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A B S T R A C T

The unprecedented increase of life expectancy challenges society to protect the elderly from morbidity and
mortality making vaccination a crucial mean to safeguard this population. Indeed, infectious diseases, such as
influenza and pneumonia, are among the top killers of elderly people in the world. Elderly individuals are more
prone to severe infections and less responsive to vaccination prevention, due to immunosenescence combined
with the progressive increase of a proinflammatory status characteristic of the aging process (inflammaging).
These factors are responsible for most age-related diseases and correlate with poor response to vaccination.
Therefore, it is of utmost interest to deepen the knowledge regarding the role of inflammaging in vaccination
responsiveness to support the development of effective vaccination strategies designed for elderly.

In this review we analyse the impact of age-associated factors such as inflammaging, immunosenescence and
immunobiography on immune response to vaccination in the elderly, and we consider systems biology ap-
proaches as a mean for integrating a multitude of data in order to rationally design vaccination approaches
specifically tailored for the elderly.

1. Need for vaccines designed for the elderly

The demographic revolution occurred in the last 100 years has led to a
consistent increase of life expectancy and a proportional growth of the el-
derly population. The population in high income countries is aging rapidly,
and between 2015 and 2050, the proportion of the world's population over
60 years is expected to nearly double from 12% to 22% [1].

Unfortunately, the average prolongation of lifespan is not fully paral-
leled by a prolongation of the health-span. This demographic dynamic is
posing critical burdens for the majority of the health care systems, stretched
by the rising costs of care of this ever-growing fragile portion of the po-
pulation. Preventive medicine is the most effective and feasible strategy to
protect health in old subjects and vaccination against the most common
infectious diseases is the most indicated approach. Seasonal influenza,
pneumococcus infection and reactivation of varicella zoster virus are three
harmful pathological conditions that represent causes of significant mor-
bidity and mortality for old people, more susceptible than young adults.

The vaccination recommendations for the elderly established in the USA
and in Europe include as main target diseases the aforementioned seasonal
influenza, pneumococcal disease and reactivation of varicella zoster virus
(VZV), with vaccination schedules differing from country to country
(Table 1). Regular booster shots against tetanus, diphtheria, pertussis, polio
are also recommended in the elderly, and in some countries (Austria,
France, Liechtenstein and Portugal) the booster intervals are shortened for
persons over 65 years as the result of a more rapid decline in antibodies
with advancing age [2]. Nevertheless, while compliance with vaccine re-
commendations in children is generally high, reaching over 90% coverage
in most high-income countries, it is far lower in adults [3] and the burden of
vaccine-preventable diseases in terms of morbidity, mortality and direct and
indirect costs remains high.

Most currently used vaccines are less immunogenic and effective in the
elderly compared to younger adults [4]. This is due to several factors, in-
cluding the fact that most of the vaccines are specifically designed for
children and young adults with an immune system that is different from
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elderly people, where physiological immunosenescence coexists with the
personal history of infections and vaccinations. As an example, the ability of
influenza vaccine to induce protection is related to age, with an efficacy
between 70% and 90% in children and adults, but dropping to 30–50% for
those over 65 years of age [4,5]. Similarly, responses to pneumococcal
polysaccharide and hepatitis B vaccines are compromised by old age, and
antibody responses are of shorter duration in older people [6].

The value of vaccines for the elderly relies not only on efficacy, an in-
dicator of the vaccine ability to confer protection against a specific infection,
but also on effectiveness, that is a measure of the capacity of generally
improving the health status of the older individual avoiding other related
diseases. It is therefore of primary importance to design vaccination stra-
tegies specifically tailored on the elderly population, both in terms of vac-
cine formulations and vaccination protocols, taking in consideration the
aging immune system and inflammaging, two essential characteristics of
aging, described more in detail in Section 2. This priority has also been
highlighted in the recent European roadmap for vaccine development [7].

A deeper understanding of optimal strategies to stimulate the elderly
immune system would have an enormous impact not only in the optimi-
zation of existing vaccines but also in guiding the development of novel
vaccines highly needed for the elderly such as those against respiratory
syncytial virus (RSV), antibiotic-resistant bacteria more frequent in this age
group also due to hospitalization (including Staphylococcus aureus,
Clostridium difficile, Candida spp., Pseudomonas aeruginosa, Escherichia coli,
Klebsiella pneumoniae and Acinetobacter baumannii), as well as in the design
of therapeutic cancer vaccines [8].

To allow these goals to be in closer reach, we first review the current
knowledge on the elderly immune system and response to vaccination and

we propose to focus on the relevance of vaccine adjuvants, on im-
munobiography, i.e. the lifelong exposures to antigenic stimuli leading to the
individual immunological elderly phenotype [9], and on systems approaches
to enable the future design of effective vaccines tailored on the elderly.

2. Immune system in aging

2.1. Immunosenescence

As a result of the immune function decline, elderly subjects do not re-
spond efficiently to novel or previously encountered antigens. Indeed, with
aging, the immune system of elderly is remodelled with fewer naïve cells
and increase in dysfunctional memory cells, as well as primary lymphoid
organs involution and altered innate immune response, leading to greater
susceptibility to infectious diseases and reduced responses to vaccination
(Fig. 1).

Nevertheless, we should consider the differences measured between
elderly individuals and young adults as an adjustment over the life course to
the requirements of the ecological environment where the individual
evolves, rather than an abnormal process [10]. Overall, as a result of im-
munosenescence, the elderly population is more susceptible to infections, in
particular to influenza, pneumococci, RSV and group B streptococcus but
also to opportunistic and re-emergent chronic infections such as herpes
zoster.

