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MiR-29b antagonizes the pro-inflammatory tumor-promoting
activity of multiple myeloma-educated dendritic cells
C Botta1, M Cucè1, MR Pitari1, D Caracciolo1, A Gullà1, E Morelli1, C Riillo1, L Biamonte1, ME Gallo Cantafio1, R Prabhala2, C Mignogna3,
A Di Vito1, E Altomare1, N Amodio1, MT Di Martino1, P Correale4, M Rossi1, A Giordano5,6, NC Munshi2,7, P Tagliaferri1 and P Tassone1,6

Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that
multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA
(miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in
normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured
in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced
expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and
nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients’ adverse prognosis and development
of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized
a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic
instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b
whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative
and attractive candidate for miRNA-based immune therapy of MM.
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INTRODUCTION
Multiple myeloma (MM) is an incurable malignancy characterized
by uncontrolled clonal proliferation of malignant plasma cells
(PCs) within the bone marrow (BM). Although novel therapeutic
strategies have recently improved the clinical outcome, patients
invariably still progress to a drug-resistant disease.1

It is well known that a crucial cross-talk between tumor cells and
ancillary cell components takes place within the human BM
microenvironment (huBMM). This complex network of interactions
promotes MM progression and drug resistance, neo-angiogenesis,
bone destruction and immune escape.2–5 Specifically, an inflamma-
tory/immune-suppressivemilieu, which may account for the failure of
immunotherapy in MM, has been recently described.4–7 Among
several components of the huBMM, cells expressing CD28 ligands
CD80 and CD86, including macrophages and dendritic cells (DCs),
have been found to induce melphalan and bortezomib resistance
through the activation of the CD28/PI3K/AKT signaling in MM cells.4

DCs, which are potent antigen-presenting cells, with a crucial role for
the ignition of both innate and adaptive immune response and for
maintaining immunological tolerance,8 have been suggested as
pivotal elements in modulating response to therapeutics.2,8,9

Depending on their maturation and phenotype, as well as on
microenvironment cell-to-cell interaction and/or soluble mediators,
DCs orchestrate both activation of immune response and tolerance
by inducing the polarization of T-helper lymphocytes into different
functional T-cell subpopulations, such as Th1, Th2, Th17 and

regulatory T cells.10 Different studies described extensive DCs
infiltration (up to 10%) in BM from MM patients.11,12 DCs are
attracted in the MM-induced inflammatory huBMM and repro-
grammed: (i) to directly sustain MM cells growth;11 (ii) to differentiate
in osteoclast-like cells;13 (iii) to expand regulatory T cells,14 and (iv) to
induce Th17 cells, thus enhancing the inflammatory huBMM and
promoting bone disease15 through different mechanisms.16,17 It is
now a common view that MM cells enforce surrounding cells to
produce a tumor permissive huBMM. It is noteworthy that
reprogramming the immune response requires rapid changes at
both transcriptional and posttranscriptional level, and microRNAs
(miRNAs) are likely to have a role in regulating such events.
miRNAs are small non-coding RNA molecules that regulate gene

expression at posttranscriptional level.18 Each miRNA may target
up to hundreds of different transcripts, thus influencing multiple
biological pathways including those relevant in cancer and
immune response.2,19 Currently, several miRNAs have been found
to be deregulated in MM20–24 or in huBMM cells25,26 and such
deregulation is considered to have a key role in MM pathogenesis.
Moreover, different studies demonstrated that miRNAs are
essential regulators of DCs differentiation and functions.27

On this basis, we investigated whether (i) changes in the miRNA
network occur in MM-associated DCs, (ii) these changes repro-
gram DCs to produce a tumor-permissive huBMM and (iii)
interference within the DCs’ miRNA network may offer a novel
therapeutic opportunity for MM.
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MATERIALS AND METHODS
Microarray data sets
In order to evaluate the differentially expressed miRNAs in mature DCs
(mDCs) and tumor-associated DCs (TA-DCs) compared with immature DCs
(iDCs) we searched the Gene Expression Omnibus (GEO) website (http://
www.ncbi.nlm.nih.gov/geo/) and the web for public available data sets. All
microarray data sets from GEO repository using human or murine
specimen under the search terms ‘dendritic cells’ and ‘microRNA profiling’
as of July 2016 were reviewed. To be included in our analysis, microarray-
based miRNAs expression profiles should have been performed on iDC and
mDCs (different maturation protocols were allowed) or TA-DCs from both
human and mice. Normalized data from GEODatasets, GEO2R or directly
from published papers were used to perform the analysis.

MM patient-derived cells, healthy donor-derived cells and cell
lines
Peripheral blood mononuclear cells (PBMCs) and BM mononuclear cells
were obtained by Ficoll-Hypaque (Lonza Group, Basel, Switzerland)
gradient separation of buffy coats of heparinized blood samples collected
from healthy adult donors or MM patients, who provided informed
consent according to institutional IRB regulations. CD14+ monocytes and
CD3+ lymphocytes were then isolated by immunomagnetic separation
with CD3 and CD14 microbeads (from either Miltenyi Biotech, Gladbach,
Germany, or StemCell Technologies Inc, Vancouver, BC, Canada, or BD
Bioscience, San Jose, CA, USA). Purity of the sample was assessed through
flow cytometry and was 495% in all experiments. MM cell lines were
cultured as described elsewhere.20 CD11c+CD45+ DCs were sorted from
BM mononuclear cells using BD FACSAria III cell sorter (BectonDickinson,
Heidelberg, Germany).

DC generation
DCs were generated from healthy donor (HD) monocytes as described
elsewhere.28 Additional details are reported in the Supplementary
Materials and Methods section.

DC transfection
Synthetic miRNA mimics were purchased from Ambion (Applied Biosys-
tems, Carlsbad, CA, USA). DCs (1 × 106) were transfected with scrambled
(miR-NC) or synthetic pre-miR-29b (miR-29b) at a final concentration of
100 nM, using Neon Transfection System (Invitrogen, Carlsbad, CA, USA),
(1,250 V, 30 ms, 2 pulses). The protocol optimization led us to achieve a
transfection efficiency of 60–70% with a mortality o25% at 24 h evaluated
by flow cytometric analysis relative to a green fluorescent protein control
plasmid associated to 7-aminoactinomycin D.

