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1 Introduction

Instrumental variables (IV) techniques are ubiquitous in the contemporary econometric

practice. The popularity of these methods, however, does not free them from criticisms.

In fact, while there is an uncountable amount of papers using the IV framework for estim-

ation and inference, an important strand of literature has focussed on its weaknesses and

highlighted its failures. See e.g. the beautiful survey of Imbens (2014), see also Andrews

& Stock (2007), Bekker (1994) and Bound et al. (1995).

From this critical approach, many authors have proposed alternatives and improvements

over the standard IV framework. In particular, the work of Angrist & Krueger (1991) on

the effect of schooling on earnings and the subsequent critique to that paper by Bound et

al. (1995) have initiated a discussion on the role of weak instruments and many instruments

on IV estimation and inference.

With respect to inference one of the most influential contributions is the paper by

Anderson & Rubin (1949, henceforth AR) where they suggest conducting inference on

the parameter (vector) by means of the limited information maximum likelihood (LIML)

objective function. Notoriously, this approach has the advantage of being robust to the

presence of weak instruments. However, when the number of instruments grows larger

than the number of parameters, the performance of the AR test starts deteriorating (e.g.

Anatolyev & Gospodinov, 2011). Kleibergen (2002) proposes a modification of the AR

statistic that is robust to the presence of many instruments (see also Moreira, 2009).

Moreira (2003), on the other hand, suggests replacing standard asymptotic critical values

with conditional quantiles. The resulting conditional likelihood ratio (CLR) test enjoys

excellent power properties (see Andrews et al., 2006). Other tests have been proposed by

Steiger & Stock (1997), Wang & Zivot (1998) and Zivot et al. (1998). However, those tests

tend to be conservative and are generally outperformed by the CLR test in terms of power

(Stock et al., 2002).

The objective of this paper is to construct an AR-type statistic for linear IV models in
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the presence of many, potentially weak, instruments and heteroskedasticity. The starting

point of our work is the paper by Bekker & Crudu (2015). The analysis is closely related

to the papers by Anatolyev & Gospodinov (2011) and Chao et al. (2014). The plan of

the paper is as follows: Section 2 introduces the model and the test statistics, Section

3 describes the main asymptotic results and the associated assumptions, Section 4 and

Section ?? contain the simulation results and an empirical application on XXX data re-

spectively, Section 5 concludes the paper. Proofs and and auxiliary results are relegated

to the Appendix.

2 Model, assumptions and test statistics

Let us consider the model

y = Xβ + ε (1)

X = ZΠ +U (2)

where y is a vector of dimension n and X is a n × g matrix. Throughout the paper it

is assumed that the n × k matrix of instruments Z is nonstochastic and E[X] = ZΠ .

Such assumptions are made for convenience and may be generalized, see e.g. Chao et al.

(2014), Hausman et al. (2012), Bekker (1994). The rows of the disturbance couple (ε,U),

say (εi,U
′
i) i = 1, . . . , n, are independent with zero mean and covariance matrices

Σi =

 σ2
i σi12

σi21 Σi22

 (3)

while the covariance matrix of the rows (yi,X
′
i) are

Ωi =

1 β′

0 Ig

Σi

1 0

β Ig

 . (4)

2



The symmetric jackknife instrumental variable estimator (SJIVE) introduced by Bekker &

Crudu (2015) estimates consistently, in the many (weak) instruments sense, the parameter

vector β. The SJIVE is defined as

β̂SJIV E = arg min
β

QSJIV E(β) = arg min
β

(y −Xβ)′C(y −Xβ)

(y −Xβ)′B(y −Xβ)
(5)

and, given the projection matrix P = Z(Z ′Z)−1Z ′ and the diagonal matrix D containing

the diagonal elements of P ,

C = A−B

A = P +∆

B = (In − P )D(In −D)−1(In − P )

∆ = PD(In −D)−1P − 1

2
PD(In −D)−1 − 1

2
D(In −D)−1P .

To compute the SJIVE consider the partition X = (X1,X2), where X2 = Z2 and Z =

(Z1,Z2). Define C∗ = C −AX2(X
′
2X2)

−1X ′2A, then

β̂SJIV E =
(
X ′CX − λX ′BX

)−1(
X ′Cy − λX ′By

)
(6)

where

λ = λmin

{(
(y,X1)

′B(y,X1)
)−1(

(y,X1)
′C∗(y,X1)

)}
.