The complex biological processes of aging are the result of a network of
events regarding different cell types and tissues, alterations in gene reg-
ulation and protein expression, signalling pathways and biological net-
works. Different cell populations such as neutrophils, monocytes and den-
dritic cells (DC) are altered, and their functions are reduced, including
chemotaxis, phagocytosis, signalling pathways and intracellular killing via
free radical production. Moreover, a set of phenomena that are better de-
scribed by the concept of inflammaging, detailed in section 2.2, are relevant
in this context.

Adaptive immunity undergoes profound and complex changes with age,
including pervasive epigenetic and metabolic modifications, affecting most
of the subsets of naïve, memory and effector T cells, T regulatory (T reg) and
B cells [11–13]. Reduced amounts of naïve T and B cells, increased numbers
of memory cells and shrinkage of T cells repertoire owing to large clonal
expansion towards epitopes of persistent viral infections (cytomegalovirus
[CMV] and Epstein Barr virus [EBV]), are some of the major changes as-
sociated with aging [14,15]. Immunosenescence involves decreased effi-
ciency of the adaptive immune system, such as naïve B and T cells pro-
duction rate as well as composition and quality of the mature lymphocyte
pool. The effects of aging on the immune system are widespread and affect
the development of naïve lymphocytes and their cellular profile. Primary
lymphopoiesis in the elderly is significantly reduced, mainly due to changes
in progenitor cells [16–18]. In bone marrow, hematopoietic stem cells (HSC)
shifts have been shown from lymphoid-biased to myeloid-biased subsets, as
demonstrated by the increased expression of myeloid lineage genes and
downregulation of those specifying a lymphoid lineage fate [19]. It has been
recently reported that HSC from young or aged mice regenerate distinct
adaptive immune system upon transplantation into RAG1-/- mice that re-
semble the T and B cell systems of young and aged mice [20]. Therefore,
changes in the function of HSCs are among the main responsible of both
phenotypic and functional modification in the immune system of the elderly.

The bone marrow significantly decreases with age and allows fat de-
posits in the marrow cavity as a result of the differentiation of stromal cells
to adipocyte-like cells [21]. This leads to a decrease in the absolute number
of early B cell progenitors, including both pro-B and pre-B cells, shifting
from a B cell compartment rich in naïve B cells but with few memory B cells
to one with reversed proportions in older age [6,12]. Moreover, lymphoid-
biased stem cells show a decline in lymphopoiesis, common lymphoid
progenitors, pre–pro-B cells, and pro-B cells from old mice do not proliferate
as extensively as young cells do, and they exhibit significantly higher rates
of apoptosis [22].

In addition to the strong changes in the lymphocyte development

Table 1
Influenza, pneumococcal and herpes zoster vaccine schedules recommended for
elderly in countries of the European Union and in USA.

Influenzaa Pneumococcal disease Herpes
zoster

Europe
Austria > 65 > 50 > 50
Belgium > 65 > 86
Bulgaria > 65 > 2 months (mandatory)
Croatia > 65
Cyprus > 65 > 65
Czech Republic > 65 > 65 > 50
Denmark > 65 > 65
Estonia > 65
Finland > 65 > 65
France > 65 > 2 months (mandatory) > 65
Germany > 60 > 50
Greece > 60 > 65 > 60
Hungary > 60 > 2 months

(mandatory); > 50
Iceland > 60 > 50
Ireland > 65 > 65
Italy > 65 > 65 > 65
Latvia > 65 > 2 months (mandatory)
Liechtenstein > 65
Lithuania > 65
Luxembourg > 65 > 65
Malta > 55 > 65
Netherlands > 65
Norway > 65 > 65
Poland > 55 > 2 months

(mandatory); > 50
Portugal > 65 > 65
Romania > 65 > 65
Slovakia > 60 > 2 months

(mandatory); > 60
Slovenia > 18 > 65
Spain > 65 > 65
Sweden > 65 > 65
United Kingdom > 65 > 65 > 70

USA > 18 > 65 > 50

a Most countries recommend IIV.
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compartment, the composition and the quality of the mature lympho-
cyte pool is also profoundly changed in the elderly. An increased pool of
memory B cells has been observed, with limited repertoire diversity,
that is not paralleled by a similar increase in the number of plasma cells
[23]. Age-related autonomous B cell defects include a reduction in ac-
tivation-induced cytidine deaminase (AID), the enzyme necessary for
class switch recombination, somatic hypermutation, and IgG produc-
tion, as well as in E47, the key transcription factor regulating AID
[24,25]. Therefore, the percentage of switched memory B cells, the
predictors of optimal antibody responses, decreases with age [25],
while late memory B cells, the antigen-experienced and proin-
flammatory B cell subset, increase [26]. The latter is a highly in-
flammatory B cell subset, with characteristics of cell senescence such as
reduced telomerase activity [27] and poor ability to proliferate in vitro
in response to mitogenic stimulation, even though they are tran-
scriptionally active, and express RNA for multiple senescence-asso-
ciated secretory phenotype (SASP) markers, such as the pro-in-
flammatory cytokines TNF-α/IL-6/IL-8 and for the pro-inflammatory
micro-RNAs (miRs)-155/16/93 [28]. Through secretion of these pro-
inflammatory mediators, late memory B cells affect the microenviron-
ment and in turn sustain and propagate the inflammatory response and
negatively regulate the function of other immune cells. Another char-
acteristic of the B cell responses in the elderly is their serological profile,
that shows the increased presence of autoantibodies and low affinity

