
water

Article

Monitoring Biological and Chemical Trends in
Temperate Still Waters Using Citizen Science

Ian Thornhill 1,2,* ID , Alice Chautard 3 and Steven Loiselle 1,4 ID

1 Earthwatch Institute (Europe), Mayfield House, 256 Banbury Road, Summertown, Oxford OX2 7DE, UK;
sloiselle@earthwatch.org.uk

2 College of Liberal Arts (CoLA), Bath Spa University, Newton St. Loe, Bath BA2 9BN, UK
3 School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK;

alice.chautard@gmail.com
4 Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2,

53100 Siena, Italy
* Correspondence: ian.thornhill@live.co.uk; Tel.: +44-(0)122-587-6329

Received: 11 April 2018; Accepted: 14 June 2018; Published: 25 June 2018
����������
�������

Abstract: The involvement of volunteers in the monitoring of the environment holds great potential
to gather information on a wider temporal and spatial scale than is currently possible. However,
the mass involvement of citizens in monitoring freshwater health is a relatively new field and
subject to uncertainty. Here, we examine 1192 samples collected across 46 temperate ponds (<2 ha)
and 29 temperate lakes (>2 ha) by 120 volunteers trained through the FreshWater Watch citizen
science programme to consider if the approach is able to (a) identify well established patterns in
water quality and biological indicators (i.e., fish), and (b) provide a potentially useful basis for the
identification of pollution sources in urban or peri-urban landscapes. Seasonal patterns observed
agreed well with established principles of nutrient dynamics, algal bloom seasonality, and broad
biological trends between ponds and lakes. Further, observational data collected by the volunteers
suggested plausible links between the presence of residential discharge and water level fluctuation
and significant increases in algal bloom observations between peri-urban and urban sites. We suggest
that citizen science can have a role to play in complementing regulatory monitoring efforts and that
local citizens should be empowered to become stewards of their local freshwater resources.

Keywords: still waters; citizen observatories; water quality; urbanization; nutrient dynamics;
algal blooms

1. Introduction

The number and importance of ponds and small lakes far outweighs the attention given to
their study and management [1]. Small waterbodies (<2 ha) contain a disproportionate amount
of freshwater biodiversity [2,3] and provide ecosystem services with important local and global
benefits [4]. Yet, the conventional conservation and monitoring priorities have been focused on
large lakes and reservoirs. For example, the EU Water Framework Directive 2000/16/EC excludes the
majority of small water bodies [5]. This dilemma presents an opportunity for the collection of ecological
information regarding these local water bodies using non-conventional monitoring approaches [6].
One such rapidly emerging approach is citizen science, the participation of ordinary members of the
public in scientific research [7,8]. However its effectiveness remains largely untested [9].

Seasonal fluctuations in nutrient status and algal growth patterns in temperate lakes are relatively
well understood thanks to long term lake monitoring (e.g., North Temperate Lakes) and shallow
lakes research [10]. In contrast to deep, stratified lakes, the intense sediment–water interface in
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shallow ponds and lakes ensures a rapid return of most sediment material into the water column [11].
In addition, the relatively high sediment temperatures in summer lead to an increase in mineralization
rates, and consequently to an increased release of phosphorous from the sediment into its soluble
form [12]. Thus, a summer peak in phosphate (P-PO4) concentrations is observed. By contrast, soluble
nitrate peak concentrations (N-NO3) typically occur during the winter months after a period of plant
senescence, with minima in early summer following aquatic vegetation growth. Algal growth patterns
reflect nutrient availability in the water column. In the first instance, internally loaded phosphate can
result in algal blooms during early summer [13]. Secondarily, an autumn bloom may be observed
under suitable temperature and light conditions in response to nutrients released from decaying plant
material [11]. In addition, fish presence is increasingly likely in larger water bodies [14,15]. These same
patterns should be easily identifiable through a citizen science approach.

Shallow lakes are often considered more susceptible to local and global environmental change
than deeper water bodies, because of their limited volume and depth [10] such that the effect of
urbanization upon them could be profound and greatly interfere with natural processes [16], as
in urban streams [17]. By contrast, the typically reduced catchment area of ponds allows for the
possibility that these ecosystems can avoid some of the impacts that plague water bodies with large
catchments [18,19]. Previously cited effects of urbanization upon the water quality of still waters are
nutrient concentration increases [19,20], greater frequency of algal blooms [21] as well as increased
trace metal concentrations and the presence of invasive species [16]. However, it is not clear whether
these effects hold true for smaller still waters such as ponds (<2 ha [22]) as they do lakes.