3 Asymptotic results

In this section we introduce a set of assumptions that are used to prove our asymptotic

results. Furthermore, we generalize a result due to Anatolyev & Gospodinov (2011) to the

heteroskedastic case and we introduce our main results.
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3.1 Assumptions

The assumptions we use are similar to those in Bekker & Crudu (2015). Additional as-

sumptions are included to generalize some results due to Anatolyev & Gospodinov (2011).

Assumption 1. The generic diagonal element of the projection matrix P , Pii, satisfies

maxi Pii ≤ 1− 1/cu.

Assumption 2. The covariance matrices of the disturbances are bounded, 0 ≤ Σi ≤

cuIg+1, and satisfy 1
k

∑n
i=1 e

′
iBeiΣi → Σ.

Let us define the signal matrix as H = Π ′Z ′ZΠ . Moreover, we can partition Σ as we

partitionedΣi and defineΩ as we definedΩi in (4). Hence, limn→∞
1
k

E[(y,X)′B(y,X)] =

Ω and E[X ′CX] = H .

Assumption 3. plimn→∞
1
k
(y,X)′B(y,X) = Ω and plimn→∞H

−1X ′CX = Ig.

Assumption 4. E[ε4i ] ≤ cu.

Let rmin = λmin(H) and rmax = λmax(H) be the smallest eigenvalue and the largest

eigenvalue of the signal matrix respectively.

Assumption 5. rmin →∞.

Assumption 6. k/rmin → κ and κ being a constant.

Assumption 7. k/rmax →∞,
√
k/rmin → 0.

3.2 The Anderson-Rubin test

The Anderson-Rubin statistic is a popular choice to test a null hypothesis defined as

H0 : β = β0. The statistic is defined as

AR = (n− k)
ε′0Pε0

ε′0 (In − P ) ε0
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and it is chi square distributed with k degrees of freedom. In the many instruments context

and in the presence of homoskedaticity, the behaviour of the AR test has been studied

by Andrews & Stock (2007) and Anatolyev & Gospodinov (2011), among others. The

following theorem generalizes the results in Lemma 1 of Anatolyev & Gospodinov (2011)

to the heteroskedastic case. Let us define σ2
(n) = 1

n

∑n
i=1 σ

2 and Wn = 2
k

∑
i 6=j P

2
ijσ

2
i σ

2
j .

Theorem 1. Let us assume that Assumption 2 and Assumption 4 hold. Moreover, given

limn→∞
k
n

= λ, where 0 < λ < 1, let 1
n

∑n
i=1(Pii −

k
n
)2 → 0 and assume that limn→∞ σ

2
(n) =

σ2
0 and limn→∞Wn = W0 exist. Then,

(
1− k

n

)
σ2
(n)√
Wn

√
k

(
AR

k
− 1

)
→d N (0, 1) . (7)

We note that under homoskedasticity

σ2
(n)√
Wn

→ σ2
i√

2 (1− λ)σ2
i

=
1√

2 (1− λ)
,

so

√
k

(
AR

k
− 1

)
→d N

(
0,

2

1− λ

)
,

which is exactly as in Lemma 1 of Anatolyev & Gospodinov (2011).

Remark 1. The asymptotic distribution result in Theorem 1 has two important implica-

tions. First, the fact that the statistic provided by Anatolyev & Gospodinov (2011) has the

limit

ARAG =
√
k

(
AR

k
− 1

)
→d N

(
0,

W0

σ4
0 (1− λ)2

)

means that this test statistic is not valid under heteroskedasticity. In fact the asymptotic
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size of this test is

Pr
(
ARAG > Φ−1 (1− α)

)
= Pr

(
σ2
0 (1− λ)√

W0

ARAG <
σ2
0 (1− λ)√

W0

Φ−1 (α)

)
→ Φ

(
σ2
0 (1− λ)√

W0

Φ−1 (α)

)
.