antibodies and, in some subjects, the occurrence of an over-re-
presentation of specific classes of antibody from individual B cell clones
[6]. Similarly, the thymus, the site of T cell development, is regressed in
the elderly, with a consistent reduction of epithelial cells and increase
of infiltrating adipocytes [29]. Mitogen-induced proliferation of T cells
from older individuals shows that T cells have considerably less pro-
liferative capacity in vitro compared with T cells from younger in-
dividuals [30]. This phenomenon is often coupled with the accumula-
tions of late-stage memory CD8+T cells, resulting from persistent
infections such as CMV. This chronic viral infection can direct an oli-
goclonal expansion of memory cells, typically characterized in humans
by the loss of the co-stimulatory molecule CD28 and impaired immune
function, however the full implications of this infection with aging and
immunosenescence are still matter of debate [31]. A gradual decline in
functional response of memory and effector T cells is also held re-
sponsible of reduced response to vaccination in older persons [32,33].

Immunosenescence also compromises the ability of CD4+T cells to
differentiate into functional subsets resulting in a multitude of dysre-
gulated responses, including a reduced cognate help to B cells, thus
impacting humoral immunity [34]. Moreover the ratio of Th17 cells, a
proinflammatory subset of CD4+T cells, to T reg appears to increase in
elderly people thus favouring a basal proinflammatory status [13,35].

These changes in the immune system of the elderly are the basis of the
reduced response to vaccination and call in for the design of vaccination

Fig. 1. Vaccine immune response in function of changes of the innate and adaptive immune system associated with aging. With aging, both the innate and
the adaptive immune responses decrease, leading to reduced responses to vaccination. Immunosenescence involves the involution of primary lymphoid organs (bone
marrow and thymus) with a reduction of B and T cells progenitors, dysfunctional memory cells, due to chronic antigenic stimulation (including, but not limited to,
CMV), reduction of phagocyte functions (such as chemotaxis and phagocytosis), with concomitant increased levels of pro-inflammatory cytokine production. All
these changes correlate with a decline in the immune response to vaccination.
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strategies specifically tailored to optimally stimulate the aging immune
system.

2.2. Inflammaging

Inflammaging is a major immunological characteristic of the elderly,
defined as the progressive onset of a chronic, sterile and low-grade in-
flammation [36] recognized as a general etiological agent for age-related
pathologies, extensively revised in [37–39]. Inflammaging strongly impacts
on elderly subjects susceptibility to communicable disease and on the im-
mune response to vaccination, therefore it should be taken in consideration
for the design of vaccine formulations, including adjuvants. Several pro-
cesses may contribute to inflammaging: a variety of organs and tissues
damages due to increase of cells death rate and senescence, mitochondrial
dysfunction, inflammasome and NFkB activation, circulating miRNAs,
chronic infections such as CMV, hormones and reactive oxygen species -ROS
[40], age related changes of nutrition, metabolism, α-galactosilated N-gly-
cans [41] and host gut microbiota (GM) dysbiosis [42]. In particular, acute
and chronic viral and bacterial infections and self-generated misplaced/al-
tered/aggregated proteins and cell debris - largely resulting from the con-
tinuous death of cells occurring in the body - appear to be the major stimuli
fueling inflammaging. Inflammaging is therefore particularly important for
vaccinology, owing to recent data suggesting that increased level of in-
flammatory cytokines in immune cells (such as macrophages, NK-cells, DC,
late memory B cells and Th17 lymphocytes) and in blood correlate with
poor response to vaccines [43].

Recently it has been reported in mouse studies that the GM exerts its
regulatory effects not only on intestinal immunity but also on systemic
immune responses and systemic T cell subset populations whose distribu-
tion can be skewed by different microbiota predominance [44–46]. Age-
related microbiota changes drive intestinal permeability, systemic infl-
ammation, and macrophage dysfunction, thus promoting age-associated
inflammation [47]. Influenza viral infection affects GM composition, at the
same time the immune response to influenza infection is affected by age and
GM [48].

In a study from Biagi et al. [49] the authors described for the first time
the changes occurring in the human GM with age and extreme longevity
and showed that a profound remodeling occurs progressively with age and
correlates to inflammaging.

3. Currently recommended vaccines for the elderly

3.1. Influenza vaccine

Influenza infection is one of the main causes of morbidity and mortality
in the elderly. Worldwide, influenza annual epidemics are estimated to re-
sult in about 3–5 million cases of severe illness, and about 290.000–650.000
deaths [50]. Annual influenza vaccination is considered the most effective
strategy to prevent influenza by the World Health Organization (WHO) and
it is recommended for the elderly people in numerous high-income coun-
tries. However, the efficacy of influenza vaccines is reduced to 30–50% in
elderly subjects as compared to 70–90% in adults [4,5]. In the USA, adult
influenza vaccination is recommended for persons aged>19 years who do
not have contraindications [51], while in Europe annual vaccination re-
commendations vary widely among Member States (Table 1) [52]. Two
types of influenza vaccine are currently available: inactivated influenza
vaccine (IIV) and live attenuated influenza vaccine (LAIV). The trivalent
inactivated influenza vaccine (TIV) contains antigens from two subtypes of
influenza A strain (H1N1 and H3N2) and from one strain of influenza B
(Victoria or Yamagata lineages). The frequent observation of co-circulation
of the two B lineages and the frequent mismatch between the vaccine
component and the circulating strains have prompted vaccine manufacturers
to produce quadrivalent inactivated influenza vaccines (QIV) containing the
two A strains and two B strains [53] that have now been licensed in some
countries. LAIV, first licensed and used in Russia and in North America in
2003, is mainly recommended in children. Influenza viruses are constantly

changing, due to the so-called “antigenic drift”, which consists of the
spontaneous modification of the surface proteins hemagglutinin (HA) and
neuraminidase (NA). For this reason, the vaccine composition has to be
adapted annually to integrate viral strains as similar as possible to the epi-
demic strains. The amount of antigen of an influenza-inactivated vaccine is
calculated on the content of HA, that is not less than 15 μg of each of the
three (or four) HAs. The second component is NA; various amounts of in-
ternal proteins, like M1 and NP, can also be detected [54].

