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Abstract

Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is
considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas
moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to
form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded pro-
teins. Such aggregates of carbonylated proteins can inhibit proteasome activity. A large number of neurodegenerative
diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in
tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective car-
bonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein
carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches.

Keywords: protein carbonyls = reactive oxygen species = reactive carbonyl species =
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Introduction

Reactive oxygen species (ROS) are constantly gen-
erated within cells at low concentrations under
physiological conditions, playing a part in the cel-
lular redox regulation. Cellular production of ROS
occurs from both enzymatic and non-enzymatic
sources (Fig. 1) [for reviews, see 1, 2]. ROS can
also occur as the outcome of acute cell stresses and
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may result in cell death via apoptosis or necrosis.
Cellular oxidative damage develops when the bal-
ance between ROS-generating systems and ROS-
scavenging ones tilts in favour of the former.

The primary cellular target of oxidative stress
can vary depending on the cell type, the absolute
level and duration of oxidant production, the species
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Fig. 1 Cellular sources of reactive oxygen species. Any electron-transferring protein or enzymatic system can
result in the formation of ROS as "by-products" of electron transfer reactions. The mitochondrial electron transport
chain is a significant source of ROS. Plasma membrane is a major source of ROS through NAD(P)H oxidases locat-
ed on either side. Enzymes of the same class displaying low activity, as well as their components, are also present
free in cytoplasm. Smooth endoplasmic reticulum (ER) contains enzymes, including cytochrome P-450 and bs fam-
ilies, which catalyse a series of reactions to detoxify lipid-soluble drugs and other harmful metabolic products.
Peroxisomes are an important source of total cellular H,O, production. They contain a number of H,0,-generating
enzymes of the oxidase family. Peroxisomal catalase utilises H,O, produced by these oxidases to oxidise a variety
of other substrates in peroxidative reactions, particularly in liver and kidney cells in which peroxisomes detoxify a
variety of toxic molecules that enter the circulation. Another major function of the oxidative reactions carried out in
peroxisomes is -oxidation of fatty acids. In addition to intracellular membrane-associated oxidases, cytoplasmic
soluble enzymes such as xanthine oxidase, aldehyde oxidase, flavoprotein dehydrogenase, and tryptophan dioxyge-
nase can generate ROS during catalytic cycling. Autooxidation of small molecules such as dopamine, epinephrine,
flavins, and hydroquinones can be an important source of intracellular ROS production. In most cases, the direct

product of such autooxidation reactions is O, .

of ROS generated, its site of generation (intra- vs.
extra-cellular), and the proximity of the oxidant to a
specific cellular substrate. The extent of damage to
particular targets depends on a number of factors
(Fig. 2). Proteins are major targets for ROS and sec-
ondary by-products of oxidative stress when these
are formed in vivo either in intra- or extracellular
environments, as they are the major component of
most biological systems and can scavenge 50-75%
of reactive radicals such as -OH [3].

Some ROS-induced protein modifications can
result in unfolding or alteration of protein structure,
and some are essentially harmless events [4]. For
example, protein reversible modifications, such as
S-glutathionylation, S-nitrosation, and methionine
sulfoxidation, may have a dual role of protection
from irreversible oxidation and modulation of pro-
tein function (redox regulation) [5—7]. Differently,

390

irreversible protein modifications can lead to inac-
tivation of various proteins and could have lasting
detrimental cellular effects.

Although the overall biology of oxidative pro-
tein modifications remains complex and ill defined,
protein carbonylation is quite well characterised.
Carbonylation is an irreversible, non-enzymatic
modification of proteins. The chemistry of the reac-
tions that give rise to carbonyl groups is discussed
in detail in other excellent reviews [8—11].

Briefly, carbonyl groups are introduced into pro-
teins by a variety of oxidative pathways (Fig. 3). ROS
can react directly with the protein or they can react
with molecules such as sugars and lipids, generating
products (reactive carbonyl species, RCS) that then
react with the protein. Direct oxidation of proteins by
ROS yields highly reactive carbonyl derivatives
resulting either from oxidation of the side chains of
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Fig. 2 Major factors determining the extent of oxidative damage to specific cellular targets. The first two of these deter-
mine the rate at which any particular reaction is likely to occur; the others modulate the extent of the reaction that occurs.

lysine, arginine, proline, and threonine residues - par-
ticularly via metal-catalysed oxidation [8] - or from
the cleavage of peptide bonds by the a-amidation
pathway or by oxidation of glutamyl residues.
Glutamic semialdehyde, a product of oxidation of
arginine and proline, and aminoadipic semialdehyde,
a product of oxidation of lysine, are the main car-
bonyl products of metal-catalysed oxidation of pro-
teins, this reaction being a major route leading to the
generation of protein carbonyls in biological samples
[12]. Carbonyl groups can also be generated by sec-
ondary reaction of the primary amino group of lysine
residues with reactive carbonyl derivatives
(ketoamines, ketoaldehydes, deoxyosones), pro-
duced by the reaction of reducing sugars or their oxi-
dation products with lysine residues of proteins (gly-
cation/glycoxidation reactions), eventually leading to
the formation of advanced glycation end-products
(AGE?). Finally, carbonyl groups may be introduced
into proteins by adduction of carbonyl-containing
oxidized lipids derived from the metal-catalysed oxi-
dation of polyunsaturated fatty acids [13—15]. These
include malondialdehyde (MDA), which reacts with
lysine residues, and o.f-unsaturated aldehydes [4-
hydroxy-2-nonenal (HNE), acrolein], which can
undergo Michael-addition reactions at their C=C
double bond with the sulthydryl group of cysteine,
the e-amino group of lysine or the imidazole group of
histidine residues, forming advanced lipoxidation
end-products (ALEs).