Second, the result in Theorem 1 also shows how to correct the statistic provided by Anatolyev

& Gospodinov (2011) in order to become feasible when the errors are heteroskedastic. In

fact we can easily construct statistics that approximate σ2
(n) and Wn.

3.3 Inference with heteroskedasticity and many instruments

The test statistic we propose is based on the numerator of the objective function in equation

(5). This is,

Q(β) = (y −Xβ)′C(y −Xβ). (8)

Consider testing the following null hypothesis

H0 : β = β0 (9)

where β is the true parameter. The test statistic is defined as

T1 =
1√
k

(y −Xβ0)
′C(y −Xβ0)√
V̂ (β0)

, V̂ (β0) =
2

k
ε
(2)′

0 C(2)ε
(2)
0 (10)

where ε0 = y −Xβ0 and the superscript “(2)” indicates the elementwise product of two

conformable matrices or vectors. Sometimes we are interested only in performing inference

on a subset of parameters. In particular, we would like to test the coefficients associated

to the endogenous variables. Let us now define the parameter vector as β = (β′1,β
′
2)
′ and
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suppose we want to test the following null hypothesis

H0 : β1 = β10. (11)

In this case, in order to compute the T1 test, we need a consistent estimator for β2. Under

the null, a consistent estimator is, for example,

β̃2 = (X ′2CX2)
−1
X ′2C (y −X1β10) (12)

and the corresponding T1 statistic is

T1 =
1√
k

ε̃′Cε̃√
V̂ (β10, β̃2)

), V̂ (β10, β̃2) =
2

k
ε̃(2)

′
C(2)ε̃(2) (13)

where ε̃ = y −X1β10 −X2β̃2.

Let us now consider a nominal level α and let q
N(0,1)
1−α be the (1 − α)-th quantile of the

Normal distribution. Then, the null hypothesis is rejected if T1 ≥ q
N(0,1)
1−α .

Let us now define the following statistic

T2 =
1√
k

(y −Xβ0)
′(P −D)(y −Xβ0)√
V̂ (β0)

, V̂ (β0) =
2

k
ε
(2)′

0 (P −D)(2)ε
(2)
0 . (14)

Similarly to 15 we have

T2 =
1√
k

ε̃′(P −D)ε̃√
V̂ (β10, β̃2)

), V̂ (β10, β̃2) =
2

k
ε̃(2)

′
(P −D)(2)ε̃(2) (15)

where β̃2 is some consistent estimator of β2. The following theorems provide the asymptotic

distribution for T1 and T2.

Theorem 2. If Assumptions 1, 4 are satisfied,
∑n

i=1 |Pij| < cu (see Van Hasselt, 2010),

lim k
n
> 0 and σ2

i ≥ σ2 for any i, then
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1. under H0 : β = β0 we have T1 →d N (0, 1),

2. under H0 : β1 = β10 and if the additional Assumptions 3, 5 and 6 or 7 are satisfied

we have β̃2 →p β2 and T1 →d N (0, 1).

Theorem 3. If Assumptions 1, 4 are satisfied, lim k
n
> 0 and σ2

i ≥ σ2 for any i, then

1. under H0 : β = β0 we have T2 →d N (0, 1),

2. under H0 : β1 = β10 and if the additional Assumptions 3, 5 and 6 or 7 are satisfied

we have β̃2 →p β2 and T2 →d N(0, 1).

The limit distribution of T2 holds without the condition
∑n

i=1 |Pij| < cu (Van Hasselt,

2010) that is used for T1. Under the conditions of Theorem 2, it holds that Vn ≥ cu > 0

for any n.

Remark 2. The test statistic T1 proposed in this paper is also valid under homoskedasticity.