In addition to supporting scientific research and environmental monitoring, citizen science also
provides potential benefits associated with environmental awareness and education and advocacy on
environmental issues [23,24]. FreshWater Watch (FWW) is the first global citizen science research project
studying freshwater ecosystem dynamics. Within FWW, 30 local projects in more than 20 countries
have been established; generating information on more than 1500 waterbodies, many of which are
small ponds and lakes, in both temperate and tropical regions that hold local cultural importance (https:
//freshwaterwatch.thewaterhub.org/). Through the participation of citizen scientists, researchers
have been able to gather data over a large spatial and temporal scale [25]. Using data collection at
such resolution, it should be possible to explore if expected seasonal dynamics, reported for large
waterbodies, are also the dominant trends in smaller water bodies and if drivers such as urbanization
or an elevated surface to volume ratio lead to modified seasonal dynamics.

This study represents a first attempt to compare seasonal trends between lake and ponds using
citizen science gathered data. We explore the effect of increasing urbanization on the seasonal chemical
and biological conditions of ponds and lakes. We use a dataset of 1192 measurements from 75 temperate
still waters in three continents. Field data were gathered by trained citizen scientists and combined
with freely available, global datasets. Using this data, the following hypotheses were tested:

1. Seasonal fluctuations would be detected in four parameters indicative of water quality; nitrate
(N-NO3), phosphate (P-PO4), turbidity (NTU), and frequency of algal blooms.

2. The presence of fish will be recorded with greater frequency in lakes (>2 ha) than in ponds (<2 ha).
3. The effect of urbanization would be more pronounced in lakes than in ponds.

Finally, we applied the field data to highlight any potential drivers of those water chemistry
factors that exhibited a clear difference between urban and peri-urban sites.

2. Materials and Methods

2.1. Study Area

1192 samples were used in the present study taken from 75 ponds (see Supplementary Material
Table S1) and lakes (mean 47,956 m2, min. 10 m2, max 444,745 m2) within temperate broadleaf,
coniferous, and mixed forests, as defined within terrestrial ecosystems of the world [26], across

https://freshwaterwatch.thewaterhub.org/
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the continents of Europe, North America, and Oceania (Figure 1). Sites were located in urban and
peri-urban areas as part of the FWW programme and are mostly manmade having been built for a
range of purposes including recreation (e.g., fishing) and infrastructure (e.g., stormwater lagoons).
All data are uploaded and open access (freshwaterwatch.thewaterhub.org/content/data-map).
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Figure 1. Distribution of 75 ponds and lakes used in the present study located in temperate biomes
across three continents (six countries).

Data were collected by 120 trained citizen scientists (from >8000 total trained) using standardized
methods. Quality control against standard methods was conducted with approximately 10% of the
samples [27,28]. Measurements and observations of algal blooms were also checked automatically and
by local partner scientists. Individual sites were only included in the analysis if they were sampled
across the four seasons between 1 June 2014 and 31 May 2016 (Table 1). To identify seasonal shifts
between different continents, average monthly temperatures (between the year 2000 and 2012 [29])
were obtained for each locality (e.g., nearest town or city) and apportioned into quarterly periods. This
allowed for direct comparison of seasonal data between global sites.

Table 1. Data summary for FreshWater Watch temperate still water sites and samples (in parentheses)
between 1 June 2014 and 31 May 2016.

North America Europe Oceania Totals

<0.2 ha 0 (0) 15 (135) 0 (0) 15 (135)
>0.2 ha <2 ha 7 (113) 22 (543) 2 (29) 31 (685)
>2 ha <20 ha 2 (33) 20 (215) 1 (43) 23 (291)

>20 ha 1 (10) 5 (71) 0 (0) 6 (81)
Totals 10 (156) 63 (964) 3 (72) 75 (1192)

2.2. Field Measurements

Each dataset contained observations and measurements of ecosystem conditions, hydrology, and
water quality, collected using consistent methods. General ecosystem conditions included observations
of the land use/cover in the immediate surroundings of the sampling site, visible evidence of pollution
sources (e.g., discharge pipes) with estimates of their potential sources (urban or road runoff/drainage,
residential, industrial, other) and the presence of bank side vegetation. These observations were limited
to the immediate area of the sampling site, in general less than 25 m in both directions. Menu-based
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observations of water color, the presence of and algal blooms were also recorded for each site and
supported by photographic documentation.