Flow cytometry
DCs, lymphocytes and tumor cells were collected with trypsin-free EDTA
(Sigma, Steinheim, Germany) 2 mM solution, washed twice with phosphate-
buffered saline (PBS) containing 0.5% bovine serum abumin and
distributed into 3 ml tubes (106 cell/tube). Fluorochrome-conjugated
antibodies against CD14, CD83 (BD Bioscience) and CD3, CD11c, CD45,
CD86 and B7H3 (Miltenyi Biotech) were used to label cells according to
producer’s guidelines. Cells were then acquired by flow cytometry
(FACSCanto II, Becton-Dickinson, or ATTUNE Nxt, Thermo Fisher Scientific,
Waltham, MA, USA). For each sample, at least 1 × 104 events in the gate of
interest were acquired. Data were analyzed by FCS Express (DeNovo
software, Los Angeles, CA, USA) and Flowjo (TreeStar, Ashland, OR, USA).

RNA extraction and quantitative real-time PCR
RNA extraction and quantitative reverse transcriptase–PCR (qRT–PCR) were
performed as previously described.20 Additional details are reported in the
Supplementary Materials and Methods section.

Gene expression profiling
DCs (3 × 106), obtained from three different HDs, were transfected with
either miR-29b or negative control (NC) and co-cultured with U266 MM
cells. Twenty-four hours after transfection, cells were collected and
separated with immuno-magnetic microbeads. Gene expression profiling
was performed as previously described29 (additional details are reported in

the Supplementary Materials and Methods section). Data set has been
deposited under the GEO accession number GSE104831.
Gene Ontology was performed by using DAVID,30 whereas analysis of

biological pathways modulation by miR-29b was performed by Ingenuity
Pathway Analysis (IPA) platform (Ingenuity System, Redwood city, CA, USA).

Luciferase reporter assay
The 3′-untranslated region of phosphatase and tensin homolog and of its
mutant carrying two deletions (100b in length with the center in position
660 and 1728) of the miR-29b target sequence were cloned in pEZX-MT01
vector and purchased from Genecopeia (Rockville, MD, USA). Human
embryonic kidney (HEK293) cells were co-transfected with 100 nM of
synthetic miR-29b (or miR-NC) and 10 μg of the firefly luciferase reporter
vector. Firefly and Renilla luciferase activities were measured 48 h after
transfection using the Dual-Luciferase assay kit (Promega, Madison, WI,
USA) with the Glomax 96 Microplate Luminometer (Promega).

Western blotting
DCs and MM protein extraction and separation were performed as
described elsewhere.20,23,31 Additional details are reported in the
Supplementary Materials and Methods section.

Immunostaining for confocal microscopy
DCs or MM cells were seeded onto glass coverslips and underwent
cytospin for 5 min at 800 r.p.m. Subsequently, cells were washed in PBS,
fixed in 4% paraformaldehyde for 12 min, washed three times with PBS,
followed by permeabilization with 0.01% Triton-X for 15 min and again
washed in PBS containing 0.5% bovine serum abumin. Cells were then
incubated with interleukin (IL)-23 antibody (Abcam, Cambridge, UK) or
g-H2ax (Cell Signaling, NEB, Hitchin, UK) overnight at 4 °C, washed with
PBS three times and incubated with Alexa-flour 488-conjugated secondary
antibody (Molecular Probes, Grand Island, NY, USA) for 1 h at room
temperature. Cells were again washed three times with PBS and mounted
with Vecta-Shield mounting media containing 4',6-diamidino-2-phenylin-
dole. Samples were visualized and images captured using a Leica
microscope.

Cytokines analysis
IL23, CCL2, CXCL10, TNFa, MIP1a, IL10, IL8, VEGFA and IL1b, were detected
in supernatant of co-cultures using the BD CBA Human Soluble Protein Flex
Set system (Becton Dickinson). Samples were analyzed with a FACSCanto II
flow cytometer (Becton Dickinson).

Migration assay
Chemotaxis was assessed by using 8 μm pore transwell migration assay
(Corning Incorporated, Corning, NY, USA). Briefly, 1 × 106 U266 or PBMCs
from HDs were washed and resuspended in RPMI1640 medium containing
1% fetal bovine serum. These cells were placed in the upper chamber of
the well, whereas the lower chamber contained 50% of supernatant
obtained from 29b-DCs/U266 (or 29b-DCs/RPMI8266 or 29b-DCs/MM1S for
PBMCs) or NC-DCs/U266 (or NC-DCs/RPMI8226 or NC-DCs/MM1s for
PBMCs) 48 h co-cultures. After 5 h (12 h for PBMCs) of incubation at
37 °C 5% CO2, cells migrated to the lower chamber were determined by a
Trypan-blue count. For PBMCs migration assay, cells migrated in the low
chamber were further stained with fluorochrome-conjugated antibodies
against CD14, CCR6 and CCR2 (Becton Dickinson), and analyzed with
ATTUNE Nxt flow cytometer (Thermo Scientific). Three independent
experiments were carried out. Cells from nine different fields were
counted for each condition.

Tube assay formation
Matrigel (50 μl; Corning) were used to coat 96-well plates and allowed to
polymerize at 37 °C for 30 min. Human umbilical vein endothelial cells (105)
were seeded in each well and then 50 μl of conditioned medium from NC-
DCs/29b-DCs + MM cells was added. After 1 h incubation at 37 °C, at least
pictures of three representative fields per well were taken using phase
contrast microscopy. The tubulogenic potential was quantified by
estimating the number of nodes (pixels with at least three neighboring
elements corresponding to a bifurcation), segments(elements delimited by
two junctions), meshes (areas enclosed by segments or master segments,
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made by tube-like structures) number and total area, through the
‘Angiogenesis analyzer’ tool (created by Gilles Carpentier, http://image.
bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ&lang= en)
in ImageJ software (http://imagej.nih.gov/ij/).

Th17 polarization
Autologous Naive CD4+ T cells were isolated through immunomagnetic
sorting by using the human Naive CD4+ T Cell Isolation Kit II (Miltenyi
Biotech) and cryopreserved until 2 days before performing the polarization
assay, when they were thawed and stimulated with anti-CD3/CD28
microbeads (Miltenyi Biotech). DCs transfected with either NC control
(NC-DCs) or synthetic miR-29b (29b-DCs) were prepared as described
above. After 48 h co-culture with U266 MM cells, DCs were immunomag-
netically separated and co-cultured with autologous Naive CD4+ T cells at
a DCs:Lymphocytes ratio of 1:10 for 3 days. Finally, total mRNA was
extracted from exposed lymphocytes and the expression of RORC and
IL17A (Th17-polarization markers) was assessed through qRT–PCR.