The effectiveness of TIV in the elderly is modest, ranging from 30% to
70% in preventing hospitalization from pneumonia, according to data ob-
tained from a systematic review of 64 studies assessing the efficacy and
effectiveness of influenza vaccine in people ≥ 65 years [5]. Age-related
defects in the B cell compartment, such as the decreased generation of
specific serum antibodies [55,56], switched memory B cells [55,57], and
long-lived plasma cells [57] are in part responsible for sub-optimal antibody
responses of elderly individuals to vaccination [22,57–59]. Several strate-
gies have been applied to improve influenza vaccines for the elderly. These
include the increase of the vaccine antigen from 15 to 60 μg of HA protein
per dose [60], the administration of the vaccine by intradermal versus in-
tramuscular route [61] and the formulation of the inactivated vaccine with
oil-in-water emulsion adjuvants [62].

The high dose vaccine contains four times the amount of HA antigen
compared to the traditional formulation and it has been associated with a
stronger immune response and better effectiveness than the regular dose flu
vaccine in older people [63], even though these responses do not achieve
the magnitude of those induced by the standard dose vaccine in young
adults [64].

Intradermal vaccination with trivalent IIV was licensed by the European
Medicines Agency (EMA) for adults older than 60 years in winter 2010/11
in Europe, and in September 2010 in Canada. In 2011 it was also approved
in the USA by the Food and Drug Administration (FDA) for subjects older
than 64. Intradermal administration stimulates dermal population of spe-
cialized DC, such as Langerhans cells, that are extremely efficient in antigen
presentation [65] and increases also the recruitment of DC and macrophage
precursors from the blood stream. Mature DC migrate to the paracortical
area of the draining lymph nodes, where they present processed antigens to
T cells. Intradermal free antigen can also disseminate to the draining lymph
node with consequent stimulation of resident DC and interaction with
specific B cells. Results collected during the last few years, have demon-
strated that intradermal influenza vaccines are able to confer a better im-
mune response than TIVs at a full antigen dosage in the elderly and an
equivalent response, at a lower antigen dose, in healthy adults and in pa-
tients with severe chronic diseases or immunocompromised [66].

The MF59-adjuvanted trivalent inactivated vaccine was specifically
developed to increase the immune response of the elderly to influenza
vaccination. MF59, a squalene-based oil in water emulsion described in
detail in section 4.1, was first licensed in 1997 in Italy and later in more
than 20 countries worldwide, in association with the seasonal inactivated
subunit influenza virus vaccine for individuals aged 65 years or more. Its
effectiveness and safety have been analysed in a large, prospective, rando-
mized, observational study (2006–2009 influenza seasons, about 170,000
subjects) carried out in northern Italy that highlighted a 25% lower risk of
hospitalization for influenza or pneumonia for the MF59-adjuvanted vac-
cine relative to trivalent inactivated vaccine [67,68]. Other emulsion ad-
juvants such as AS03 or AF03, based on squalene plus other components,
have been licensed with the pandemic A/H1N1 vaccine and with the avian
A/H5N1 vaccine, showing a higher efficacy for prevention of some subtypes
of influenza than does a non-adjuvanted TIV [56,69–71]. Finally, vaccina-
tion of people that could come in close contact with elderly individuals,
such as children and healthcare workers, can be considered as an indirect
protection strategy.

Overall, studies evaluating the efficacy of influenza vaccination in the
aged population are still controversial, and criticisms arise in the criteria
used for evaluating efficacy and effectiveness [72]. Since randomized pla-
cebo-controlled clinical trials in this age class are very uncommon, most of
the data arise from observational studies that have used different designs,
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outcomes, and end points providing a large set of effectiveness estimates
[73]. Confounding factors such as comorbidities, health status or previous
history of vaccination can alter the estimates and different methods to ad-
just for these confounding factors have been used [74]. The efficacy findings
analysed in younger, healthy seniors may not apply to older and frail seniors
because of advanced age and the presence of serious medical conditions
associated with immune functions decline.