Measurements of dissolved phosphate (P-PO4) and nitrate (N-NO3) concentrations were
performed from unfiltered samples using colorimetric methods. The method allowed for in situ
estimates of dissolved nutrients with exposure to reagents occurring within closed sample tubes,
a method appropriate for a mass citizen science programme. Nitrate was measured using a
naphthylethylenediamine method (Griess reagent) [30,31] in seven specific ranges from 0.2 to 0.5, 1, 2, 5,
and 10.0 mg/L. Phosphate used a low-range enzymatic method (enzyme and 4-aminoantipyrine) [32]
also in seven ranges (from 0.02 to 0.05, 0.1, 0.2, 0.5, and 1 mg/L) (Kyoritsu RIKEN, Tokyo, Japan).
Turbidity (NTU, LOD 12–240) was measured using a calibrated Secchi tube [33,34], while water color
and algal blooms were compared to photographic references present in the program app and data
sheets. All data were collected within a quality assurance and control framework (Table 2).

The presence of fish was recorded either directly or through evidence of fishing. The frequency
of sampling occasions with fish presence was used as a proxy for fish abundance. Participants are
also trained to differentiate between different macrophyte stands and vegetation complexity was
calculated as the mean of the percentage of samples at each site that recorded the presence or absence
of emergent, submerged, or floating vegetation. The presence of bare bank side, bank side grass, and
trees or shrubs and potential point pollution sources (urban/road, residential, industrial, other) were
expressed as binary variables as was the immediate dominant land use (predominately urban park,
urban residential). The sum of different potential point pollution sources was also calculated (0 to 4).
Fluctuation in water level was assessed as the proportion of observations recorded as low or high on
a three-point scale (i.e., not average). The presence or absence of algal blooms was averaged across
samples within each season and each site as a proxy for algal bloom frequency [35].

Table 2. Quality assurance and control framework within the FreshWater Watch programme.

Prevention Detection

Training Feedback
Train-the-trainer events Automatic (qualitative and quantitative)

One-day experiential learning event Principal Investigator (local partner)
Mandatory research quiz Global research team (Earthwatch)

Recording form instruction Quality control
Voluntary online modular learning 10% validity check by PI [28]

Method testing
Accredited laboratory [36,37]
Independent testing [33,38]

Manual database checking protocol [37]
Photographs

2.3. Statistical Methods

To consider the presence of seasonal trends in water quality, at each site seasonal median values
were calculated for nitrate and phosphate measurements (mg/L, ordinal scale) and mean values for
turbidity (NTU, numerical continuous), thus removing any effect of uneven sampling.

Study sites were then classified into two surface area categories to test for differences between ponds
and lakes. The classes related to a widely accepted pond definition whereby ponds are those bodies of
water that hold water for at least four months of the year and are between 1 m2 and 2 ha in surface area
that are typically shallow enough to allow for rooted macrophyte growth throughout [22,39].

Urbanization was calculated within a Geographical Information System (ESRI ArcMap 10.4) for a
1 km buffer from each water body using two metrics related to land-use. These were the percentage
cover of artificial surfaces, which was derived using the GLC-SHARE dataset [40] (range 0–100) and
population density from a gridded population of the world [41] (range 34.9 to 17,682 people/km2).
Both global datasets have a 30 arc-second (~1 km2) resolution. Each metric was standardized (0 to
1 scale) and the mean of both used as a broad indicator of surrounding urbanization at each site.
Those with urbanization values greater than the median (0.53) were thus considered urban (sites = 37),
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with those less than this figure peri-urban (38). Data groupings (e.g., seasonal, pond vs. lake, urban vs.
peri-urban) were tested for significant differences using non-parametric methods e.g., Kruskal–Wallis
test for multiple groups with the Dunn post hoc test where significant differences were present and
Mann–Whitney for paired comparisons. We also tested for differences in group variances using the
Brown–Forsythe test. All statistical analyses were carried out in R 3.3.2 [42].