Its asymptotic distribution requires the assumption that the main diagonal elements Pii, i =

1, ..., n, of the projection matrix P = Z (Z ′Z)−1Z ′ should be bounded away from 1. The

test statistic proposed by Anatolyev & Gospodinov (2011) requires the stronger assumption

that the main diagonal elements of P converge to λ = lim k
n

. Therefore, even under

homoskedasticity T1 has broader applicability than the test statistic proposed by Anatolyev

& Gospodinov (2011). This difference in the assumptions required comes from the fact

that the former test statistic does not involve the diagonal elements of P while the latter

statistic does.

4 Monte Carlo simulations

We study the finite sample properties of T1 and T2 in terms of size and power.1 We

make inference on the full parameter vector (see Figure 1 and Figure 3) and on the sole

parameter associated to the endogenous variable (see Figure 2 and Figure 4). The T1 test

1The results associated to the T2 test are omitted as they are nearly identical to the those of the T1
test.
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is compared to the AR test is the version proposed by Anatolyev & Gospodinov (2011)

both in the homoskedastic version (ARAG) and in the heteroskedastic version (HARAG)

as proposed in Theorem 1. This comparison is useful for two reasons: first, we are able to

see whether or not our test works in the homoskedastic context; second, it gives us a clear

idea of how much we gain by using a proper test in the heteroskedastic case.2 In order to

implement the HARAG test we need to estimate W0 and σ2
0. More specifically, we define

Ŵn =
2

k
ε
(2)′

0 (P −D)2ε
(2)
0 , σ̂2

(n) =
ε′0ε0
n

.

4.1 Data generating process

We use the same Monte Carlo set up as Hausman et al. (2012). The data generating

process is given by

y = ιγ + xβ + ε

x = zπ + v

where γ = β = 1. The strength of the instruments changes according to the concentration

parameter µ2 = nπ2. Moreover, n = 800, z ∼ N (0, In) and independently v ∼ N (0, In).

The disturbances vector ε is generated as

ε = ρv +

√
1− ρ2
φ2 + ψ4

(φw1 + ψw2),

where ρ = 0.3, ψ = 0.86 and conditional on z, independent of v, w1 ∼ N (0, Diag(z)2)

and w2 ∼ N (0, ψ2In). Moreover, φ ∈ {0, 1.38072}. The instrument matrix Z is given by

matrices with rows (1, zi, z
2
i , z

3
i , z

4
i ) and (1, zi, z

2
i , z

3
i , z

4
i , zib1i, . . . , zib`i), ` = 5, 15, 35, 55, 75, 95,

respectively, where, independent of other random variables, the elements b1i, . . . , b`i are

i.i.d. Bernoulli distributed with p = 1/2. We replicate our experiments 5000 times. The

2The ARAG test works quite well in the homoskedastic case but it is not designed to work in the
presence of heteroskedasticity.
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size properties of T1 and T2 investigated by means of PP-plots as described in Davidson

& MacKinnon (1998). When using the T1 test we consider both H0 : (γ, β)′ = (1, 1)′ and

H0 : β = 1.

Our simulation results in Figures 1 to 4 confirm that the T1 test (and the T2 test) works

well both in the homoskedastic case and the heteroskedastic case. We notice that in the

homoskedastic case it performs similarly to the ARAG test. Moreover, we notice that there

is a trade off between size and power with respect to k. This is, as k grows the empirical

size approaches the nominal size, but the power curves tend to get wider. This is not

necessarily a justification for using a small k as it would imply that the test rejects too

often.

5 Conclusion

This paper introduces a specification test for the parameters of a linear model in the

presence of endogeneity, heteroskedasticity and many, potentially weak instruments. The

test is easy to build as it is based on the numerator of the SJIVE estimator proposed

by Bekker & Crudu (2015). It is possible to show that, after appropriate rescaling, the

limiting distribution of the test statistic is standard normal. Simulation evidence shows

that, in finite samples, the proposed test outperforms its competitors.

A Appendix

The central limit theorem (CLT) used in the proofs, and described below is the CLT for

quadratic forms of Keleijan & Prucha (2001, Theorem 1) We also use a special case of the

CLT of Chao et al. (2012).

