV, Bacaro et al. 2019).

Lichens Vascular plants

Species Abbr. Species Abbr.

Acarospora heppi Aca_hep Acer campestre Ace_cam
Arthrosporum populorum Art_pop Acer opalus subsp. obtusatum Ace_opaobt
Caloplaca cerina Cal_cer Achillea millefolium Ach_mil
Caloplaca cerinella Cal_cer.1 Aegopodium podagraria Aeg_pod
Caloplaca cfr. cerinelloides Cal_cer.2 Agrimonia eupatoria Agr_eup
Caloplaca pyracea Cal_pyr Elymus caninus Ely_can
Candelaria concolor Can_con Elymus repens subsp. repens Ely_reprep
Candelariella reflexa Can_ref Agrostis stolonifera Agr_sto
Candelariella xanthostigma Can_xan Ajuga chamaepitys Aju_cha
Evernia prunastri Eve_pru Alisma plantago-aquatica Ali_pla
Graphys o Arthonia cfr. Gra_cfr Alnus cordata Aln_cor
Hyperphyscia adglutinata Hyp_adg Alnus glutinosa Aln_glu
Lecanora carpinea Lec_car Amorpha fruticosa Amo_fru
Lecanora cfr. expallens Lec_exp Anagallis arvensis Ana_arv
Lecanora chlarotera Lec_chl Anagallis foemina Ana_foe
Lecanora hagenii Lec_hag Cota tinctoria Cot_tin
Lecanora symmicta Lec_sym Anthyllis vulneraria Ant_vul
Lecidella elaeocroma Lec_ela Helosciadium nodiflorum Hel_nod
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Table A1. Cont.

Lichens Vascular plants

Species Abbr. Species Abbr.

Lepraria sp. Lep_sp. Artemisia vulgaris Art_vul
Micarea cfr. prasina Mic_pra Asperula purpurea Asp_pur
Parmelia caperata Par_cap Avena sativa Ave_sat
Parmelia glabratula Par_gla Barbarea vulgaris Bar_vul
Parmelia subaurifera Par_sub Bidens frondosa Bid_fro
Parmelia subrudecta Par_sub.1 Bidens tripartita Bid_tri
Parmelia sulcata Par_sul Brachypodium rupestre Bra_rup
Parmelia tiliacea Par_til Brachypodium sylvaticum Bra_syl
Pertusaria albescens Per_alb Bromus erectus Bro_ere
Phaeophyscia orbicularis Pha_orb Bromus madritensis Bro_mad
Phlyctis argena Phl_arg Calystegia sepium subsp. sepium Cal_sepsep
Physcia adscendens Phy_ads Carex hirta Car_hir
Physcia aipolia Phy_aip Carex distans Car_dis
Physcia semipinnata Phy_sem Carex flacca Car_fla
Physconia distorta cfr. Phy_dis Carex otrubae Car_otr
Ramalina fastigiata Ram_fas Carex pendula Car_pen
Ramalina sp. Ram_sp. Carlina corymbosa Car_cor
Rinodina exigua Rin_exi Carlina vulgaris Car_vul
Sarcogine regularis Sar_reg Catapodium rigidum Cat_rig
Scoliciosporum sp. Sco_sp. Centaurea jacea subsp. gaudini Cen_jacgau
Tephromela atra Tep_atr Centaurea nigrescens Cen_nig
Verrucaria cfr. muralis Ver_mur Cephalaria transsylvanica Cep_tra
Verrucaria nigrescens Ver_nig Chaerophyllum temulum Cha_tem
Verrucaria tallo continuo marrone Ver_sp1 Chara vulgaris Cha_vul
Verrucaria tallo nero acquatica Ver_sp2 Chondrilla juncea Cho_jun
Xanthoria parietina Xan_par Cichorium intybus Cic_int
Parmelia exasperata Par_exa Cirsium arvense Cir_arv

Cirsium creticum subsp. triumfetti Cir_cretri
Cirsium vulgare Cir_vul
Clematis vitalba Cle_vit
Colutea arborescens Col_arb
Convolvulus arvensis Con_arv
Cornus sanguinea Cor_san
Emerus major subsp. major Eme_majmaj
Corylus avellana Cor_ave
Crepis foetida Cre_foe
Crepis pulchra subsp. pulchra Cre_pulpul
Crepis vesicaria Cre_ves
Cruciata glabra Cru_gla
Cruciata laevipes Cru_lae
Dactylis glomerata Dac_glo
Daucus carota Dau_car
Digitalis lutea subsp. australis Dig_lutaus
Diplotaxis tenuifolia Dip_ten
Dorycnium hirsutum Dor_hir
Echinochloa crusgalli Ech_cru
Echium vulgare Ech_vul
Epilobium hirsutum Epi_hir
Epipactis cfr. helleborine Epi_hel
Epipactis palustris Epi_pal
Equisetum arvense Equ_arv
Equisetum palustre Equ_pal
Equisetum ramosissimum Equ_ram
Eupatorium cannabinum subsp. cannabinum Eup_cancan
Euphorbia amygdaloides Eup_amy
Euphorbia platyphillos Eup_pla
Schenodorus arundinaceus Sch_aru
Schedonorus giganteus Sch_gig
Fontinalis antipyretica Fon_ant
Fraxinus ornus subsp. ornus Fra_ornorn
Galega officinalis Gal_off
Galeopsis angustifolia subsp. angustifolia Gal_angang
Galium mollugo subsp. erectum Gal_molere
Galium aparine Gal_apa
Galium palustre subsp. palustre Gal_palpal
Galium verum Gal_ver
Genista tinctoria Gen_tin
Geranium columbinum Ger_col
Geranium robertianum Ger_rob
Geranium rotundifolium Ger_rot
Hedera helix Hed_hel
Helichrysum italicum subsp. italicum Hel_itaita
Helleborus bocconei subsp. bocconei Hel_bocboc
Helleborus foetidus subsp. foetidus Hel_foefoe
Humulus lupulus Hum_lup
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Table A1. Cont.