3.2. Pneumococcal vaccine

Streptococcus pneumoniae is the most commonly isolated agent of
community acquired pneumonia and also causes invasive pneumo-
coccal disease (IPD), defined as the presence of the bacterium in a
normally sterile site (blood or cerebrospinal fluid). Pneumococcal dis-
ease is most common at the extremes of age, with a steep increase in
incidence in people over 65 years. The presence of co-morbidities and
immunosenescence increase the susceptibility to community acquired
pneumonia in general and to pneumococcal disease in particular [75].
Pneumococcal vaccination is therefore recommended in the elderly
(Table 1). Licensed pneumococcal vaccines include the 23-valent
pneumococcal polysaccharidic vaccine (PPV23) that contains 25 μg of
purified pneumococcal polysaccharide of each serotype, and the 13-
valent conjugated vaccine (PCV13) that contains 2.2 μg for each poly-
saccharide type, except 4.4 μg of serotype 6B, conjugated to the non-
toxic mutant of diphtheria toxin CRM197 and 0.125mg of aluminium
phosphate as an adjuvant. PCV13 has been typically recommended for
children under 2 years of age, while the PPV23 for adults and elderly.
Recently, the use of PCV13 has also been recommended in the elderly
[76] (https://vaccine-schedule.ecdc.europa.eu, https://www.cdc.gov/
features/adult-pneumococcal/index.html), since PPV23 is poorly im-
munogenic, elicits a T-independent response and relatively low anti-
body titers with low functional activity. PPV23 has indeed shown low
to moderate effectiveness against vaccine serotype pneumococcal
pneumonia in people aged 65 years or older and this could vary by
population groups [77]. Despite covering less serotypes, PCV13 is able
to elicit a T-dependent response, producing high titers of functional
(opsonophagocytic) antibodies and is thus being recommended in el-
derly populations. PCV13 has proven safe and immunogenic in the el-
derly even in the presence of comorbidities [76], but data on vaccine
efficacy on this population are not yet available. Since the immune
response to PPV23 is suboptimal in the elderly and repeated adminis-
tration of PPV23 may also lead to hyporesponsiveness, vaccine strate-
gies employing priming with PCV13 and boosting with either PCV13 or
PPV23 are also recommended in the elderly population (https://
vaccine-schedule.ecdc.europa.eu/; https://www.cdc.gov/features/
adult-pneumococcal/index.html).

3.3. Herpes zoster vaccine

Herpes zoster (HZ, or shingles) is caused by reactivation of latent var-
icella zoster virus. Viral reactivation happens when components of cell-
mediated immunity become compromised by disease, pharmacological
treatments or aging. Incidence of HZ is in fact higher in the elderly and rises
with age (3–5/1000 persons/year in the general population, 8–12/1000
persons/year in people>80 years old) [78]. HZ is a major cause of hos-
pitalization in the elderly (65/100.000 hospitalizations in people>80 years
old) and can be complicated by postherpetic neuralgia, with invalidating
pain after the rash is resolved, or by eye involvement, when the ophthalmic
branch of the trigeminal nerve is affected [78]. Two different vaccines
against shingles are currently licensed: the HZ live attenuated zoster vaccine
(Zostavax, Merck) and the subunit zoster vaccine (Shingrix, GSK). The live
attenuated vaccine contains at least 20.000 PFU of the Oka strain, an atte-
nuated VZV strain originally isolated in Japan that is also used in children,
albeit at a lower dose, to prevent chickenpox. The recombinant subunit
vaccine contains 50 μg of the VZV glycoprotein E (gE), which is a major
component of the viral surface, formulated with the AS01B adjuvant (50 μg

of Quillaja saponaria Molina, fraction 21 and 50 μg of 3-O-desacyl-4′-mono-
phosphoryl lipid A from Salmonella minnesota, see section 4.1). The live at-
tenuated vaccine was licensed in 2006 in the USA, the vaccine efficacy,
assessed in a recent metanalysis, was 33% in preventing HZ, but it was
higher in preventing both hospitalizations due to HZ (74%) and postherpetic
neuralgia (57%) [79]. The recombinant vaccine has been licensed in 2017
and demonstrated an efficacy of about 97% in preventing HZ in 50 years of
age or older adults, with a moderate reactogenicity (pain at injection site in
79.1% of recipients and myalgia in 46.3%) [80]. Immunological analysis
revealed that the recombinant vaccine, containing AS01B adjuvant, elicits a
robust and persistent memory response in older adults [81].

4. Next generation vaccines designed for the elderly

In this section we discuss the current limitations in vaccination of
the elderly and promising routes that research can undertake to im-
prove efficacy and effectiveness of this crucial medical, social and
economic intervention. These include design of vaccine adjuvants
specifically tailored for the elderly; inclusion of the concept of im-
munobiography in the development of new vaccines and aged patients’
stratification; adoption of systems approaches to enable understanding
and inclusion of complex phenotypes in vaccines design (Fig. 2).

4.1. Need for vaccine adjuvants

Adjuvants are substances capable of enhancing and properly skewing
the immune responses to the vaccine antigen, and their choice can dra-
matically affect the type and the magnitude of the adaptive immune re-
sponse to the vaccine antigen, by impacting on the innate response starting
signal [82]. The presence of the adjuvant in the vaccine formulation can
enhance the speed andmagnitude of the development of immune responses,
reduce the dose of antigen and/or vaccinations needed, increase cross-
protection and reduce non-responsiveness in specific target populations
such as the very young or the elderly. Development of vaccine adjuvants
specifically designed to optimally stimulate the aging immune system,
taking in consideration its inflammatory status and immunosenescence, is
essential for the design of next generation vaccines for the elderly (Fig. 3).

Vaccine adjuvants currently used in the elderly are MF59 and AS03,
included in influenza vaccines, and AS02 used for the recombinant HZ
vaccine [62,83–85].