Protein carbonylation is the most widely used
biomarker for oxidative damage to proteins, and
reflects cellular damage induced by multiple forms
of ROS [7, 10, 16-19].

The impact of carbonylation on
protein function

Increases in carbonylated proteins during ageing
and in response to oxidative stress are not random,
some proteins being more susceptible than others.
However, the set of proteins that become carbony-
lated differs in different species. For example,
mouse plasma ageing-associated protein carbony-
lation was only seen in two proteins, albumin and
transferrin [20]. But, in the rat plasma, only albu-
min and ot1-macroglobulin showed significant age-
dependent accrual of carbonylation [20]. Human
brain copper-zinc superoxide dismutases (SODI)
is one of the major targets of oxidative damage in
brains of subjects afflicted with Alzheimer's dis-
ease (AD) and Parkinson's disease (PD); however,
only one out of four human brain SOD1 isoforms
is heavily carbonylated [21]. The selectivity of pro-
tein carbonylation is clearly demonstrated by the
fact that the relative amount of a protein is not a
factor in determining the degree of carbonylation
[20, 22]. Similar specificity of protein carbonyla-
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Fig. 3 Origins of carbonylated proteins. Protein carbonyl derivatives can be produced by a variety of oxidative
pathways. Direct oxidation of the Lys, Arg, Pro, and Thr side chains - particularly via metal-catalysed oxidation -
results in o-aminoadipic semialdehyde from lysyl residue, glutamic semialdehyde from arginyl and prolyl residue,
2-pyrrolidone from prolyl residue, and 2-amino-3-ketobutyric acid from threonyl residue (pathway 1). Direct oxi-
dation of proteins by ROS can also yield highly reactive carbonyl derivatives resulting from the cleavage of peptide
bonds by the ai-amidation pathway or by oxidation of glutamyl residues (pathway 2). Carbonyl groups may be intro-
duced into proteins by adduction of reactive aldehydes derived from the metal-catalysed oxidation of polyunsatu-
rated fatty acids (pathway 3). These lipoxidation products include di-aldehydes such as malondialdehyde (MDA),
which reacts with Lys residues, o,B-unsaturated aldehydes [4-hydroxy-2-nonenal (HNE), acrolein], which can
undergo Michael-addition reactions between their electrophilic C=C double bond and the sulfhydryl group of Cys,
the e-amino group of Lys or the imidazole group of His residues, and y-ketoaldehydes (levuglandins, isoketals, neu-
roketals), which react with Lys residues. The chemical modification of protein by reactive carbonyl compounds
derived from lipid peroxidation reactions results in the formation of advanced lipoxidation end-products (ALEs)
(pathway 3). Finally, carbonyl groups can also be generated by secondary reaction of the primary amino group of
Lys residues with reactive carbonyl derivatives (ketoamines, ketoaldehydes, deoxyosones), produced by the reac-
tion of reducing sugars or their oxidation products with lysine residues of proteins (glycation/glycoxidation reac-
tions), eventually leading to the formation of advanced glycation end-products (AGEs) (pathway 4).

tion was previously noted in the mitochondria of
the flight muscles of the flies, where only aconitase
[23-25] and adenine nucleotide translocase [24]
were found to exhibit an age-associated increase in
carbonylation and a corresponding loss in func-
tional activity. Cytochrome c, a relatively abundant
mitochondrial protein, did not show detectable car-
bonylation at any age [26].

An obvious question arising from such studies is
why this selectivity? There is not an easy way to
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answer this question. It could be merely a conse-
quence of protein structure.

Pioneering studies by Stadtman [8, 27] have
suggested that the presence of a transition metal-
binding site in a protein is a key feature to predict
its susceptibility to undergo carbonylation via
metal-catalysed oxidation. Protein-bound transition
metals are sources of free radicals that initiate a cas-
cade of reactions, which result in the addition of
carbonyl groups to the side chains of certain sur-



rounding amino acid residues [9]. Other factors,
such as molecular conformation, rate of turnover
and the relative abundance of amino acid residues
susceptible to metal-catalysed oxidation, have also
been suggested to be involved in the selectivity of
protein carbonylation [28, 29]. In addition, some
proteins (e.g., enzymes of Krebs cycle and electron
transport chain) may be carbonylated mainly
because they are located near sites generating ROS.
Concerning selective oxidation of proteins,
results obtained by Ros and colleagues [22] indi-
cate that prokaryotic and eukaryotic cells display
some homologies. These homologies can be a con-
sequence of their structural and/or functional rela-
tionship. In this context, sequence homologies of
pyruvate dehydrogenase and o-ketoglutarate dehy-
drogenase from Saccharomyces cerevisiae with
respect to those from Escherichia coli were 40 and
59%, respectively. The homologies are even
greater when their active sites or lipoic acid bind-
ing signatures are compared. This analysis would
tend to suggest the importance of the protein struc-
ture on the selectivity of oxidative targets.
Nevertheless, in the case of heat-shock protein
(Hsp) 60 and the Hsp70 chaperone DnakK, they
share no significant similarity, indicating that, in
this case, chaperoning function could be a reason
for their selective damage. The question of whether
such proteins have been selected as targets during
evolution to better preserve the integrity of the cell
after a stress situation remains to be determined.
Further studies by the same research group on the
two types of yeast ageing models, replicative and
chronological, showed that, although in both age-
ing models metabolic differences are important,
major targets are almost the same [30]. Common
targets include stress resistance proteins (Hsp60
and Hsp70) and enzymes involved in glucose
metabolism. Interestingly, carbonylated proteins
accumulating with replicative age are not inherited
by daughter cells during cytokinesis [31].
Nystrom and co-workers provided an attractive
hypothesis, which supports an increased suscepti-
bility of proteins to oxidation [32, 33]. Their elegant
studies in E. coli established that transcriptional or
translational errors produce aberrant proteins that
are more susceptible to carbonylation (see also sec-
tion "The impact of carbonylation on protein fold-
ing"). It is not completely clear why aberrant pro-
teins are more susceptible to carbonylation, but it is
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possible that a slight misfolding of the partly aber-
rant polypeptide exposes oxidation-sensitive amino
acid residues that are normally hidden during the
coupled translation-folding process. Introduction of
carbonyl groups on those amino acids may result in
further loss of the proteins' integrity. This, in turn,
results in an increased exposure of hydrophobic
surfaces increasing the target sites for the
DnalJ/K/GrpE chaperone system [34].