Th17 expansion
DCs transfected with either NC control (NC-DCs) or synthetic miR-29b (29b-
DCs) were loaded with apoptotic (obtained after 24 h treatment with
100 μM Bortezomib32) or necrotic (obtained after repeated freeze and thaw
cycles15) U266 MM cells (1:1 ratio). Tumor-loaded DCs were then used to
stimulate autologous CD3+ immunomagnetically separated (Miltenyi
Biotech) lymphocytes (DCs-T cells ratio of 1:30). After 5 days of culture,
the amount of Th17 cells was quantified through flow cytometry by using
fluorochrome-conjugated antibodies against CD4 and CD161.33,34

Proliferation assay
Modulation of cell proliferation was assessed through Carboxyfluorescein
succinimidyl ester staining (Invitrogen) and Cell Counting Kit-8 (CCK-8)
assay (Dojindo Molecular Technologies, Mashikimachi, Japan) according to
producer guideline. Briefly, 5 × 105 U266 was stained with Carboxyfluor-
escein succinimidyl ester and co-cultured with either NC or miR-29b
transfected DCs (cell ratio 1:1). After 48 h mean fluorescence intensity of
MM cells was evaluated through flow cytometry. For CCK-8 assay, 15 × 103

U266 were plated in 96-well plates in the presence of conditioned
supernatant from either NC or miR-29b-transfected DCs co-cultured with
U266 for 48 h.

SCID-synth-hu model
The SCID-synth-hu model35,36 was used to evaluate the capability of
miR-29b to reduce the production of IL23 in DC-like cells in vivo. Additional
details are reported in the Supplementary Materials and Methods section.

Immunohistochemistry
Immunohistochemistry analysis has been performed as described
elsewhere.22 Additional details are reported in the Supplementary
Materials and Methods section.

Gene expression data sets analysis
Data sets of gene expression profiling of MM or DCs were retrieved from
GEO database or from the Multiple Myeloma Research Foundation
researcher gateway portal (https://research.themmrf.org). The GSE47552
data set includes data from 5 HDs, 20 patients with monoclonal
gammopathy of undetermined significance, 33 high-risk sMM and 41
MM. The GSE40484 data set17 includes the gene expression profiling (GEP)
profile from inflammatory DCs obtained from cancer-associated ascites
(five donors) and normal DCs obtained from four HDs. The CoMMpass
(http://research.themmrf.org) (Relating Clinical Outcomes in MM to
Personal Assessment of Genetic Profile) Trial (NCT0145429), a longitudinal
study in MM relating clinical outcomes to genomic and immunopheno-
typic include clinical outcomes, Exome-Seq somatic mutations and CN
segments, and RNA-Sequencing at pre-treatment of 549 patients at its
current release (interim analysis 8).

Statistical analysis
Differences between means were analyzed by using GraphPad statistical
package (GraphPad Software, La Jolla, CA, USA). Parametric and non-
parametric tests (always two-sided) were used to compare means between

groups, according to Gaussian or not-Gaussian distribution of the variable
evaluated. The results were expressed as the mean± s.d. of at least three
different experiments. A P-value of 0.05 or less was considered statistically
significant. Overall survival and progression-free survival (PFS) analyses
(Kaplan–Meier curves, log-rank test and Cox regression analysis) have been
performed by using SPSS statistical software (IBM Corp, Armonk, NY, USA)
on data retrieved by the CoMMpass database.

RESULTS
miR-29b is downregulated in tumor-associated DCs
To identify miRNAs differentially expressed between mDCs and
TA-DCs as compared with matched iDCs, we analyzed different
miRNA microarray data sets (Supplementary Table S1; the flow
chart is represented in Figure 1a). The analysis of dataset
GSE36316 revealed 28 miRNAs upregulated at least 1.5-fold in
murine mDCs as compared with iDCs after in vitro stimulation. In a
further additional data set, 77 miRNAs were found downregulated
in murine DCs after co-culture with either 1D8 or CT-26 tumor cell
lines (GSE42722) (Supplementary Table S2). As shown in Figure 1a,
comparing both data sets, just three miRNAs, namely miR-574-5p,
miR-29b and miR-193, were upregulated in the presence of
maturation stimuli (GSE36316), whereas, on the other hand, were
downregulated in the presence of cancer cells (GSE42722). We
then evaluated the behavior of these selected three miRNAs in a
further murine data set GSE72716 and also in three human DC
data sets: GSE21708, GSE15036 and a miRNA PCR array performed
by Hoces de la Guardia et al.37 We observed miR-29b as the only
miRNA steadily upregulated at least 1.5-fold during DCs matura-
tion across all data sets (Figure 1a). Currently, no data sets
exploring miRNA modulation in human DCs co-cultured with
cancer cells are available. These in silico findings prompted us to
investigate miR-29b modulation in human HD-derived DCs after
maturation or co-culture with different MM cell lines (RPMI8226,
U266, H929, AMO and KMS11). We observed that miR-29b was
indeed upregulated during DCs differentiation from monocyte
precursors (Supplementary Figure 1A) and after maturation with
lipopolysaccharide or co-culture with allogenic lymphocytes
(Figure 1b), whereas it was significantly downregulated in DCs
after co-culture with all MM cell lines (Figure 1b). To validate our
observation in MM patient-derived DCs, we investigated miR-29b
expression in CD11c+/CD45+ DCs retrieved from BM of six MM
patients and five HDs (Figure 1c). Altogether, DCs represented the
17.67% (±2.67%) of the CD45+/CD138 − cells and we were unable
to find any difference in term of DCs number or iDCs-mDCs ratio
between MM patients and HDs (data not shown). We sorted
CD11c/CD45 double-positive cells from BM mononuclear cells and
evaluated miR-29b expression levels by qRT–PCR. Consistently
with our previous in vitro data, we found a significant down-
regulation of miR-29b in DCs isolated from MM patients as
compared with HD (P= 0.009) (Figure 1c).
These findings suggest that downregulation of miR-29b in DCs

exposed to MM cells may be functionally involved in the
pathogenesis of MM.