To examine the underlying factors contributing to water quality differences between sites
within urban or peri-urban areas we used multiple linear regression incorporating the observational
components of the FWW recording form. All possible combinations were tested using an
AIC–information theoretic (AIC–IT) approach [43] limiting any single model to no more than three
predictor variables in order to retain statistical power. The AIC–IT approach is recognized as a solution
to overcoming problems of null hypothesis testing (e.g., a priori false null hypotheses and arbitrary
significance levels), and as a means for making inferences based on statistics weighted by support from
several models [44,45]. Multiple models are simultaneously compared using a likelihood measure (we
used AICc to account for small sample sizes) and an Akaike weight (wi), a measure of the probability
that the model i in question would be the best-fitting model of the candidate models, were the data
collected again under the same circumstances. The models are then ranked and the best set of models
identified using wi. Multi-model inferences can then be made through the use of wi by summing this
statistic across all models. The relative importance of predictor variables in this study was measured
using the cumulative probability (w + (j)), namely the sum of w values for all the models in which the
predictor of interest occurred. To assess model power and appropriateness the AIC-best predictors
were ran in a separate model and residual plots examined. Variance inflation factors (VIF) were
calculated to assess for covariance amongst predictors (where VIF > 2).

3. Results

We used a test set of 75 study sites distributed across three continents to analyze patterns relating to
seasonality, water body size, and the influence of urbanization. Median nitrate (N-NO3) concentration
of across all study sites was 0.10 mg/L (SD 0.94), however 10 European sites (nine UK and one
France) equaled or exceeded median concentrations of 1.0 mg/L. Median concentration of phosphate
(P-PO4) across all study sites was 0.016 mg/L (SD 0.036) with four sites (two UK and two Netherlands)
exceeding median concentrations of 0.1 mg/L. Mean turbidity was 24.1 NTU (SD 19.9) and algal
blooms were typically observed in one in three visits (31.5%).

3.1. Temporal Trends in Water Quality

Temporal patterns in water quality were comparable across all study regions (Figure 2) with
statistically significant peaks in nitrate concentration during winter with summer and autumn minima
(Figure 2a). Phosphate showed less variation across the seasons, although a spring–summer maxima
and autumn–winter minima were observed (Figure 2b).

Observations in algal blooms peaked during the summer months where 42.5% of the datasets
contained observations of algal blooms, and were significantly less frequently observed in the winter
(Figure 2d). North American sites had notably more algal bloom observations during the summer
and autumn than European sites where blooms were more frequently observed in the winter (see
Supplementary Material Table S2). Turbidity followed a similar trend (Figure 2c). A weak but highly
significant correlation was observed at a site level between algal bloom frequency and turbidity (ρ 0.12,
P < 0.01).



Water 2018, 10, 839 6 of 15

Water 2018, 10, x FOR PEER REVIEW  6 of 15 

 

significant correlation was observed at a site level between algal bloom frequency and turbidity (ρ 
0.12, P < 0.01). 

 
Figure 2. Comparison of nutrient concentrations (a,b), turbidity (c) and algal bloom observations (d) 
across seasons and continents within still waters (ponds and lakes). Lettering (e.g., A, B) denotes 
significant differences between seasons (Kruskal–Wallis post hoc Dunn test, where upper case = P < 
0.05, lower case = P < 0.1). Symbols are median seasonal values from individual sites: □ = Oceania, ○ = 
North America, ∆ = Europe. 

3.2. Ponds Versus Lakes 

Nutrient concentrations did not show differences between ponds and lakes (Table 3; Figure 3). 
Turbidity measurements were consistently and significantly (P < 0.05, Mann–Whitney) greater and 
more wide ranging (P < 0.001, Brown–Forsythe) in ponds (mean 25.3 NTU) than in lakes (mean 17.5 
NTU). 

Table 3. Comparison of average of and variance in nutrient concentrations, turbidity, and algal 
bloom occurrence between ponds (<2 ha) vs. lakes (>2 ha). Numbers in parentheses are ±1 SD.  

 Ponds Lakes Mann–Whitney p Brown–Forsyth p 
Nitrate (mg/L) 0.1 (0.75) 0.1 (0.44) 0.55 0.54 

Phosphate (mg/L) 0.01 (0.02) 0.01 (0.03) 0.86 0.85 
Turbidity (NTU) 17.0 (22.9) 13.4 (9.9) 0.01 ** <0.001 ** 

Bloom frequency (%) 32.0 (27.6) 30.5 (26.9) 0.80 0.56 

Note: Asterisks indicate significant difference where * = P < 0.5 and ** = P < 0.01. 