The introduction of carbonyl derivatives (alde-
hydes and ketones) may alter the conformation of
the polypeptide chain, thus determining the partial
or total inactivation of proteins. A key question
when addressing the significance of protein car-
bonyls is whether they are simply markers for the
presence of oxidative stress, or have some substan-
tive consequence on protein function that impacts
on cell injury. Protein carbonylation is selective in
inactivating particular proteins preferentially and it
is likely to be deleterious, since cells are unable to
repair protein carbonyls. In the flight muscle mito-
chondria of flies, aconitase and adenine nucleotide
translocase were found to lose activity in associa-
tion with the increase in carbonylation [23-25].
Endoplasmic reticulum (ER) proteins are readily
carbonylated in response to peroxide treatment of
HL-60 cells [35] and are preferentially carbonylat-
ed in the aged mouse liver [36]. Carbonylation of
specific ER chaperone proteins may induce dys-
function of the protein folding processes [35, 36].
Hence, cells that have large amounts of protein car-
bonyls may be expected to have proteasomes and
chaperones unable to keep up with the rate of pro-
duction of unfolded or oxidatively damaged pro-
teins and, therefore, an impaired cellular protein
turnover, likely resulting in cellular impaired func-
tion (see below).

The introduction of carbonyl groups into pro-
teins can be triggered by different ROS or sec-
ondary by-products of oxidative stress, and can
arise at different sites and by different mechanisms
(Fig. 3) [10, 11]. Hence, carbonylation can result
in several different protein modifications, every
one of which may produce (or not) a specific
effect on the biological activity of different pro-
teins. For example, HOCl-induced in vitro car-
bonylation of monomeric actin causes severe inhi-
bition of actin filament formation [37], whereas
actin carbonylation resulting from the adduction
of HNE through Michael addition to Cys374 [38]
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negligibly affects actin polymerisation [Dalle-
Donne et al., in preparation].

Due to their abundance in mammalian cells,
cytoskeletal proteins are common targets for a vari-
ety of ROS and low-molecular-weight RCS. For
instance, HNE forms Michael adducts with tubulin
and disrupts microtubule assembly in neuroblas-
toma cells, blocking neurite outgrowth [39]; it also
targets neurofilament heavy chains [40]. Actin iso-
forms are carbonylated both in vitro [37, 38] and in
vivo, e.g., in the skeletal muscles of a diabetes
model Otsuka Long-Evans Tokushima Fatty
(OLETF) rat [41], in macrophages exposed to
hyperoxia [42], in the septic diaphragm [43], and in
synaptosomes oxidized by treatment with the 42-
amino acid peptide, amyloid B-peptide (1-42)
[AB(1-42)] [44]. Actin carbonylation has been
determined in human intestinal cells exposed to
H,0, or HOCI and in colonic mucosa from Crohn's
disease patients, where it is associated with the dis-
ruption of the actin cytoskeleton and the loss of the
monolayer barrier function [45, 46], as well as dur-
ing reperfusion of the ischaemic rat heart [47] and
in AD subjects [48].

Actin and a number of glycolytic enzymes (o-
enolase, triose phosphate isomerase, phospho-
glycerate mutase, and fructose bis-phosphate
aldolase) were among the carbonylated proteins
detected during etoposide (VP16)-induced apop-
tosis of HL60 cells. Consistently, glucose utilisa-
tion was reduced dramatically, likely due to car-
bonylation-mediated reduction in activity of gly-
colytic enzymes [49].

Protein carbonylation has been shown to exert a
negative effect on creatine kinase and aldolase
activity in the septic rat diaphragm [43]. Varying
degrees of activity loss were detected in a number
of peroxisomal enzymes following metal-catalysed-
induced carbonylation [50]. The formation of pro-
tein carbonyls by HNE adducts has been shown to
have significant effects on protein function and is
frequently associated with their cross-linking. A
number of mitochondrial enzymes have been
shown to be inactivated following HNE binding,
including Na™-K*-ATPase [51], adenine nucleotide
translocator [52], and cytochrome ¢ oxidase (com-
plex IV of the mitochondrial respiratory chain) in
the ischaemic/reperfused rat heart [53], as well as
the glial glutamate transporter, GLT-1 (EAAT2), in
the brain of AD subjects [54].
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Carbonylation and formation of HNE-adducts
have been observed, under normal basal conditions,
in specific protein subunits of the respiratory chain
complexes -V of adult bovine heart submitochon-
drial particles, as well as in two proteins that are
part of a complex that forms the mitochondrial per-
meability transition pore, heart-specific T1 isotype
of adenine nucleotide translocator and voltage-
dependent anion channel 1 [55]. However, authors
did not investigate the impact of these modifica-
tions on mitochondrial complex function.
Substantial carbonylation of specific subunits of
mitochondrial respiratory complexes I, III, and V
has also been shown in chagasic murine hearts
infected by Trypanosoma cruzi, which are charac-
terised by deficiencies in the activities of the respi-
ratory chain complexes and reduced mitochondrial
ATP generation capacity during the course of infec-
tion and disease development [56]. The extent of
protein carbonylation of specific subunits directly
correlated with the loss in catalytic activities of the
respiratory complexes in the infected myocardium
[56]. In addition, the oxidative damage of complex
I and III may potentiate oxidative stress in the mito-
chondria, as a decline in the activities of these com-
plexes is likely to result in the increased release of
electrons to molecular oxygen and ROS formation.