miR-29b targets multiple genes associated with inflammation
To investigate the potential role of miR-29b in DCs/MM cells cross-
talk, we first explored the perturbation induced by enforced
expression of miR-29b on DCs transcriptional profile. The
experimental design is reported in Figure 2a; briefly, iDCs
transfected with miR-29b mimics (29b-DCs) or negative (scramble)
control (NC; NC-DCs) were co-cultured with U266 MM cells for 24 h
and then analyzed for their transcriptome (transfection efficiency
is reported in Supplementary Figure 1B). Differentially expressed
genes (DEGs) with at least a 1.5-fold change were considered for
further comparative analyses (data deposited under the GEO
accession number GSE104831). Unsupervised hierarchical
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clustering (Supplementary Figure 1C) and principal component
analysis (Figure 2a) segregated two subgroups with homogeneous
and reproducible transcriptional perturbations induced by
miR-29b. A total of 688 genes were found differentially expressed
between the two groups. DEGs were then clustered using Gene
Ontology analysis (DAVID),30 which identified immune-related and
inflammatory among the biological functions mainly affected by
miR-29b (the top 10 functions and their respective P-values are
reported in Figure 2b). To understand the biological impact of
DEGs, we performed a putative functional investigation by IPA.
Among the top 10 perturbed canonical pathways (Supplementary
Figure 1D), we chose to investigate the DC maturation signaling,
which was the most relevant modulated path in the light of our
experimental settings (the pathway is reported in Supplementary
Figure 1E). All genes involved in this pathway and modulated by
miR-29b are reported in Figure 2c and Supplementary Table S3.
In addition, by evaluating the main functions perturbed in DCs

by enforced expression of miR-29b, we found a significant
impairment of signaling involved in cell movement and chemo-
taxis (Figure 2d). We then merged the two main putative networks
involved in these cellular functions (Supplementary Figure 1F)
to construct a single ‘inflammatory/immunologic mediators’

network. By using IPA tools, we automatically added the IPA-
inferred upstream genes to find common regulatory central nodes
(the final inferred pathway is showed in Supplementary
Figure 2A). Among genes that were convoyed into inflamma-
tory/immunologic mediator pathways, those modulated by
miR-29b are reported in Figure 2e and Supplementary Table S3.
Lastly, we hypothesized that perturbation in gene expression

produced by enforced miR-29b might polarize DCs; thus, we
investigated whether transcriptome changes may be coherent
with this phenomenon. To this aim, we took advantage of the
‘comparison analyses’ tool in IPA and we included in the analysis
the DEGs comparison from GEP of 29b-DCs versus NC-DCs and the
DEGs comparison from the data set GSE40484, matching
inflammatory versus normal DCs from peripheral blood.17 The
final vision that emerged from such comparison clearly indicates
that overexpression of miR-29b switches DCs toward a non-
inflammatory functional GEP phenotype (Figure 2F and
Supplementary Figure 2B). Finally, by qRT–PCR we validated the
downregulation of IL12B, NKFB1, MAP2K4, SP1, CCL2, CXCL8, CCL8,
CXCL12, CCL7, CXCL5, IL10, CXCL10 and CXCL16 after enforced
expression of miR-29b mimics, underlying the functional polariza-
tion of transfected cells (Supplementary Figure 2C).

Figure 1. (a) Workflow to identify miRNAs differentially expressed in TA-DCs as compared with mDCs. We adopted a two-step approach: in the
discovery analysis we compared miRNAs differentially expressed in murine mDCs (data set GSE36316) with murine TA-DCs (data set
GSE42722). The shadowed portion of the picture (at the end of the first step) evidences that only three miRNAs are upregulated at least 1.5
times in mDCs and downregulated at least 1.5 times (ratio= 0.66) in TA-DCs, among the differentially expressed miRNAs. In the second step
we confirmed these results in further four data sets. The results regarding the modulation (with their respective fold changes) of the three
miRNAs selected in the ‘discovery’ step in all murine and human data sets evaluated are reported. A line representing the 1.5FC cutoff clearly
demonstrated miR-29b as the only miRNA upregulated across all mDCs data sets. (b) Relative expression of miR-29b in iDCs, mDCs and DCs
co-cultured with five different MM cell lines. All experiments have been repeated at least three times. *Po0.05. (c) A representative dot-plot
highlighting the gating strategy used to sort DCs from BM aspirates of HDs (BM HD-DCs) or MM patients (MM HD-DCs) and the relative
expression of miR-29b in these cells. **Po0.01.
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These data suggest that MM-dependent downregulation of
miR-29b promotes a pro-inflammatory GEP phenotype in DCs,
providing the rational for functional validation.

Molecular effects induced in DCs by the enforced expression of
miR-29b
To understand the complex regulation exerted by miR-29b on
inflammatory/immune pathways, we explored the inferred func-
tional effects of previously identified DEGs in the DC maturation
canonical pathway and in the inflammatory/immunologic media-
tors network by the IPA molecule activity predictor tool. Molecule
activity predictor analysis inferred arrest of DCs activation and
maturation, based on the following: (i) a predicted reduction in
CD83/CD86 expression; (ii) a reduced pro-inflammatory pheno-
type, due to predicted inactivation of the nuclear factor-κB and
signal transducer and activator of transcription 3 (STAT3)
signaling; and (iii) an impaired Th1 and, predominantly, Th17
T-lymphocyte polarization (Supplementary Figure 1E). This latter
effect is underlined by the finding that IL12B, which encodes for
IL23 subunit (IL12p40) and CCL2 (MCP1) were inferred to be
deeply downregulated, whereas inactivation of the co-stimulatory
molecule CD86 was also predicted. Furthermore, miR-29b over-
expression was predicted (and confirmed in qRT–PCR) to
modulate a cytokine network involved in angiogenesis and
monocyte/neutrophil chemotaxis, which includes IL8 (CXCL8),
MCP1, MCP2 (CCL8), MCP3 (CCL7), MIP2a (CXCL2) and IP10
(CXCL10), and finally to abrogate the potent pro-inflammatory
STAT3, NFκB and IL8 signaling pathways (Supplementary
Figure 2A).
To wet-validate all these inferential hypotheses generated

through IPA, we next transfected DCs with synthetic miR-29b
mimics and evaluated the effects induced by miRNA over-
expression in different conditions. Enforced expression of