Figure 2. Comparison of nutrient concentrations (a,b), turbidity (c) and algal bloom observations (d)
across seasons and continents within still waters (ponds and lakes). Lettering (e.g., A, B) denotes
significant differences between seasons (Kruskal–Wallis post hoc Dunn test, where upper case = P < 0.05,
lower case = P < 0.1). Symbols are median seasonal values from individual sites: � = Oceania, # = North
America, ∆ = Europe.

3.2. Ponds Versus Lakes

Nutrient concentrations did not show differences between ponds and lakes (Table 3; Figure 3).
Turbidity measurements were consistently and significantly (P < 0.05, Mann–Whitney) greater and more
wide ranging (P < 0.001, Brown–Forsythe) in ponds (mean 25.3 NTU) than in lakes (mean 17.5 NTU).

Table 3. Comparison of average of and variance in nutrient concentrations, turbidity, and algal bloom
occurrence between ponds (<2 ha) vs. lakes (>2 ha). Numbers in parentheses are ±1 SD.

Ponds Lakes Mann–Whitney p Brown–Forsyth p

Nitrate (mg/L) 0.1 (0.75) 0.1 (0.44) 0.55 0.54
Phosphate (mg/L) 0.01 (0.02) 0.01 (0.03) 0.86 0.85
Turbidity (NTU) 17.0 (22.9) 13.4 (9.9) 0.01 ** <0.001 **

Bloom frequency (%) 32.0 (27.6) 30.5 (26.9) 0.80 0.56

Note: Asterisks indicate significant difference where * = P < 0.5 and ** = P < 0.01.
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being significantly more likely in larger water bodies. Conversely, complex macrophyte stands were
more frequently observed in the smallest water bodies (Figure 4).
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3.3. Influence of Urbanisation

Peri-urban ponds had higher levels of turbidity compared to urban equivalents (Figure 5c);
however, this was not found to be significant (Table 4). There were no differences observed
between urban and peri-urban lakes. Both ponds and lakes that were located in more urban areas
showed a significant increase in algal bloom observations (P < 0.05, Mann–Whitney) (Figure 5d, and
Table 5). Other water quality factors did not appear to differ consistently or significantly in response
to urbanization.
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Figure 5. Comparison of water quality trends across seasons between peri-urban (grey) and urban
(black), ponds (circles), and lakes (squares). Median values (and inter-quartile range) for nutrients,
mean (and standard error) for turbidity and algal bloom frequency.

Table 4. Comparison of nutrient concentrations, turbidity, and algal bloom occurrence between urban
vs. peri-urban ponds. Numbers in parentheses are ±1 SD.

Peri-Urban Urban Mann-Whitney p Brown–Forsyth p

Nitrate (mg/L) 0.1 (0.74) 0.1 (0.77) 0.19 0.59
Phosphate (mg/L) 0.01 (0.03) 0.01 (0.04) 0.07 * 0.11
Turbidity (NTU) 30.0 (27.1) 24.7 (19.0) 0.91 0.18

Bloom frequency (%) 25.1 (26.2) 38.6 (27.8) 0.09 * 0.54

Note: Asterisks indicate significant difference where * = P < 0.5.

Table 5. Comparison of average of and variance in nutrient concentrations, turbidity and algal bloom
occurrence between urban vs. peri-urban lakes and ponds. Numbers in parentheses are ±1 SD.

Peri-Urban Urban Mann–Whitney p Brown–Forsyth p

Nitrate (mg/L) 0.1 (0.63) 0.1 (0.66) 0.44 0.71
Phosphate (mg/L) 0.01 (0.03) 0.01 (0.02) 0.38 0.15
Turbidity (NTU) 25.4 (22.6) 22.8 (16.8) 0.74 0.25

Bloom frequency (%) 24.7 (24.5) 38.6 (28.3) 0.03 ** 0.22

Note: Asterisks indicate significant difference where ** = P < 0.01.
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3.4. Algal Bloom Frequency Across Urban and Peri-Urban Ponds and Lakes

To identify contributing factors to the differences in algal bloom frequency between urban
and peri-urban ponds and lakes, multiple linear regression was used, incorporating observational
records taken by FWW participants following a multi-model approach. This resulted in 286 model
combinations (max. three predictors per model).