MDA-induced carbonylation of aconitase, very
long chain acyl coenzyme A dehydrogenase, the [3-
polypeptide of the mitochondrial F1 complex of
ATP synthase (or complex V), and the E2 compo-
nent of oi-ketoglutarate dehydrogenase complex was
identified in both heart and skeletal muscle mito-
chondria from mice of three different ages [57].
While the amount of MDA-modified proteins did
not appear to change during ageing, only aconitase
and ATP synthase from heart exhibited an age-relat-
ed decrease in activity, whereas very long chain acyl
coenzyme A dehydrogenase and o-ketoglutarate
dehydrogenase activities remained unchanged dur-
ing ageing in both heart and skeletal muscle [57].

Inhibition of mitochondrial complex I reduces
profoundly the activity of the proteasome system
degrading oxidized proteins by oxidative modifica-
tion of the 20S B subunit with acrolein, to which
other acrolein-modified proteins were found to
bind, resulting in dopamine neuron degeneration
[58]. Current evidence resulting from studies in
human post-mortem material suggests that mito-
chondrial complex I inhibition may be the central



cause of sporadic PD and that derangements in
complex I cause o-synuclein aggregation, which
binds directly to the proteasome and inhibits ubig-
uitin-dependent proteasomal function. Inhibition of
the proteasome would lead to failure to clear pro-
tein targeted for degradation by the ubiquitin-pro-
teasome system (UPS), ultimately resulting in the
demise of dopamine neurons [59].

The impact of carbonylation on
protein folding

Many of the proteins that are synthesised in a cell
are destined for secretion to the extracellular envi-
ronment. These proteins are translocated into the
ER, where folding and post-translational modifica-
tions take place before secretion through the Golgi
apparatus. Thus, any ROS effect on the structure
and function of ER chaperone proteins could affect
protein processing efficiency ("quality control")
and could result in a decline in cell/tissue function.
The ER contains a wide range of molecular chaper-
ones and folding catalysts, and the proteins that fold
here must satisfy a "quality-control" check before
being exported. Such a process is particularly
important because there seem to be few molecular
chaperones outside the cell, although at least one
(clusterin) has been discovered [60]. This quality-
control mechanism, involving a remarkable series
of glycosylation/deglycosylation reactions, enables
correctly folded proteins to be distinguished from
misfolded ones: incorrectly folded proteins are
detected by the quality-control mechanism and sent
along another pathway (the "unfolded protein
response") in which they are ubiquitinated and then
degraded in the cytoplasm by proteasomes [61].
Failure to fold correctly, or to remain correctly fold-
ed, will give rise to the malfunctioning of living
systems and hence to disease [62, 63]. Some of
these diseases, such as cystic fibrosis and some
types of cancer, result from proteins folding incor-
rectly and not being able to exercise their proper
function, ultimately being degraded by the protea-
some. In other cases, proteins with a high propensi-
ty to misfold escape all the protective mechanisms
and form insoluble aggregates within cells or, more
commonly, such as in the amyloidoses, in extracel-
lular space. An increasing number of disorders,
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including  AD, PD, the spongiform
encephalopathies, and types II diabetes, are directly
associated with the deposition of protein aggregates
in tissues [63]. Just as the aberrant behaviour of
enzymes can cause metabolic diseases, the aberrant
behaviour of the chaperones and other machinery
regulating polypeptide conformations can con-
tribute to misfolding and aggregation diseases
[64—66]. Such a process would explain why most of
the amyloid diseases are associated with old age,
when there is likely to be an increased tendency for
proteins to become misfolded and/or damaged, for
instance by increased oxidative stress, coupled with
a decreased efficiency of the molecular chaperones
and unfolded protein responses.

A number of human diseases are now known to
result, directly or indirectly, from aberrant folding
[66, 67]. There are various mechanisms by which
the accumulation of misfolded proteins may cause
cellular dysfunction, and often a combination of
these appears to be responsible for the disease.
Misfolded proteins not only loose their normal
function, they may also form toxic species, includ-
ing oligomers or larger aggregates [e.g., amyloid
precursor protein in AD and other insoluble fibril-
lar aggregates in PD, Huntington's disease, amy-
otrophic lateral sclerosis (ALS), and transmissible
spongiform encephalopathies], they may be pre-
vented from reaching their proper cellular localisa-
tion due to retention and/or degradation (e.g., cys-
tic fibrosis transmembrane conductance regulator
in cystic fibrosis), or they may prevent the function
of interacting partners (e.g., myosin in hyper-
trophic cardiomyopathy) [67, 68]. Importantly, the
association of aggregating disease proteins with
the quality-control machinery may itself contribute
to cellular toxicity.