miR-29b mimics in DCs co-cultured with MM cells or lipopoly-
saccharide significantly reduced double-positive CD83/CD86
mature DCs at 48 h (Figure 3a) and, according to molecule activity
predictor prediction, a significant downregulation of the surface
expression of the costimulatory molecule CD86 and of the
immune regulatory antigen B7H3, which is a validated miR-29
target,38 was found (Supplementary Figure 3A). Moreover, a
significant decrease in IL-23, CCL2, CXCL10 and MIP1a secretion in
the supernatant of 29b-DCs/MM co-cultures (Figure 3b) was
detected by flow cytometry microbeads cytokine array. These
findings confirmed that miR-29b actually modulates the produc-
tion and secretion of cytokines by DCs. To investigate the
functional relevance of these results, we performed a migration
assay where we observed that 29b-DCs co-cultured with U266,
MM1S or RPMI8266 disclosed a strongly reduced capability to
attract CCR2+ pro-inflammatory monocytes from PBMCs, as
compared with NC-DCs (Figure 3c). Interestingly, we observed
that DCs co-cultured with U266, but not with other MM cell lines,
attract a relevant percentage of CCR2+/CCR6+ or CCR6+ mono-
cytes that is reduced by miR-29b transfection in DCs.
Next, we investigated the effects induced by enforced

expression of miR-29b on pro-inflammatory molecular networks
in DCs after 48 h co-culture with MM cells. According to the in
silico analysis and mRNA expression data, we observed a reduced
expression of both NFKB1 protein subunits p50 and p105
(Figure 3d). In addition, we found reduction of both pIKBa and
pP65, indicating downregulation of nuclear factor-κB signaling
(Figure 3d). Furthermore, miR-29b antagonized the STAT3
phosphorilation/activation and reduced the expression of MAP2K4
and JUN (Figure 3d and Supplementary Figure 3B). Interestingly,
upregulation of the anti-inflammatory protein suppressor of
cytokine signaling 1 was detected (Figure 3d). This is consistent
with previous findings by our group where transfection of

Figure 2. (a) Workflow, the results of the principal component analysis (PCA) performed on gene expression data obtained from DCs (from
three different donors) transfected with NC or miR-29b and co-cultured with MM cells for 24 h, and the top 10 pathways perturbed by
miR-29b enforced expression according to DAVID gene functional annotation tool. (b) (i) the magnitude of the modulation of genes
belonging to the ‘Dendritic cell function’ canonical pathway affected by miR-29b enforced expression in DCs; (ii) the cellular functions most
significantly affected by miR-29b overexpression (purple squares surround cell movement and chemotaxis pathways whose genes are mostly
downregulated (blue shift) by miR-29b enforced expression); and (iii) ‘inflammatory/immunologic’ mediators network obtained by merging
genes included in those functions and enriched by regulator genes, found to be modulated by miR-29b, with their respective fold changes. All
these analyses have been performed through ingenuity pathways analysis software (IPA). (c) Anti-inflammatory switch of DCs according to the
significant inflammatory/immune genes differentially expressed after miR-29b transfection as compared with inflammatory DCs from
GSE40484 data set.
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miR-29b-induced suppressor of cytokine signaling 1 promoter
demetylation in MM cells.31 Moreover, we found a reduced
expression of MCL1 (Supplementary Figure 3C), a validated
molecular target of miR-29b, whose downregulation has been
recently linked with reduced inflammation in lung infections.39

Owing to the close interplay between inflammation and
angiogenesis, and to the recently disclosed synergistic pro-
angiogenetic activity of CCL2 and CXCL16,40 we hypothesized
that changes in the cytokine/chemokine profile induced by
enforced expression of miR-29b in DCs could reduce MM-DC
cross-talk-dependent angiogenesis. Indeed, a role of miR-29b in
reducing MM-dependent angiogenesis, has been recently demon-
strated by our group.31 To verify our hypothesis, we cultured early

passage human umbilical vein endothelial cells in the presence of
conditioned medium obtained from MM (RPMI8226 or U266)/29b-
DCs or NC-DCs 48 h co-culture. After 1 h, we observed that NC-DCs
conditioned medium induced capillary-like structures to a higher
extent as compared with the supernatant derived from 29b-DCs/
MM co-culture, as demonstrated by the significantly higher
number most indicators of tube formation such as nodes,
segments, meshes and meshes area. This latter finding suggest
anti-angiogenetic activity for miR-29b in MM-associated BMM
(data obtained from supernatant of DCs co-cultured with
RPMI8226 are reported in Figure 3e, whereas data obtained from
supernatant of DCs co-cultured with U266 are reported in
Supplementary Figure 3D).

Figure 3. (a) Representative flow cytometry analysis of CD86 and CD83 expression on DCs after miR-29b transient transfection and 48 h co-
culture with U266 cell lines or with maturation stimuli (lipopolysaccharide). In both cases the percentage of mature DCs is decreased by the
enforced expression of miR-29b. (b) Evaluation of cytokines production and secretion in the supernatant of DCs after miR-29b or NC
transfection and 48 h co-culture with MM cells. Plots represent mean and s.d. of six different experiments. *Po0.05. (c) Migration assay to
evaluate changes in the capability to attract CCR2+ and/or CCR6+ inflammatory cell populations from PBMCs, between supernatant of 29b-
DCs and NC-DCs co-cultured for 48 h with three different MM cell lines (U266, RPMI8226 and MM1S). Plots represent mean and s.d. of three
different experiments. *Po0.05. (d) Western blot evaluation of the main signaling pathways involved in inflammatory response (NFκB, STAT3,
mitogen-activated protein kinase, JUN and suppressor of cytokine signaling 1 (SOCS1)) in DCs after miR-29b transfection and 48 h co-culture
with MM cells. (e) Results from tubulogenic assay performed in the presence of supernatant from 29b-DCs or NC-DCs co-cultured with
RPMI8226 MM cells. Images have been analyzed with ImageJ software and Angiogenesis analyzer plugin. The histograms under the pictures
represents the estimation of tubulogenic potential obtained by analyzing the number of nodes (pixels with at least three neighboring
elements corresponding to a bifurcation), segments (elements delimited by two junctions), meshes (areas enclosed by segments or master
segments, made by tube-like-structures) number and total area. Legend: red points surrounded by blue, nodes surrounded by junctions
symbol; red surrounded by yellow, extremities; green, branches (elements constituted by a junction and one extremity); magenta, segments;
orange, master segments (segments where none of the two junctions is implicated with one branch); blue sky, meshes; junctions surrounded
by red, master junctions (junctions linking at least three master segments); blue and cyan, isolated elements. *Po0.05. (f) Evaluation of the
AKT signaling (pAKT, AKT and phosphatase and tensin homolog (PTEN)) through western blotting, accompanied by the demonstration of
PTEN downregulation at the mRNA level and validation of PTEN as a miR-29b target through luciferase reporter assay. *Po0.05.
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In addition, due to the important role exerted by inflammasome
complex in the DC-dependent inflammatory response and Th17
polarization,41 we explored whether enforced expression of
miR-29b might perturb also this pathway. We found an overall
downregulation of the effector members of this pathway (in
particular of Caspase-1) at both messenger and protein levels
(Supplementary Figure 3E), a finding that further underlines the
anti-inflammatory properties of miR-29b.
To rule out that miR-29b overexpression could produce an overall