Lichens Vascular plants

Species Abbr. Species Abbr.

Hypericum perforatum Hyp_per
Inula conyzae Inu_con
Dittrichia viscosa Dit_vis
Juglans regia Jug_reg
Juncus articulatus Jun_art
Juncus fontanesii subsp. fontanesii Jun_fonfon
Juncus inflexus Jun_inf
Juniperus communis Jun_com
Juniperus oxycedrus subsp. oxycedrus Jun_oxyoxy
Knautia arvensis Kna_arv
Lapsana communis subsp. communis Lap_comcom
Lathyrus latifolius Lat_lat
Lathyrus sylvestris subsp. sylvestris Lat_sylsyl
Leucanthemum vulgare subsp. vulgare Leu_vulvul
Ligustrum vulgare Lig_vul
Linum tenuifolium Lin_ten
Lonicera etrusca Lon_etr
Lotus corniculatus Lot_cor
Lycopus europaeus subsp. europaeus Lyc_eureur
Lysimachia nummularia Lys_num
Lythrum salicaria Lyt_sal
Melica ciliata Mel_cil
Melica uniflora Mel_uni
Melilotus albus Mel_alb
Melilotus officinalis Mel_off
Mentha aquatica subsp. aquatica Men_aquaqu
Mentha spicata Men_spi
Molinia caerulea subsp. arundinacea Mol_caearu
Nasturtium officinale subsp. officinale Nas_offoff
Odontites luteus Odo_lut
Odontites vulgaris Odo_vul
Ononis natrix subsp. natrix Ono_natnat
Ornithopus pinnatus Orn_pin
Pastinaca sativa Pas_sat
Petasites hybridus subsp. hybridus Pet_hybhyb
Petrorhagia prolifera Pet_pro
Petrorhagia saxifraga Pet_sax
Peucedanum cervaria Peu_cer
Peucedanum verticillare Peu_ver
Helminthotheca echioides Hel_ech
Picris hieracioides Pic_hie
Plantago sempervirens Pla_sem
Plantago lanceolata Pla_lan
Plantago major Pla_maj
Poa compressa Poa_com
Polygala flavescens Pol_fla
Persicaria maculosa Per_mac
Populus alba Pop_alb
Populus nigra Pop_nig
Potamogeton nodosus Pot_nod
Potentilla reptans Pot_rep
Primula vulgaris subsp. vulgaris Pri_vulvul
Prunella vulgaris subsp. vulgaris Pru_vulvul
Prunus avium subsp. avium Pru_aviavi
Prunus domestica subsp. domestica Pru_domdom
Prunus domestica subsp. insititia Pru_domins
Prunus spinosa subsp. spinosa Pru_spispi
Pulicaria dysenterica Pul_dys
Quercus cerris Que_cer
Quercus pubescens subsp. pubescens Que_pubpub
Ranunculus lanuginosus Ran_lan
Ranunculus repens Ran_rep
Reseda lutea subsp. lutea Res_lutlut
Robinia pseudacacia Rob_pse
Rosa canina Ros_can
Rubus caesius Rub_cae
Rubus ulmifolius Rub_ulm
Salix alba Sal_alb
Salix eleagnos subsp. eleagnos Sal_eleele
Salix purpurea subsp. purpurea Sal_purpur
Salix triandra Sal_tri
Sanguisorba minor San_min
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Table A1. Cont.

Lichens Vascular plants

Species Abbr. Species Abbr.

Scabiosa columbaria Sca_col
Schoenus nigricans Sch_nig
Scirpoides holoschoenus Sci_hol
Scrophularia canina Scr_can
Sedum acre Sed_acr
Sedum sexangulare Sed_sex
Senecio aquaticus Sen_aqu
Setaria viridis Set_vir
Solanum dulcamara Sol_dul
Sonchus arvensis Son_arv
Sonchus asper Son_asp
Sorbus domestica Sor_dom
Sparganium erectum subsp. erectum Spa_ereere
Spartium junceum Spa_jun
Succisa pratensis Suc_pra
Symphytum tuberosum subsp. angustifolium Sym_tubang
Tamus communis Tam_com
Taraxacum gr. officinale Tar_off
Thalictrum flavum Tha_fla
Torilis arvensis Tor_arv
Trifolium sp. Tri_sp.
Tussilago farfara Tus_far
Typha minima Typ_min
Ulmus minor Ulm_min
Verbascum thapsus subsp. thapsus Ver_thatha
Veronica anagallis-aquatica subsp.
anagallis-aquatica Ver_anaana
Viola alba Vio_alb

Vitis sp. Vit_sp.
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