Chaperones normally act to render misfolded
proteins harmless by shielding interactive surfaces,
assisting in refolding or triggering degradation.
However, in aggregation diseases, the accumulation
of toxic misfolded proteins may overload the cellu-
lar chaperone protective capacity, thus giving rise to
disease phenotypes, which increase with age.
Misfolded proteins may sequestrate components of
the chaperone and degradation systems, reducing
their activity in the cell. Both these systems are
functionally linked [69]; indeed, several compo-
nents are known to function in both the folding and
the degradation of substrate proteins. Furthermore,
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aggregates of misfolded proteins in AD, PD, polyg-
lutamine-expansion diseases, such as Huntington's
disease and the spinocerebellar ataxias, and prion
disease models also include ubiquitin and the 20S
and 19S proteasomal components [69], suggesting
that the UPS targets disease aggregates for degrada-
tion, in an attempt to clear proteins from failing pro-
teasomes. However, this attempt is made vain by
the degradation resistance of the aggregated disease
proteins as compared with their non-aggregated
wild-type counterparts [69—71].

Nystrom and colleagues have proposed a possi-
ble role for protein carbonylation in protein quality
control [72]. Studies of protein carbonylation in
prokaryotes [32, 33] showed that misfolded pro-
teins are more susceptible to carbonylation than
native ones, suggesting that carbonylation, being an
irreversible protein modification, could signal that a
protein is irreparable and, hence, act as a tagging
system for the degradation pathway. Protein car-
bonylation targets the modified (and generally dys-
functional) protein to degradation by the proteaso-
mal system in oxidatively stressed mammalian cells
[70]. The same studies in prokaryotes [32, 33] have
raised the possibility that, in AD and other diseases,
some proteins are more susceptible to carbonylation
because they are misfolded (and, consequently, dys-
functional), rather than being dysfunctional because
carbonylation has made them misfolded [16].

Actually, some normal, regulated cellular pro-
cesses utilise the carbonylation of specific proteins
as a mechanism for triggering their degradation.
For example, iron regulatory protein 2 (IRP2) is
selectively but very rapidly degraded in iron-suffi-
cient cells. It is stable and therefore functional only
in iron-depleted cells [73, 74]. A series of experi-
ments established, both in vitro and in vivo, that
IRP2 binds iron and undergoes metal-catalysed
oxidative modification in the presence of oxygen,
with introduction of carbonyl groups; the carbony-
lated IRP2 is ubiquitinylated and then degraded by
the proteasome [75]. When iron is deficient, IRP2
is stable and active. When iron becomes sufficient,
it (or perhaps heme) binds to the protein and catal-
yses an oxidative modification that suffices to trig-
ger IRP2 degradation by the proteasome. Thus,
oxidative modification of proteins need not arise
only as an undesirable by-product of an oxygen-
based metabolism; it can also function as a mecha-
nism for cellular regulation.
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The impact of carbonylation on
proteolysis

Proteins of reduced or lost function can be harmful
to cells if accumulated. Oxidized proteins are
either repaired, removed by proteolytic degrada-
tion or accumulate as damaged or unfolded pro-
teins (Fig. 4). Major intracellular proteolytic sys-
tems include lysosomal proteases (cathepsins), cal-
cium-dependent proteases (calpains), and multicat-
alytic proteases (20S proteasome, which has all the
three catalytic activities - chymotrypsin-like,
trypsin-like, and peptidyl glutamyl peptide hydro-
lase, or caspase-like - and 26S proteasome, with
higher catalytic activity than 20S proteasome).
Proteasome can degrade proteins by either ubiqui-
tin-dependent or ubiquitin-independent non-lyso-
somal pathways. In cells, most proteins destined
for degradation are labelled first by ubiquitin in an
ATP-dependent process and then digested to small
peptides by the 26S proteasome. However, oxi-
dized proteins are mostly degraded by the 20S pro-
teasome that, in contrast to the 26S proteasome,
does not require tagging by ubiquitin of target pro-
teins and ATP for the activity [76, 77]. Davies and
colleagues have proposed that the 20S proteasome
selectively recognises exposed hydrophobic patch-
es of partially unfolded (or denatured) oxidized
proteins, since oxidation may cause protein partial
unfolding or denaturation with a concomitant
increase in surface hydrophobicity [70, 76].
Although mild progressive oxidation of a pro-
tein increases its degradation by the proteasome,
excessive oxidation and cross-linking of proteins
render them resistant to proteolytic degradation by
the proteasome, probably because the structural
constraint does not allow aggregated or too struc-
turally altered proteins to reach the catalytic sites
located inside the cylinder of the enzyme complex
[71]. Therefore, heavily oxidized and cross-linked
protein aggregates accumulate in cells because
they inhibit the proteasome and actually cause a
progressive further increase in protein aggregation
and cross-linking in nondividing (post-mitotic)
cells, and may eventually induce apoptosis, as
demonstrated in cardiomyocytes [70, 71, 78, 79].
This possibility may have particular importance in
post-mitotic tissues such as brain, heart, and skele-
tal muscles, where accumulation of oxidized and
cross-linked protein aggregates is most marked.
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Fig. 4 Degradation and accumulation of oxidized and/or misfolded proteins. Many newly synthesised proteins are
translocated into the ER, where they fold into their three-dimensional structures with the help of a series of molecular
chaperones and folding catalysts. Correctly folded proteins are then transported to the Golgi complex and then delivered
to the extracellular environment. However, incorrectly folded proteins are detected by a "quality-control" mechanism
and sent along another pathway (the "unfolded protein response") in which they are ubiquitinated and then degraded in
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dized proteins are degraded essentially (if not only) by the 20S proteasome. Cross-linkers like HNE or acrolein further
enhance the process of aggregation. The heavily oxidized proteins aggregate and these aggregates cannot be degraded
by the 20S proteasome, thus they accumulate and build up larger and larger aggregates. More importantly, they even
inhibit the removal of oxidatively damaged proteins by the proteasomal system. Cross-linkers like HNE or acrolein fur-

ther enhance the process of aggregation as well as the inhibition of the proteasome.