impairment of DC function, we explored the STAT1 and AKT
signaling pathways, which have been reported to have a crucial role
for DC survival and activity.42,43 Specifically, we investigated the
effects of miR-29b transfection on STAT1 signaling and we found
increased STAT1 phosphorylation indicating activation of this path-
way (Supplementary Figure 3F). We also evaluated the effects of
miR-29b enforced expression on the AKT signaling in DCs. Despite
the contrasting effects on this pathway predicted by IPA
(Supplementary Figure 3G) and the reported capability of miR-29b
to negatively regulate AKT signaling in other systems,23 we observed
that the phosphorylation of AKT was not affected by miR-29b in DCs.
This finding might be at least in part explained by the down-
regulation of phosphatase and tensin homolog at both protein and
mRNA level (Figure 3f). Notably phosphatase and tensin homolog is
among the highest predicted target of miR-29b (10 out of 12
databases analyzed by mirDIP, http://ophid.utoronto.ca/mirDIP/) and
we validated the targeting specificity by a luciferase reporter assay
(Figure 3f).
Altogether, these findings provide hortogonal validation of in silico

functional inferences, confirming that enforced expression of miR-29b
in MM-educated DCs antagonizes their pro-inflammatory activity.

miR-29b impairs the ability of DCs to generate Th17 lymphocytes
Owing to the important role had by Th17 lymphocytes in
pathogenesis of MM,44 we investigated whether enforced expres-
sion of miR-29b in DCs might result in impaired Th17 polarization,
as predicted by in silico analysis (see before). In accordance with
previous findings, we observed that DCs co-cultured with MM cells
were prone to induce Th17 polarization of autologous naive T
lymphocytes (Supplementary Figure 4A, B and C). Notably, Th17
polarization is dependent upon IL-1b, IL-6 and IL-23 release by
monocytes or DCs.45 In this light, GEP analysis showed that IL12B,
which codes for IL12p40, one of the two sub-units of IL-23
(together with IL23A (IL23p19)), was the most downregulated
gene after miR-29b transfection. This finding was confirmed by
qRT–PCR and a concomitant reduction of IL23A mRNA expression
was also observed (Figure 4a). Subsequently, we found that IL-23
was downregulated in the supernatant and in the cytosol of 29b-
DCs after 48 h co-culture with U266, as compared with NC-DCs
(Figure 4a). Nor IL6 neither IL1B genes were significantly
modulated in GEP (data not shown), whereas IL-1b showed a
trend to significant reduction at cytokine level (Figure 3b),
indicating a pivotal role of IL-23 in mediating miR-29b effects on
Th polarization.
To gain translational relevance of previously reported findings,

we investigated the effects of miR-29b mimics on IL-23 production
in vivo. To this end, we used the unique SCID-synth-hu model,
which recapitulates the huBMM for MM engraftment in a bio-
synthetic polymeric scaffold implanted in NOD-SCID mice.35,36

Following huBMM reconstitution, scaffolds were in fact injected
with IL-6/BM-dependent MM cells (INA-6) (Figure 4b). SCID-synth-
humice were then treated with miR-29b mimics or NC for 14 days,

Figure 4. (a) Evaluation of the modulation of IL23 in DCs after miR-29b transfection and 48 h co-culture with MM cells, by qRT–PCR, cytokine
production and secretion in the supernatant, and intracellular production through confocal microscopy. *Po0.05. (b) Overview of the in vivo
synth-SCID-hu MM model and immunohistochemistry for the detection of DC-like cells (arrows) stained with anti human IL-23. (c) In the top
part of the picture: workflow and qRT–PCR of RORC and IL17A (the major markers of Th17 polarization) performed on RNA extracted from
autologous lymphocytes (naïve Th) after 72 h co-culture with 29b-DCs or NC-DCs previously co-cultured for 48 h with MM cells. *Po0.05. In
the bottom part of the picture: representative dot-plots of Th17 (CD4+/CD161+) modulation after miR-29b enforced expression in DCs in the
presence or absence of either apoptotic or necrotic U266 MM cell lines. The histograms represent the average of three independent
experiments. *Po0.05.
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every other day for a total of 7 injections as previously described.22

Scaffolds were retrieved and evaluated by immunohistochemistry
for the presence of dendritic-like cells expressing IL-23. We found
a significant reduction of dendritic-like cells positive for intracel-
lular expression of human IL-23 (Figure 4b) in the miR-29b treated
group, thus providing evidence that miR-29b impairs secretion of
this cytokine by DCs in vivo. We further evaluated the impact of
miR-29b mimics on MM cell proliferation and angiogenesis by
staining scaffold-derived tissues for human Ki67 and CD31. As
shown in Supplementary Figure 4D, miR-29b antagonized MM
cells proliferation (as already reported22) and reduced human
CD31+ vessels. However, it should be taken into account that
these effects represent the result of the whole miR-29b mimics
activity on both MM cells and cells of the microenvironment
compartment.
Finally, we investigated the functional relevance of impaired

IL-23 secretion. We co-cultured for 48 h 29b-DCs and NC-DCs with
MM cells. Subsequently, DCs were immune-magnetically purified
and co-cultured for 72 h with autologous naïve T lymphocytes
(Figure 4c). By qRT–PCR, these lymphocytes were then evaluated
for the expression of RORC and IL17A, the major markers of Th17
polarization. We found a significant reduction of both mRNAs in
lymphocytes cultured with miR-29b transfected DCs (Figure 4c).