MF59 is an oil-in-water emulsion composed of squalene and the sur-
factants Tween 80 and Span85, firstly licensed as an adjuvant in a seasonal
influenza vaccine for older adults in 1997 [62]. Even though the mechanism
of action of this adjuvant is still not completely understood, MF59 was
shown to induce the recruitment and activation of cells at the site of in-
jection, to stimulate a local environment characterized by the expression of
several immunostimulatory cytokines that can favour the uptake of the
antigen by antigen-presenting cells and its transport to the draining lymph
nodes [86]. Furthermore, an increased breadth of antibody response has
been reported, demonstrating that MF59 influences both the quantity and
the quality of anti-influenza antibodies [87]. Ongoing phase III clinical trials
investigate MF59 also in a tetravalent influenza vaccine formulation in
adults ≥ 65 years of age (NCT02587221; NCT03314662).

AS03 and AS01 belong to a family of adjuvants called Adjuvant Systems
(AS), obtained by the combination of immunostimulatory molecules with
classical adjuvants (such as aluminium salts, liposomes and oil-in-water
emulsions), designed to provide better and broader protection than classical
formulations [88]. AS03 has been licensed with pandemic A/H1N1 and
avian A/H5N1 split inactivated monovalent vaccines, while AS01 with the
recombinant malaria (RTS,S) and herpes zoster (RZV) vaccines. AS03 ad-
juvant contains squalene and the immunostimulant molecule α-tocopherol.
Despite the fact that both MF59 and AS03 adjuvants are squalene-based
emulsions, in vivo behaviours differ due to the presence of the other com-
ponents. AS03 is able to strongly induce upregulation of genes encoding
inflammatory cytokines and chemokines at distant sites, such as the
draining lymph nodes, and this effect is specifically mediated by α-
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Fig. 2. Integrated strategy for the development of next generation vaccines for the elderly. The development of vaccination strategies for the elderly should
consider an integrated approach based on the design of vaccine adjuvants/formulations with mechanism of action optimally suited to act in the context of an
inflammatory status (inflammaging) taking in consideration the biological age and immunological history (immunobiography) of the elderly. The immunological,
clinical and omics data generated from clinical studies of vaccination in the elderly should be integrated using a systems vaccinology approach to guide the design of
next generation vaccines specifically tailored for the elderly.

Fig. 3. Development of vaccine formulations adapted to the immune system of the elderly. Vaccine formulations, including adjuvants, should be specifically
designed considering the immunological status of the elderly, in which a decreased immune responsivity due to immunesenescence, co-exists with the chronic, low-
grade inflammation (inflammaging). The vaccine formulation/adjuvant should be designed to optimally balance between immune stimulation and inflammatory
status. The immunobiography approach could inform the stratification of elderly subjects and guide the implementation of vaccination strategies designed for specific
elderly population clusters.
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tocopherol [89]. Studies comparing the adjuvanticity of the two squalene-
based emulsion adjuvants combined with A/H1N1 monovalent vaccines,
reported a higher humoral response with the AS03-adjuvanted vaccine as-
sociated with higher reactogenicity [90,91]. In order to reduce this side
effect the AS03B, containing half a dose of α-tocopherol, has been devel-
oped and assessed in clinical studies [92].

AS01 is a liposome-based vaccine adjuvant system containing two
immunostimulant molecules, the MPL (3-O-desacyl-40-monopho-
sphoryl lipid A of S. minnesota), and QS-21, the lytic saponin fraction of
QuilA. As described in section 3.3, the subunit HZ vaccine (Shingrix,
GSK) contains the AS01 adjuvant combined with the gE glycoprotein of
VZV. The unique ability of this vaccine to enhance a strong T-cell re-
sponse has been demontrated in humans, where significantly higher T-
cell and humoral responses are observed with adjuvanted compared to
unadjuvanted vaccine antigen gE [93,94]. Large Phase III placebo
controlled efficacy studies demonstrated high efficacy (> 90%) of the
adjuvanted-vaccine in preventing herpes zoster in all studied age
groups, including adults older than 70 years of age [83].

Profiling the mode of action of adjuvants is of critical importance, and
many preclinical and clinical studies have been performed for assessing
their interaction with both innate and adaptive immunity [95–104], how-
ever, limited studies have been focused on profiling the action of vaccine
adjuvants in the elderly. A common characteristic of the different adjuvants
in clinical use is an inflammatory signature in the first few hours after
vaccination [105]. Deep knowledge of the mechanism of action of vaccine
adjuvants and their behavior in the context of inflammaging should be
considered in the design of vaccine formulations specifically tailored for the
elderly [36]. Key open questions remain to be addressed to clarify whether
the adjuvant should avoid increasing this inflammatory status or if more
powerful adjuvants with strong inflammatory activities are needed to
overcome this baseline low-grade inflammation status for eliciting effective
immune response in the elderly. Ideally, the adjuvant should be designed to
optimally balance between immune stimulation and the inflammatory
status of the elderly immune system (Fig. 3).

4.2. Immunobiography

Immunobiography is a term dubbed in the original paper from
Franceschi et al. [9] and refers to the comprehensive immunological, clin-
ical, socio-economic and geographical history of each individual, able to
account for the large heterogeneity observed in the elderly regarding their
health status and immunological phenotypes mirrored by their large in-
dividual variation in the responsiveness to vaccines. The concept of im-
munobiography stems from inflammaging studies in particular regarding
the identification of the possible inflammaging sources and of the causes
leading to the number of different inflammaging phenotypes observed.
Immunobiography postulates that old subjects’ individual immunological
inter-variability, including the inflammatory status, is the results of the
lifelong exposures to external and internal immunological stimulations
mediated by the genetic and epigenetic background, thus fully integrating
the temporal dimension in the immunosenescence landscape. The im-
munobiography perspective addresses not only the individual aging process
including the earliest years of life and antagonist pleiotropy effects, but also
the historical perspective, integrating the profound changes that the an-
thropological environment has faced in the last 100 years.