Proteasome activity declines during ageing, as
the protease is progressively inhibited by binding
to ever increasing levels of oxidized and cross-
linked protein aggregates [71, 76]. Conversely,
healthy centenaries, and rodents placed on a
dietary restriction regiment, exhibit a marked
amelioration of age-related increases in protein
oxidation and proteasome alterations [80]. On the
other hand, direct inhibition of the proteasome in
NT-2 (human teratocarcinoma) and SK-N-MC
(human neuroblastoma) cells led to increased
oxidative damage, NO formation, elevated pro-
tein nitration [81], and the formation of protein
aggregates [82]. Furthermore, interference with
polyubiquitination in the same cell lines led to
increased levels of protein carbonylation and
nitration, lipid peroxidation, and NO production
[83]. Disruption of the UPS may form a common
mechanism underlying a number of neurodegen-
erative diseases associated with the accumulation
of misfolded and/or oxidized proteins.

Proteasomal dysfunction occurs in neurodegen-
erative disorders [66, 80, 84—86] and, consistently,
the observation of ubiquitinated-protein inclusion
bodies in neurons is one of the hallmarks of neu-
rodegeneration [66, 85, 87, 88]. In PD, which is
currently the only neurodegenerative disease
known to be caused by mutations in proteins with-
in the UPS such as parkin [66], there is genetic evi-
dence for a contribution of UCH-L1 (ubiquitin C-
terminal hydrolase-L1), a crucial enzyme for pro-
teasomal protein degradation that generates free
monomeric ubiquitin [89]. HNE-cross-linked amy-
loid B-peptide, which forms the senile plaques in
AD, is able to inhibit the proteasome, whereas nei-
ther the amyloid B-peptide nor free HNE alone at
moderate concentrations inhibit proteasome activi-
ty [90]. High concentrations of HNE are unlikely
to accumulate in tissues due to very active HNE
metabolism. Therefore, a direct inhibition of the
proteasome by HNE in vivo seems to be very
unlikely, even under pathological conditions.
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Much more probable is a decline in the protein
turnover or the proteasomal activity due to the for-
mation of inhibitory HNE-modified protein aggre-
gates. Indeed, an accumulation of proteins modi-
fied by HNE occurs in PD and ALS patients
[91-93] and both HNE and HNE-modified proteins
conjugate with 20S proteasome during oxidative
stress, which may contribute to an impairment of
proteasomal function [70, 71, 90, 94, 95].

Oxidative modification and inactivation of the
20S proteasome has been demonstrated in the
ischaemic heart [96]. Proteasome plays a signifi-
cant role in removal of proteins oxidized (car-
bonylated) during myocardial ischaemia. A recent
study demonstrated an inverse correlation
between post-ischaemic proteasome activity and
levels of carbonylated and ubiquitinated proteins.
In particular, inhibition of the 20S proteasome
correlates with increases in protein carbonylation,
whereas post-ischaemic inhibition of the 26S pro-
teasome leads to accumulation of ubiquitinated
proteins [79, 97]. A more recent study [98] has
shown that inhibition of the proteasome results in
enhanced accumulation of carbonylated proteins
in the post-ischaemic rat heart. Furthermore, actin
degradation is increased in the post-ischaemic
heart, a process that is partially blocked by a pro-
teasome inhibitor, and there appears to be no for-
mation of ubiquitinated homologues of actin, sug-
gesting proteolysis by the 20S proteasome. These
observations provide the first evidence that pro-
teasome mediates removal of some of the proteins
oxidized during myocardial ischaemia/reperfu-
sion, and that at least carbonylated actin is
removed by the 20S proteasome.

Proteasome subunits may be themselves the
target of carbonylation. Treatment with an
endogenous inducer of ROS production, a
prostaglandin D, metabolite, 15-deoxy-Al214-
prostaglandin J, (15d-PGJ,), on human neurob-
lastoma SH-SYSY cells resulted in the accumula-
tion of protein carbonyls. Proteomic analysis of
oxidation-sensitive proteins showed that the
major intracellular target of protein carbonylation
was one of the regulatory subunits in 26S protea-
some, S6 ATPase, which was associated with (i) a
dramatic increase in protein carbonyls within S6
ATPase, (i) a significant decrease in the S6
ATPase activities, and (iii) a decreased ability of
268 proteasome to degrade substrates [99].
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Is protein carbonylation an early
event of cellular dysfunction and
disease progression?