Theorem A.1 (Central Limit Theorem by Keleijan & Prucha (2001)). Consider the quad-

ratic form Q = ε′Aε such that (a) E [εi] = 0 and ε1, ..., εn are independent; (b) A sym-

metric, with diagonal elements aii = 0 and supj,n
∑n

i=1 |aij| <∞; (c) E
[
|εi|2+η

]
<∞, for
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some η > 0; (d) 1
n

Var [Q] ≥ c > 0. Then

Q√
Var [Q]

→d N (0, 1) .

Theorem A.2 (Central Limit Theorem by Chao et al. (2012)). Consider the quadratic

form Q =
∑

i 6=j aijεiεj such that (a) E [εi] = 0 and ε1, . . . , εn are independent; (b) A

symmetric, idempotent, aii ≤ cu < 1 and rank (A) = k, where k → ∞ as n → ∞; (c)

E [ε4i ] <∞; (d) 1
n
V ar[Q] ≥ cu > 0 . Then

Q√
V arQ

→d N (0, 1) .

Let C be a n × n matrix with zero diagonal whose elements depend on Z. Suppose

also that for appropriate positive numbers c and c

c|Pij| ≤ |Cij| ≤ c|Pij| for any i 6= j.

Proof of Theorem 1. Under H0 : β = β0 we have

√
k

(
AR

k
− 1

)
=

1√
k

(
n−k
k
ε′Pε− ε′ (I − P ) ε

)
1
k
ε′ (I − P ) ε

=
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

1
k
ε (I − P ) ε

. (16)

Note that

1√
k

(
ε′Pε− k

n
ε′ε

)
=

1√
k

∑
i 6=j

Pijεiεj +
1√
k

∑
i

(
Pii −

k

n

)
ε2i ≡ E1 + E2. (17)

We can apply the CLT from Kelejian and Prucha (2001) to the quadratic form

R =
∑
i 6=j

Pijεiεj
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involved in E1. We obtain that

R√
kWn

→d N (0, 1) ,

where

Wn =
Var[R]

k
=

2

k

∑
i 6=j

P 2
ijσ

2
i σ

2
j

with the property that

1

n
Var[R] =

2

n

∑
i 6=j

P 2
ijσ

2
i σ

2
j ≥

2σ4

n

∑
i 6=j

P 2
ij ≥

2σ4

n

k

cu
,

(the latter inequality from (23)), which is bounded away from 0. 3 Consequently, Wn is

bounded between two positive numbers. We obtain that E1/
√
Wn →d N (0, 1).

Regarding E2 we note that by Assumption 4

Var[E2] =
1

k

∑
i

(
Pii −

k

n

)2

var
(
ε2i
)
≤ cu

k

∑
i

(
Pii −

k

n

)2

.

Using the assumption 1
k

∑
i

(
Pii − k

n

)2 → 0 (Anatolyev and Gospodinov use 1
k

∑
i (Pii − λ)2 →

0, where λ = lim k
n
), we obtain that Var[E2] = o (1). Consequently, E2 = op (1); therefore,

E1 + E2√
Wn

→d N (0, 1) . (18)

Regarding the denominator involved in (16) we observe that

1

k
ε′ (I − P ) ε =

1

k

(
1− k

n

)
ε′ε− 1

k
ε′
(
P − k

n
I

)
ε.

3Note that Anatolyev & Gospodinov (2011) prove this from the assumption that 1
k

∑
i (Pii − λ)

2 → 0.
It seems that this implies our Assumption 1 but not the other way around, so our Assumption 1 is weaker.
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The second term is just the expression from (17) divided by
√
k, that is,

1

k
ε′ (I − P ) ε =

1

k

(
1− k

n

)
ε′ε− 1√

k
(E1 + E2) =

1

k

(
1− k

n

)
ε′ε+Op

(
1√
k

)
.

Using Assumption 4 and the Law of Large Numbers, using the notation

σ2
(n) =

1

n

n∑
i=1

σ2
i

we have that

1

n
ε′ε− σ2

(n) = Op

(
1√
k

)
. (19)

Consequently,

1

k
ε′ (I − P ) ε =

n

k

(
1− k

n

)
σ2
(n) +Op

(
1√
k

)
.