It is possible to obtain individual immunobiography profiles by col-
lecting appropriate informative data such as sex/gender, demographic and
epidemiological history of the cohort, geography, individual immunological
history, anthropometric parameters, socio-economic status and education,
CMV sero-status, major morbidities and co-morbidities, genetics among
others. Each of the above-mentioned parameters have proven to exert ef-
fects on the immunological phenotype of the elderly and on vaccination
effectiveness, accordingly their combination should provide new valuable
information applicable to a variety of clinical protocols. Age related phy-
siological decline can be considered as a function of the speed or rate of
aging, leading to a discrepancy between chronological and biological age

[106]. Such discrepancy can be measured by aging biomarkers. An aging
biomarker should well correlate with chronological age of individuals in the
general population, and reflect the inter-individual variability in their aging
rates, i.e. their biological age [107]. Several different markers and algo-
rithms for the evaluation of biological age have been proposed such as: DNA
methylation remodeling telomere length [108,109] and attrition [110],
transcriptomics [111], routine clinical biochemical parameters [112], N-
glycan quantification [113] and composite algorithms (mixing markers of
different nature e. g. biochemical, anthropometrical and molecular) [114].
It is out of the purposes of the present manuscript to describe in detail such
methods, but it is worth to mention that the results obtained from the ap-
plication of such methods are encouraging since in most of the cases they
were able to correlate with age related health traits [38] such as mortality
[115,116], cognitive decline [117] and human progeroid syndromes [118].
However such methods need to be improved to be successfully applied in
clinical applications since to date they fail to provide reliable individual
information regarding the related risk of developing age related diseases
[119]. Moreover, in a study from Belsky et al. [120], the authors studied
eleven methods for evaluating biological age and the relevance of biological
age as predictor of health parameters in the elderly in a longitudinal cohort
of 964 middle-aged subjects. The results showed that none of the considered
methods presented strong association with health-span associated pheno-
types (balance, hand grip, physical limitations) but in many cases the dif-
ferent methods showed poor correlation among themselves, indicating that
they catch different aspects of the aging process. Beside these limitations
biological age evaluation is one of the most promising tools for the devel-
opment of innovative clinical approaches to improve the health of the ever-
growing elderly population. In particular it is of utmost interest to integrate
such tools as a relevant parameter for the assessment of the individual
immunobiography. To this regard it is worth to flag the paper from Bacalini
et al. in this issue [121] that reviewed the literature linking inflammaging
and age related epigenetic remodeling.

Sex and gender are also major determinants of aging health phenotypes
and the consistent sexual dimorphism in life expectancy is a clear evidence
of this, that influences infection susceptibility and vaccine response and
efficacy in old subjects [122]. In general females show lower infection
susceptibility and higher vaccination responsiveness, mainly due to the di-
vergent and changing levels of sex steroid hormones that impact on im-
munity, inducing higher humoral and cell-mediated immune response to
antigenic stimulation, vaccination and infections [122,123]. Animal studies
indicate that hormonal replacement therapy exerts positive effect on vac-
cine efficacy, but this observation has to be reinforced by stronger epide-
miological data [124,125]. Influenza vaccine responsiveness was observed
to be in inverse correlation with testosterone, suggesting an im-
munosuppressive role for testosterone in the context of influenza vaccina-
tion [126,127]. Differences among sexes also exists in disease-specific vac-
cination rate and dosage is an important parameter. Nevertheless, despite
the growing body of literature, sex and gender are still not taken into ac-
count in the design or dosing of the 65+ vaccination.

CMV is considered a major contributor of inflammaging and is a re-
markable example of the impact of geographical parameters on inflamma-
ging and immunosenescence since the prevalence of CMV infections vary
significantly across populations [128]. CMV is generally asymptomatic in
healthy individuals and 25–90% of the worldwide population is CMV ser-
opositive, with higher prevalence in older adults [129]. The establishment
of a latent infection by CMV is a common event likely correlated to im-
munosenescence by increasing the levels of highly differentiated effector
memory cells in the CD8+ and CD4+T-cell pools [15]. It has been shown
that the high presence of specific T reg and T follicular helper cells during
CMV infection appears to limit the efficacy of influenza vaccine in older
people, being less capable to help B cells when faced with new antigens
[130]. Other phenomena may be at work like increased levels of cytokines
in B cells and diminished B cell function that predicts poor antibody re-
sponses to other viral vaccination [59], with still controversial conclusions.

To manage the heterogeneity of elderly physiology and pathophy-
siology, geriatric medicine identified a series of syndromes that allow to
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classify the elderly population according to the relative risk of devel-
oping different diseases. These include metabolic syndrome, chronic
obstructive pulmonary disease and mild cognitive impairment, frailty.

Vaccination in the elderly has to take in consideration a delicate balance
between immunosenescence, which makes the elderly less responsive to
vaccination, and inflammaging. The vaccine formulation and adjuvant used
should be designed to optimally stimulate the elderly immune system in-
ducing effective immune responses without exacerbating the inflammatory
status. Application of the immunobiography approach could inform the
stratification of elderly subjects and guide the implementation of vaccina-
tion strategies designed for specific elderly population clusters (Fig. 3).