Proteasome inhibitors can induce several hallmarks
of apoptosis, including caspase activation,
cytochrome C release, elevated pS53 expression,
chromatin fragmentation, and DNA laddering, in
both neuronal and glial cells [80]. It has been sug-
gested that protein carbonylation is an early event
in NO-induced apoptosis in insulin-secreting
RINmMSF cells [100, 101]. NO-triggered carbonyla-
tion of Bcl-2, adenine nucleotide translocator, and
GAPDH precedes DNA fragmentation, and
inhibitors of ALEs block NO-dependent carbonyla-
tion, prevent NO-induced GAPDH inhibition, DNA
fragmentation [100], and caspase activation [101].
In addition, NO-induced carbonylation of poly
(ADP-ribose) polymerase (PARP) protein precedes
its apoptotic degradation and inhibitors of ALE for-
mation prevented both events [100], thus suggest-
ing that carbonylation of PARP could be mechanis-
tically involved in its degradation during apoptosis.
Accumulation of aggregates of heavily oxidized
proteins (lipofuscin-like materials) induce apopto-
sis of cardiomyocytes through inhibition of both
20S- and 26S-proteasome activity, accompanied by
large increases in ubiquitinated proteins and dys-
regulation of pro-apoptotic proteins [79]. In addi-
tion to directly mediating neurotoxicity, proteasome
inhibitors increase neural vulnerability to subse-
quent oxidative injury [102]. The ability of mild,
non-toxic, proteasome inhibition to increase vulner-
ability to oxidative stress may be particularly
important in ageing, AD, and PD, in which protea-
some inhibition would be expected to occur gradu-
ally, and not directly induce cell death within the
central nervous system. However, once a certain
level of proteasome inhibition is achieved, it could
then serve as a trigger, and increase the toxicity of
subsequent stressors.

A key question is whether protein carbonylation
occurs at an early stage of disease, contributing to
its development, or whether it is merely a conse-
quence of the oxidative tissue damage, reflecting
the presence of disease. Basically, the answer to this
question requires identification of a specific car-
bonylated protein and a positive correlation
between altered function of this protein and devel-
opment of diseases. Increased levels of protein car-



bonyls have been detected in a large variety of
pathological states occurring in humans, thus sug-
gesting their potential causative role in disease
pathogenesis [7, 18, 19, 89, 103—-105].

The plasma protein carbonyl content of children
with juvenile rheumatoid arthritis is much higher
than in healthy children and, notably, grows with the
activity of the inflammatory process [106].
Therefore, carbonyl groups of plasma proteins seem
to be a good link of inflammatory process activity
and disease progression. Increased protein carbonyls
have also been observed in tracheal aspirates from
premature infants undergoing ventilation therapy,
and a correlation between the protein carbonyl con-
tent and myeloperoxidase activity (index of pul-
monary inflammation) was established [107].
Severe sepsis and major trauma patients had elevat-
ed protein carbonyl concentrations in both plasma
and bronchoalveolar lavage fluid, which correlated
well with ALE measurements and indices of neu-
trophilia and neutrophil activation [108]. Moreover,
patients with acute pancreatitis had significantly
increased concentration of protein carbonyls in plas-
ma, which were related to disease severity [109].
Elevated levels of protein carbonyls were observed
in the brain of persons with mild cognitive impair-
ment, a condition that often precedes AD, suggest-
ing that oxidative damage may be one of the earliest
events in the onset and progression of AD [110].

Increased oxidative stress in newly diagnosed
child and young diabetic patients with no complica-
tions [111, 112] suggests that the increase in oxida-
tive stress may not be due to complications, but
rather may contribute to their development. Studies
on young type 1 diabetic patients showed that the
content of carbonyl groups in plasma proteins was
much higher than in their healthy peers, and that
plasma protein carbonyl levels were even higher in
diabetic patients with microvascular complications
[113]. Although the primary pathophysiological
mechanisms by which diabetic complications
develop remain to be conclusively determined,
results showing that the increased protein oxidative
damage and reduced antioxidative defences were
greater in young diabetic patients with microvascu-
lar complications than in those without suggest that
protein carbonylation could be an important early
event in the pathogenesis of complications sec-
ondary to diabetes [113]. These findings may also
indicate that underlying subclinical pathology
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(oxidative stress and vascular dysfunction) may be
present despite the apparently good glycemic con-
trol and outcome in the majority of these young dia-
betic patients [113].

The increase in glycoxidation and lipoxidation
products in plasma and tissue proteins suggests that
oxidative stress is increased in diabetes. However,
some of these products are formed independent on
oxidation chemistry and may also result from ele-
vated levels of substrates prone to oxidation.
Moreover, there is also an increase in products of
reaction of proteins with dicarbonyl compounds
formed by non-oxidative mechanisms [114]. The
increased chemical modification of proteins by car-
bohydrates and lipids in diabetes and other diseases
such as uremia and atherosclerosis may therefore be
viewed as the result of increased "carbonyl stress"
(carbonyl overload), which is caused by a gener-
alised increase in the steady-state concentration of
reactive carbonyl precursors of AGEs/ALEs, gly-
coxidation and lipoxidation products. Carbonyl
stress may result from an increase in substrate stress
and/or a decrease in the efficiency of detoxification
of RCS, i.e., an imbalance between the rates of pro-
duction and detoxification of reactive carbonyls.
Compared with oxidative stress (a condition in
which carbonyls are derived exclusively from
oxidative reactions), carbonyl stress is a more com-
prehensive term, since it includes increases in car-
bonyls derived from both oxidative and non-oxida-
tive reactions [114-117].

Thus, the consequent loss of function of car-
bonylated proteins may be the cause of subsequent
cellular dysfunction and tissue damage (Fig. 5).
Some studies discussed in this review suggest a
positive correlation between increases in protein
carbonylation and disease progression. Since car-
bonylation can alter protein structure and function
and cause the formation of protein aggregates, the
"carbonyl stress" hypothesis emphasises the role of
RCS, derived from different sources through both
oxidative and non-oxidative reactions, and resulting
from decreased renal detoxification and/or excre-
tion of reactive carbonyl precursors of AGEs/ALEs
from plasma, in the induction of pathogenic protein
modifications [114, 115, 118, 119].