Moreover, it is well known that IL-23 is involved in Th17
expansion and that DCs when loaded with apoptotic or necrotic
tumor cells preferentially expand several Th lymphocytes
groups.15 On this basis, we evaluated whether enforced expres-
sion of miR-29b in DCs, loaded with either apoptotic or necrotic
MM cells, differentially induces expansion of Th17 cells from
autologous CD3+ lymphocytes. After 5 days of lymphocyte–DC co-
culture, we observed that transfection of miR-29b mimics led to a
significant lower percentage of CD4/CD161 double-positive Th17
cells expansion despite the presence of necrotic or apoptotic MM
cells (Figure 4d).
These results led us to conclude that miR-29b antagonizes

DCs-mediated Th17 polarization and expansion.

miR-29b suppression might promote a microenvironmental
inflammatory phenotype associated with progression disease and
adverse clinical outcome
Based on our finding demonstrating that transfection of miR-29b
mimics significantly downregulates directly or indirectly a variety
of inflammatory cytokines and chemokines at mRNA and/or
protein level, we investigated the putative role of the known
receptors of these molecules (CCR1, CCR2, CCR3, CCR4, CCR5,
CXCR1, CXCR2, CXCR3, CXCR6, IL10RA, IL10RB, IL12RB1, IL17RA and

Figure 5. (a) Description of the rationale for investigation of expression of the receptors of all cytokines modulated miR-29b in MM cells.
(b) Evaluation of the expression of the receptors of the main miR-29b modulated chemokines and cytokines on MM cells according to data set
GSE47552 (general scatter plots and plots of receptors that significantly differ between HDs (HD) and MM patients). *Po0.05. (c) Scatter plots
and Kaplan–Meier curves with log-rank test results of the chemokine/cytokine receptors able to significantly discriminate PFS, overall survival
(OS) and patients presenting bone disease (BL) as compared with patients that do not present lytic lesions (No BL) in the coMMpass trial. For
survival analysis, patients were grouped into high and low expression groups according to the median value of receptor expression (FPKM).
*Po0.05.
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IL23R) in MM disease pathobiology by performing an in silico
analysis on MM gene expression data sets. Indeed, our working
hypothesis was that these cytokines, secreted within huBMM
mainly by DCs, could elicit a pro-tumor activity, which might be
counteracted by miR-29b (Figure 5a).
We evaluated the differential expression of these receptors

between tumor and normal PCs in the GSE47552 data set. This
data set includes gene expression profiling of CD138+ purified PCs
from HDs, monoclonal gammopathy of undetermined signifi-
cance, smoldering MM and MM patients. During disease evolution,
several of these genes demonstrated a progressive downregula-
tion (CCR2, IL10RA and IL10RB), some a progressive upregulation
(IL12RB1 and IL23RA) and others became upregulated only in
certain phases of the disease (Supplementary Figure 5A). Among
others, we found significant upregulation of CCR3, CCR5 and both
components of IL-23 receptor (IL12RB1 and IL23RA) in patient-
derived MM cells (Figure 5b), whereas both components of the
IL-10 receptor were significantly downregulated, thus suggesting
a pro-inflammatory unbalancing of the MM niche. According to
previous reports,46 we confirmed a significant downregulation of
CCR2 (Supplementary Figure 5A).
Then, we evaluated the association of the expression of these

receptors with patients’ outcome taking advantage of data from
CoMMpass Trial (NCT0145429), a longitudinal study in MM,
relating clinical outcomes to genomic and immune-phenotypic
profiles of CD138+ selected PCs from the BM of newly diagnosed
MM patients. In its currently available release (interim analysis 8),
RNA-Sequencing, together with clinical data, was available for 549
MM patients. Patients were divided into two subgroups according
to the median expression of each of the investigated chemokine/
cytokine receptors. We observed that: (i) patients with high
expression of CCR3 and CXCR3 experienced a significantly worse
outcome, (ii) patients with high expression of CCR4 and CXCR6
experienced a shortest PFS after frontline treatment and (iii)
patients with high expression of IL17RA presented a significantly
shorter overall survival and PFS (Figure 5c). All other receptors
were not associated with any changes in survival outcomes. We
then performed a multivariate Cox regression analysis to evaluate
the independent prognostic role of all these genes within
recognized prognostic scores of MM, such as international staging
system (ISS) and its revised version. Importantly, revised-ISS
combines ISS with chromosomal abnormalities and lactate
dehydrogenase levels, improving MM patients’ stratification into
more homogeneous subgroups.47 As reported in Supplementary
Figure 5B, we confirmed the independent prognostic relevance of
IL17RA (hazard ratio of 1.82 and 1.95 for PFS in the presence of ISS
or revised-ISS, respectively; hazard ratio of 1.84 and 2.26 for overall
survival in the presence of ISS or revised-ISS, respectively), of CCR3
in overall survival and of CXCR6 in PFS (Supplementary Figure 5B).
Taking into account the role had by inflammation in the

pathogenesis of MM-related bone disease,13,44 we explored in the
CoMMpass database, the expression of the known receptors of
miR-29b-downregulated cytokines/chemokines in MM patients
with bone lytic lesions, as compared with MM patients without
bone disease. We found that PCs from MM patients with bone
lesions presented a significantly higher expression of CCR4, CXCR1,
CXCR2, CXCR3, CXCR6, IL17RA and IL23R (Figure 5c).
Altogether, these data underscore the relevance of an

inflammatory microenvironment in the progression, outcome
and pathogenesis of MM, and the potential role of miR-29b in
antagonizing these mechanisms.