Now, from equation (16) and the fact that n
k

(
1− k

n

)
σ2
(n) is bounded between two positive

numbers, we have

√
k

(
AR

k
− 1

)
=
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

n
k

(
1− k

n

)
σ2
(n)

+
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

n
k

(
1− k

n

)
σ2
(n)

(
n
k

(
1− k

n

)
σ2
(n)

1
k
ε′ (I − P ) ε

− 1

)

=
E1 + E2(

1− k
n

)
σ2
(n)

+ op (1) .

Therefore, collecting the above results we obtain that

(
1− k

n

)
σ2
(n)√
Wn

√
k

(
AR

k
− 1

)
=
E1 + E2√

Wn

+ op (1) ,

which by (18) implies that

(
1− k

n

)
σ2
(n)√
Wn

√
k

(
AR

k
− 1

)
→d N (0, 1) . (20)
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Suppose that limn→∞ σ
2
(n) = σ2

0 and limn→∞Wn = W0 exist.

Lemma A.1. Let V̂ (β0) = 2
k
ε
(2)′
0 C(2)ε

(2)
0 . If Assumptions 1, 4 hold, V̂ (β0) − Vn =

Op

(
1√
k

)
; consequently V̂ (β0)− Vn →p 0, where

Vn =
2

k

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j .

Proof. Let ηi = ε2i − σ2
i ; then

V̂ (β0)− Vn =
2

k

n∑
i=1

n∑
j=1

C2
ij

(
ε2i ε

2
j − σ2

i σ
2
j

)
=

2

k

n∑
i=1

n∑
j=1

C2
ij

(
ηiηj + σ2

i ηj + σ2
j ηi
)
.

So

∣∣∣Vn − V̂ (β0)
∣∣∣ ≤ 2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijηiηj

∣∣∣∣∣+
2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijσ

2
i ηj

∣∣∣∣∣+
2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijσ

2
j ηi

∣∣∣∣∣
≡ A1 + A2 + A3.

Since

E
[
η2i
]

= E
[
ε4i
]
− σ4

i ,

from Assumption 4 we have E [η2i ] ≤ cu. So

E
[
A2

1

]
=

8

k2

n∑
i=1

n∑
j=1

C4
ijE
[
η2i
]

E
[
η2j
]
≤ 8c2u

k2

n∑
i=1

n∑
j=1

C4
ij.

Note that for i 6= j we have

Cij =
Pij
2

(
1

1− Pii
+

1

1− Pjj

)
,

14



which from Assumption 1 implies

|Cij| =
|Pij|

2

(
1

1− Pii
+

1

1− Pjj

)
≤ cu |Pij| for any i, j, (21)

so

E
[
A2

1

]
≤ 8c6u

k2

n∑
i=1

n∑
j=1

P 4
ij.

Since P is idempotent P 4 = P , so based on the main diagonal elements we have

Phh ≥

(
n∑
i=1

P 2
hi

)2

≥
n∑
i=1

P 4
hi +

n∑
i=1

n∑
j=1

P 2
hiP

2
hj,

so

n∑
i=1

n∑
j=1

P 4
ij ≤ tr (P ) = k and

n∑
i=1

n∑
j=1

n∑
h=1

P 2
hiP

2
hj ≤ k. (22)

Therefore,

E
[
A2

1

]
≤ 8c6u

k
.

Now, by Cauchy-Schwarz (E [ε2i ])
2 ≤ E [ε4i ], thus σ2

i ≤
√
cu, so from Assumption 4, (21)

and (22)

E
[
A2

2

]
=

4

k2

n∑
i=1

n∑
j=1

n∑
h=1

C2
hiC

2
ijσ

2
hσ

2
j E
[
η2i
]
≤ 4c2u

k2

n∑
i=1

n∑
j=1

n∑
h=1

C2
hiC

2
ij

≤ 4c6u
k2

n∑
i=1

n∑
j=1

n∑
h=1

P 2
hiP

2
ij ≤

4c6u
k
.