Relative variable importance was calculated across all model combinations in relation to algal
bloom frequency in urban and peri-urban ponds and lakes (Table 6). The presence of potential point
sources of pollution, in particular those identified by citizen scientists as residential or road origin
occurred frequently in the top 10 models and were therefore important predictors of algal bloom
observations (Table 7). Another reoccurring driver was water level fluctuations. Interestingly, the
strength of the association of these drivers with algal blooms was much greater in urban areas (adj.
R2 0.24, P < 0.05), than in peri-urban areas, where both variable importance and standardized model
coefficient values were low (adj. R2 0.008, P > 0.05). In urban areas, residential discharges showed
a positive association with algal bloom frequency while water level fluctuation and road discharges
were negative.

Table 6. Comparison of nutrient concentrations, turbidity and algal bloom occurrence between urban
vs. peri-urban lakes. Numbers in parentheses are ±1 SD.

Peri-Urban Urban Mann–Whitney p Brown–Forsyth p

Nitrate (mg/L) 0.1 (0.47) 0.1 (0.41) 0.73 0.70
Phosphate (mg/L) 0.01 (0.04) 0.01 (0.2) 0.47 0.86
Turbidity (NTU) 18.7 (11.7) 19.2 (11.4) 0.72 0.85

Bloom frequency (%) 24.1 (22.6) 38.5 (30.4) 0.19 0.20

Table 7. Multi-model inference results using an Akaike information criterion (AICc)—information
theoretic (AIC–IT) approach for algal observations in urban and peri-urban ponds and lakes. Table
limited to the predictors occurring in the top 10 models. Asterix indicates significance level within the
AIC-best model where P < 0.05.

Peri-Urban Ponds and Lakes Urban Ponds and Lakes

Predictor βj w + (j) # Predictor βj w + (j) #
Dis_Road 0.078 0.33 8 Dis_Res * 0.300 0.67 9
Lev_Flu 0.054 0.28 3 Lev_Flu * −0.138 0.44 3
Dis_Tot 0.063 0.28 2 Dis_Road * −0.185 0.43 5
Veg_Flt −0.050 0.27 8 Dist_Tot −0.021 0.34 5

Veg_Emer −0.046 0.26 2 Bnk_Bar −0.070 0.25 3
LU_For −0.031 0.21 1 Veg_Flt 0.029 0.15 2

Fish 0.028 0.21 1 Bnk_Tree −0.031 0.14 1
LU_UrbRes −0.026 0.21 3 LU_UrbRes 0.028 0.14 2
Bnk_Grass −0.025 0.20 - LU_UP −0.006 0.10 -

Dis_Res 0.020 0.19 - Veg_Sub 0.001 0.09 -

Dis_Road = road discharge, Dis_Res = residential discharge, Lev_Flu = water level fluctuation, Dis_Tot = total
number of discharges, Veg_Flt = floating vegetation Veg_Emer = emergent vegetation, Bnk_Bar = bare bank, LU_For
= forested land-use, Bnk_Tree = bankside trees, LU_UrbRes = urban/residential land-use, Bnk_Grass = bank side
grass, LU_UP = urban park land-use, Veg_Sub = submerged vegetation. Asterisks indicate statistically significant
predictors where * = P < 0.5.

4. Discussion

4.1. Physical and Temporal Trends

Data collected by citizen scientists engaged in a global study of freshwater quality identified
clear seasonal trends in nutrient status, with peak concentrations of nitrate (N-NO3) during winter
periods and phosphate (P-PO4) during spring and summer. Many studies have principally focused on
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phosphorous owing to its assumed role as a key limiter to algal growth, however, bioavailable nitrogen
is also an important driver of aquatic vegetation dynamics [46]. In the present study, winter peaks in
nitrate conform to commonly observed patterns (e.g., New York lakes [47]) related to assimilation by
algae and other plants throughout the spring and summer growing period and subsequent release into
the water column during plant senescence when uptake by phytoplankton and denitrifying bacteria is
minimal [48,49].

Summer increases in phosphate accord well with studies of shallow artificial ponds in England [50]
and Danish lakes [12] where summer peaks in total phosphorus (TP) were observed. This is frequently
suggested to reflect internal loading mechanisms, to which shallow water bodies are more susceptible
than deeper water bodies owing to the intense sediment to water column interface [11]. The release
of P from the sediment is often in a biologically available form, more readily available for uptake by
phytoplankton as indicated by trends in algal bloom frequency [51]. Thus the combination of nutrient
sampling kits and observational parameter appeared appropriate for monitoring these trends (accept
hypothesis 1). Turbidity (NTU) and algal bloom frequency trends were comparable, likely because
of the underlying covariance in the parameters. However, whilst significant, the relationship was
not strong.