4.3. Systems vaccinology to inform the development of vaccines tailored for
the elderly

Vaccinology can benefit from the recent advances in systems biology,
moving towards a better understanding of complexity. This evolution is
possible and necessary, today, owing to the unprecedented dimensionality
that molecular data have acquired in the omic era: thanks to enabling high-
throughput technologies, virtually all elements of a given molecular layer
can be qualitatively and quantitatively measured in one or a parallel series
of omic experiments. This has dramatically changed the approach to the
analysis of experiments. Omic studies record the activity of each molecule of
interest in large tables with thousands of rows (molecules) and tens of
columns (individuals/patients/conditions), that require automated mathe-
matical and statistical approaches to be made sense of.

A very powerful mean to achieve this is the use of networks that can
represent not only large number of variables as nodes, but also the relation
among these variables, as edges. Indeed, such a flexible frame is well
adapted to the needs of systems vaccinology as it allows to integrate gene
expression and other omic data with clinical and immunological readouts to
identify stable and robust markers of vaccine response.

This approach was first applied for the characterization of the
human response to the live attenuated yellow fever vaccine 17D (YF-
17D), providing the proof-of-concept evidence of the capacity of sys-
tems approaches to delineate “molecular signatures” predictive of
vaccine responses [131,132]. Systems vaccinology has since been ap-
plied to characterize the immune response to a multitude of vaccines,
including live attenuated and inactivated seasonal influenza
[95,133–135], meningococcal vaccines [136], shingles [137,138],
malaria [139–141], smallpox [142], Ebola [143–146] and HIV [147]
vaccines. Additional work has been done to identify a variety of gene
signatures in blood able to accurately classify and further predict vac-
cines responsiveness [136,148]. These studies have been conducted in
young healthy adults and children but not in elderly population.

The application of this approach to study vaccination in the elderly
could take advantage of increasing network heterogeneity by adding mar-
kers of aging. These include biological age and inflammaging, chronological
age, and also personal immunological history, socio-economic variables, as
well as clinical parameters, like the ones defining metabolic syndromes,
chronic obstructive pulmonary disease, cognitive impairment, frailty.
Knowing that medical and socio-economic variables have, at least in part,
molecular correlates [149,150] often associated to epigenomic character-
ization (see review on the epigenetics of inflammaging in this issue [114]),
systems vaccinology can define and further take advantage of very rich
molecular networks. On such complex networks, mathematical tools can
then operate to improve our predictive ability in vaccinology in the elderly,
in two main respects.

One explores the structure of the network, i.e. its topological char-
acteristics (the relative position of nodes and edges in the network). For
example, nodes connected by a large number of edges (hubs) often re-
present essential components of the system; tightly packed sets of nodes
(clusters) represent variables associated in a biological activity; nodes that
are at the crossroad of several paths (chained sets of nodes characterized by
high stress and betweenness) are potential critical targets [146]. Such
structures therefore are helpful in elucidating the relevant molecular sig-
natures of vaccine responses in the elderly. For this approach, all possibly
relevant nodes should be included in the network, like the ones collected in
large gerontoscience records (Fig. 4 top panel).

The second one exploits the fact that networks can also describe tem-
poral evolutions: edges represent a status change of the variables re-
presented in the nodes. Mathematical tools for this application span from
the usage of Markov chains to Petri and Bayesian networks to the integra-
tion of topological information [149]. The ensemble of the nodes (states)
before and after the transition(s) can be used to simulate or describe a se-
quence of events (health trajectory) and understand how present and past
events impact on future responses, for this longitudinal studies are necessary
(Fig. 4 bottom panel). Ensembles of future states can be grouped to define
types of response to vaccination, and the initial conditions can be used to
define better criteria for patients’ stratification. The complementarity and
redundancy of the information gained with these two approaches can serve
to the enhanced design of vaccination studies in the elderly based on in-
formative enrolment criteria and whose result can be converted in effective
vaccination policies.

5. Conclusions

The increasing life expectancy combined with decreasing birth rates
leads to the increase of aged population worldwide. Elderly are vulnerable
to illnesses, hospitalizations, and deaths that could be prevented through the

Fig. 4. Impact of systems vaccinology in the process from clinics and sciences of aging to policies for elderly vaccination. Systems vaccinology can exploit
retrospectively (and here lies one of its strengths) data from two major sources of clinical studies: studies of aging where the fixed variable is chronological age, and
longitudinal studies where individuals (fixed variable) are followed-up with molecular screens (ideally multi-omics) across a long age span. A variety of routine or ad
hoc information could be available for both types of studies, including clinical and socio-economic variables. Topological network analyses as well as temporal
simulations can be used to analyse such data and extract information meaningful in the design of novel vaccination clinical studies on the elderly.
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use of vaccines, recommended in many high-income countries.
Nevertheless, the efficacy of vaccination in the elderly is strongly reduced
compared to younger adults, mostly due to alteration of their immune
system, where some immunological components are declined while others,
such as inflammation, are increased. Most of the available vaccines are
designed for a young population; there is the need to design vaccine for-
mulations, including vaccine adjuvants, that optimally stimulate the elderly
immune system taking in consideration the inflammaging component.
Moreover, the specific history of each individual (immunobiography) that
accounts for the large individual variation in the responsiveness to vaccines
should be considered.

A systems vaccinology approach, incorporating the concepts of im-
munobiography integrated with clinical, immunological and omic data, has
the potential to contribute to the stratification of subpopulations and
identification of markers that will guide the rational development of vac-
cines specifically designed for the elderly. Deeper understanding of optimal
strategies to stimulate elderly immune system would have an enormous
impact not only in the optimization of existing vaccines but also to guide the
development of novel vaccines highly needed for the elderly.
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