Although the importance of protein carbonyls in
the pathogenic processes responsible for the devel-
opment of several diseases remains to be decisively
determined, experimental evidences suggest a
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causative role of protein carbonylation in the devel-
opment of long-term complications of diabetes, as
well as in ageing-related diseases. For istance, the
increased oxidative/carbonyl stress as well as the
accumulation of AGEs/ALEs in tissue proteins are
in fact thought to contribute to the development of
diabetic complications such as atherosclerosis, vas-
cular and neural dysfunction, and retinopathy
[114-117, 119—-121]. Cumulative modifications by
AGESs occur predominantly (but non exclusively)
on long-lived proteins such as collagen, neural
myelin, and lens crystallins, resulting in insoluble
and dysfunctional aggregates that accumulate pro-
gressively with time. The formation of inter- and
intramolecular cross-links following the glycation
of collagen leads to structural alterations, i.e.,
increased stiffness and resistance to proteolytic
digestion [122, 123].

The causative role of protein carbonylation in tis-
sue injury in diabetic complications is substantiated
by the pharmacological effects elicited by a variety of
novel therapeutic agents able to reduce the accumula-
tion of AGEs/ALEs in diabetes, which have also
gained interest as potential cardioprotective
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approaches. These agents include aminoguanidine,
AVE7688, pyridoxamine, carnosine, benfotiamine,
OPB-9195, LR-90, and the so-called cross-link
breakers such as ALT-946 and thiazolium salts (e.g.,
N-phenacylthiazolium bromide and alagebrium chlo-
ride) [116, 117, 124-128]. In addition, it has been
demonstrated that a number of established therapies
have the ability to reduce the accumulation of
AGES/ALEs in diabetes, including angiotensin con-
verting enzyme inhibitors, angiotensin receptor
antagonists, metformin, peroxisome proliferators
receptor agonists, metal chelators and some antioxi-
dants [116, 117, 119, 124-127]. These compounds
have been shown to inhibit several diabetic complica-
tions such as nephropathy, retinopathy, neuropathy,
diabetes-accelerated atherosclerosis, and vascular dis-
eases [116, 117, 129—-133] as well as the increased
blood pressure, decline in glomerular filtration rate,
glomerulosclerosis, nephron loss, proteinuria, cardiac
hypertrophy, and aorta stiffness in aged rats [129,
134]. The fact that many of these inhibitors of
AGESs/ALEs are effective in experimental models,
despite their disparate mechanisms of action, supports
the keystone role of AGEs/ALEs in diabetic tissue



damage. Nonetheless, the clinical utility of AGE/ALE
inhibition remains to be firmly established.

Conclusions and perspectives

Most pharmacological approaches of the "anti-
AGESs/ALE:s strategy" are strictly related to inhibi-
tion of protein carbonylation and AGE/ALE forma-
tion. AGE/ALE inhibitors, even if belonging to dif-
ferent chemical classes, have a common chemical
feature: a strong nucleophilic centre able to react
with glucose- or lipid-derived RCS at a faster rate
than do cell macromolecules. This chemical feature
suggests that trapping of RCS and inhibition of pro-
tein modification is essential to restrain the patho-
logical events. A key role for lipoxidative modifica-
tion of proteins in the development of chronic com-
plications of diabetes was clearly demonstrated by
investigating the mechanism of action of pyridox-
amine [116]. As elevated levels of pyridoxamine
adducts with the intermediates of lipid peroxidation
have been determined in the urine of diabetic and
hyperlipidemic rats, the protective effect of pyri-
doxamine is consistent with its ability to trap RCS.

However, it must be highlighted that AGE/ALE
inhibitors can not be considered as optimal pharma-
cological tools, because all of them have promiscu-
ous effects. For example, aminoguanidine is a potent
inhibitor of inducible nitric oxide synthase, while
carnosine and pyridoxamine are also quenchers of
ROS. Thus, the real challenge for future research
will be, besides to identify target proteins for RCS
and to gain a deeper insight into the molecular
mechanisms of carbonylation reactions, to develop
more specific pharmacological tools, i.e., selective
carbonyl blockers (without any antioxidant/metal
chelation effect) for definitive assessment of the
possible causative role of protein carbonylation in
diseases. Significant advancement on this issue
should also contribute to suitable updating of phar-
macological intervention in human diseases associ-
ated with protein oxidation. To achieve successfully
this aim, investigations should focus to the unequiv-
ocal identification of specifically carbonylated pro-
teins in pathological tissues and fluids.

Proteomic tools now available represent a
promising way to elucidate disease mechanism(s) at
the protein level [135], because identification of
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sites of carbonyl modification should help under-
standing the factors affecting protein function. A
subsequent goal will be to evaluate the impact of
carbonylation on protein function. This point is cru-
cial to establish whether carbonylation of specific
proteins is causative, correlative or consequential of
oxidative stress-associated conditions, because car-
bonylation does not necessarily result in protein
function alteration. Furthermore, it is essential to
compare the in vitro with the in vivo settings when
assessing the extent of carbonylation and the conse-
quences to protein activity. For instance, it has been
demonstrated that the age-related increase in HNE
adduction to rat heart o-ketoglutarate dehydroge-
nase does not cause loss of its catalytic activity,
contrarily to what observed in vitro, suggesting that
the extent of HNE binding remains low in vivo, pos-
sibly because the cellular HNE concentrations are
manyfold lower than those used to inhibit the mito-
chondrial enzyme in vitro [136]. Hence, if carbony-
lation leads to protein dysfunction, the use of an
appropriate pharmacological tool, able to
inhibit/prevent protein carbonylation, would
unequivocally indicate a causative role of protein
carbonylation in disease development and/or pro-
gression. Otherwise, if carbonylation does not lead
to functional consequences of the oxidized protein,
its causative role in disease onset and/or progres-
sion would be excluded.
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