4.2. Pond vs. Lake

Our study identified consistently higher levels of turbidity within ponds (<2 ha) than lakes.
Reasons for this are uncertain, however, could relate to the susceptibility of shallow water bodies
to resuspension of sediment following disturbance, e.g., from benthivorous fish [52,53] or wind
action [54,55]. Fish presence was typically observed less frequently across repeat visits to smaller
water bodies (accept hypothesis 2), in agreement with several other studies of fish abundance [14,15];
however, fish were observed at least once in two-thirds (63%) of ponds. Although species were
not identified, the relative density of fish in ponds rather than abundance may be an over-riding
influence [56].

Higher macrophyte complexity was also observed within small ponds compared to lakes.
A number of studies have highlighted the potential conservation value of ponds [2,3], which is closely
linked to macrophyte diversity [19,57]. The present study was limited to the presence of emergent,
submerged and floating vegetation based on visual observations, allowing for an underestimation in
larger, deeper water bodies, in particular regarding the presence of submerged vegetation.

4.3. Influence of Urbanisation

The influence of urbanization was most pronounced in the frequency of algal bloom observations
and there seemed to be a potentially greater influence in ponds (reject hypothesis 3). Eutrophic
conditions, a precursor to algal blooms are distinguishing component of the urban stream (urban
stream syndrome) [58,59]. This study indicates that it is a characteristic of urban ponds, contributing
to the global issue, often associated to lakes [60,61].

The association of algal blooms with a suite of observational parameters indicated that the
presence of residential discharges were a driver of algal bloom frequency, with hydrological variability
(water level fluctuations) likely to reduce the frequency of algal blooms in the most urban sites.
Interestingly, the presence of road discharges were also associated with a reduction. Within our study
sites, the presence of residential discharges are more likely to represent phosphate availability as a
consequence of domestic waste water and household misconnections [62,63]. Conversely, the negative
effect of both water level fluctuation and the presence of road discharge could reflect dilution of
nutrients or influence trophic interactions resulting in higher grazing pressure [64,65]. The influence of
road discharge is less clear, however the chemical composition of road discharge has been identified to
both stimulate (e.g., sodium [66]) or inhibit algal growth (e.g., de-icing salts or herbicide [67]).

Citizen observatories have previously been identified as a potentially powerful tool for the
monitoring of algal blooms [35,68] with a suite of applications now having being developed to
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facilitate their record such as CyanoTRACKER (University of Georgia), Bloomin’ Algae (Centre for
Ecology and Hydrology), and bloomWatch (US EPA). The present study suggests that potential local
scale drivers may also be monitored by citizen scientists.

5. Conclusions

The incorporation of trained volunteers in the monitoring of inland water bodies presents a
potential to broaden our knowledge of their conditions and dynamics [69,70]. This is particularly
important for shallow lakes and ponds, which are often overlooked by national and international
legislation. In the present study, we demonstrate that observations and measurements of trained
citizen scientists can support the identification of temporal and spatial patterns in temperate ponds
and lakes.

Most ponds and lakes within urban areas are artificial and often built as part of the supporting
infrastructure (e.g., storm water storage, sustainable urban drainage systems). From their local
aquatic ecosystems, human populations derive many services which support the economy and
wellbeing [71,72]. Direct drivers to the loss of ecosystem integrity will affect their functioning [73,74] and
are often difficult to identify. We show that the combination of GIS data with local-scale observational
data recorded by the citizen scientists helps to identify local drivers to ecosystem degradation.
The results also confirm the role of size in influencing both water quality and ecosystem conditions,
again indicating the potential benefits of citizens to cover these often overlooked ecosystems.

Overall, the approach proved promising to both ends, however, citizen science is not without
its limitations and its application is not always appropriate. Further, the engagement of citizens
can be time-consuming and further research is needed to understand the motivations of local
communities with regards to their freshwater resources. We recommend that citizen science provides
a useful complementary tool to regulatory and professional monitoring and could act as an early
warning system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/7/839/s1,
Table S1: Site summaries for ponds and lakes included within the analysis, Table S2: Average seasonal water
quality statistics (±1SD) for temperate still waters across Oceania (OCN), North America (NAM), and Europe
(EUR). Median values displayed for nitrate (N-NO3) and phosphate (P-PO4), mean values for turbidity (NTU)
and frequency of algal observations (presence/absence).
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