We can obtain a similar inequality for A3, so by the Markov and triangle inequalities we

obtain that V̂ (β0)− Vn = Op

(
1√
k

)
, therefore, V̂ (β0)− Vn →p 0.

15



For given β0 consider

T1 =
1√
k

(y −Xβ0)
′C (y −Xβ0)√
V̂ (β0)

,

where

V̂ (β0) =
2

k
ε
(2)′
0 C(2)ε

(2)
0 , ε0 = y −Xβ0.

Proof of Theorem 2. Let us consider part 1. Under the null hypothesis we have

E [ε′Cε] = 0,

Var [ε′Cε] = E
[
(ε′Cε)

2
]

= 2
n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j ≡ kVn.

We use the CLT in Theorem A.1. Assumption (a) is clearly satisfied; (c) is satisfied due to

Assumption 4. The last statement in (b) is satisfied because by (21) and by assumption,

n∑
i=1

|Cij| ≤ cu

n∑
i=1

|Pij| < cu for any j.

Regarding (d) note that

1

n
Var [Q] ≡ k

n
Vn =

2

n

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j ≥

2σ4

n

n∑
i=1

n∑
j=1

C2
ij,

where

n∑
i=1

n∑
j=1

C2
ij =

∑
i 6=j

P 2
ij

4

(
1

1− Pii
+

1

1− Pjj

)2

≥
∑
i 6=j

P 2
ij

4
(1 + 1)2 =

∑
i 6=j

P 2
ij

=
n∑
i=1

n∑
j=1

P 2
ij −

n∑
i=1

P 2
ii = tr (P )−

n∑
i=1

P 2
ii = k −

n∑
i=1

P 2
ii.
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By Assumption 1

n∑
i=1

P 2
ii ≤ maxPii

n∑
i=1

Pii ≤ (1− 1/cu) tr (P ) = (1− 1/cu) k. (23)

So

n∑
i=1

n∑
j=1

C2
ij ≥ k/cu,

therefore,

1

n
Var [Q] ≥ 2σ4

n

k

cu
,

which is bounded away from 0 if lim k
n
> 0. In this case we can apply the CLT and complete

the proof for part 1. Let us now consider part 2. Under the null we can construct the

estimator

β̃2 = (X ′2CX2)
−1
X ′2C (y −X1β10) = (L′X ′CXL)

−1
L′X ′C (y −X1β10)

where the fixed matrix L is such that XL = X2. Under the null we find

β̃2 − β2 = (L′X ′CXL)
−1
L′X ′Cε.

Consistency follows straightforwardly from Assumptions 3, 5 and 6 or 7 and results in

Theorem 1 of Bekker & Crudu (2015).

Proof of Theorem 3. Under the null hypothesis we have

E [ε′ (P −D) ε] = 0,

V ar (ε′ (P −D) ε) = E
[
(ε′ (P −D) ε)

2
]

= 2
∑
i 6=j

P 2
ijσ

2
i σ

2
j .

17



We verify whether the conditions of the CLT in Theorem A.2 are met: (a) is clearly

satisfied; (c) is satisfied due to Assumption 4. The statement in (b) is satisfied because of

the properties of the projection matrix P and by Assumption 1. Regarding (d) note that

1

n
Var[Q] =

2

n

∑
i 6=j

P 2
ijσ

2
i σ

2
j ≥

2σ4

n

∑
i 6=j

P 2
ij

where

∑
i 6=j

P 2
ij =

n∑
i=1

n∑
j=1

P 2
ij −

n∑
i=1

P 2
ii = tr (P )−

n∑
i=1

P 2
ii = k −

n∑
i=1

P 2
ii.

By Assumption 1

n∑
i=1

P 2
ii ≤ maxPii

n∑
i=1

Pii ≤ (1− 1/cu) tr (P ) = (1− 1/cu) k. (24)

So

1

n
Var[Q] ≥ 2σ4

cu

k

n
,

which is bounded away from 0 if lim k
n
> 0. In this case we can apply the CLT and complete

the proof.
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