Enforced expression of miR-29b in DCs antagonizes survival
signaling in MM cells
On the basis of above in silico findings demonstrating that MM
cells express inflammatory cytokine receptors, which may be
associated with worse outcome, and taking into account that DCs

have been described as pro-survival components of the MM-
associated BM niche,4,11,12 we hypothesized that enforced
expression of miR-29b in DCs might antagonize the growth of
co-cultured MM cells. Accordingly, we evaluated in proliferation
assays whether miR-29b-transfected cells, or the supernatant
obtained by a 48 h co-culture of 29b-DCs or NC-DCs with U266,
might affect MM cells proliferation and migration. We found that
transfection of miR-29b in DCs significantly reduced their ability to
support both growth and motility of MM cells (Figure 6A). This
event appears to be related to reduced phosphorylation of ERK,
AKT and, to a lesser extent, SRC in MM cells (Figure 6A).
Furthermore, we observed a consistent increase in p21, suggestive
of slower cell cycle progression (Figure 6A), together with a slight
upregulation of cPARP (Supplementary Figure 5C), whereas BCL2
expression remained unchanged (Supplementary Figure 5C).
DCs and the inflammatory huBMM have been also reported to

induce genomic instability in MM cells, an event that under
specific conditions could promote the arising of mutations
responsible for tumor progression, drug-resistance and immune
escape.48 Indeed, the interaction between DCs and MM cells led to
the induction of DNA double-strand breaks that are significantly
reduced by enforced expression of miR-29b in DCs. Specifically,
we found that MM cells co-cultured with 29b-DCs presented a
reduction of the phosphorylation of ATM, ATR, of their down-
stream molecules CHK1 and CHK2 and of H2AX, the main double-
strand break marker, in both protein and foci numbers (Figure 6B)
as compared with MM cells co-cultured with NC-DCs.
Overall, these findings provide evidence of a tumor promoting

MM/DCs cross-talk, which is specifically antagonized by enforced
expression of miR-29b in DCs.

DISCUSSION
DCs are relevant components of MM-associated BM niche and
support growth, proliferation and drug-resistance of MM
cells.4,11,13 Based on recent experimental evidence of a pivotal
role of miRNAs in regulating DCs function,27 we hypothesized that
MM sustaining activity might be dependent on DCs reprogram-
ming at miRNA level. To experimentally address this hypothesis,
we first investigated by in silico analysis miRNAs predicted as
differentially expressed in TA-DCs and mDCs, and thereafter, a wet
validation was performed in DCs cultured with MM cells. Among
differentially expressed miRNAs, we identified miR-29b as the only
miRNA downregulated in TA-DCs, whereas upregulated in
physiologic activation of DCs. We confirmed this finding in MM-
associated DCs either from DC/MM-cells co-cultures or directly
from BM of MM patients. To address the mechanism of miR-29b
activity in MM-educated DCs, we enforced miR-29b expression in
DCs cultured with MM cells and then we performed a GEP analysis.
MiR-29b antagonized polarization of DCs to a pro-inflammatory
phenotype and this effect mainly relied on the impairment of DCs
pro-inflammatory machinery at different levels, including inhibi-
tion of nuclear factor-κB, STAT3, mitogen-activated protein kinase
and JUN activity (Figure 6C and Table 1). A crucial finding was the
decrease of IL-23, confirmed in vivo, and of other pro-
inflammatory cytokines/chemokines that in turn impaired attrac-
tion of inflammatory cells, polarization and expansion of Th17
lymphocytes. These observations are in line with a recent report in
Crohn’s disease,16 where overexpression of miR-29a (which shares
the same seed sequence of miR-29b) in DCs reduced their
capability to polarize Th17 cells and ameliorated the symptoms in
a mouse model of inflammatory colitis. We think that our results
may be of specific interest taking into account that immune cell
infiltration and chronic inflammation have been widely associated
with cancer development, progression and patients’
prognosis.49–52 In addition, different cytokines involved in
inflammation, including IL-23, TNF-a, IL-6, IL-10, IL-1b and IL-17,
are highly upregulated in MM patients’ BM and actively participate
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to MM and bone disease pathogenesis.2,44,53 Specifically, there is
emerging evidence of increased frequency of pro-inflammatory
Th17 lymphocytes in the microenvironment of different cancers,
including MM.15,53,54 These cells are induced to differentiate from
naïve T cells by inflammatory DCs in the presence of IL-23, IL-1b
and IL-6, and represent the main source of IL-17,17 a recently

validated growth factor for MM and a potent inducer of osteoclast
activity.3,44,53 Moreover, Th17 cells may be attracted in the BM by
different chemokines including CCL2.55,56 Considering these
findings, our results indicate that miR-29b impairs the recruitment
and polarization of Th17 by reducing IL-23 and CCL2 secretion,
thus abrogating the tumor-sustaining activity of inflammatory
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MM-associated huBMM. The latter effect is further supported by
the capability of miR-29b to antagonize DCs pro-angiogenetic
potential, as here demonstrated. Lastly, an inflammatory micro-
environment has been further related to susceptibility to DNA
damage and, in turn, to an increased risk of cancer initiation and
progression.57,58 Indeed, different authors have reported the
capability of MM-educated DCs to induce MM cells proliferation,
chemo-resistance and genomic instability.4,12,48 All together, these
findings highlight the importance of huBMM-derived stimuli on
MM survival and progression, and points the DC-MM cells
interaction and inflammation as potential targets for anti-MM
approaches. At this aim, we indeed demonstrated that transfec-
tion of miR-29b in DCs efficiently impairs pro-survival signaling in
MM. This is highlighted by downregulation of ERK, AKT and SRC
activity, and upregulation of p21 in MM cultured with miR-29b-
transfected DCs. Interestingly, 29b-DCs induced less double-strand
breaks in MM cells, as proven by the decrease in g-H2AX and the
reduction of DNA-damage signaling activation. In this view, it is
possible to speculate that the capability of miR-29b to reprogram
DCs to exhibit an anti-inflammatory phenotype disrupts the DCs–
MM cells axis and induces significant molecular changes in MM
cells. To our knowledge, this is the first report where changes in
DCs polarization by miRNA overexpression produce relevant
changes in co-cultured MM cells, providing a formal proof that a
tumor promoting MM/DCs cross-talk indeed occurs within the
protecting BMM, which is specifically antagonized by miR-29b.
Along the same line, by exploring two tumor gene expression
data sets from MM patients, we provided evidence that an

inflammatory huBMM sustains MM cell growth and development
of bone disease in patients and affect their outcome. Indeed, we
found that MM patients, whose PCs overexpress different cytokine
and chemokine receptors including IL23R and IL17RA, present a
worse outcome and are more likely to experience bone lytic
lesions. This finding is relevant considering that DCs are among
the main source of ligands for these receptors and that enforced
expression of miR-29b in DCs indeed reduces their production and
secretion. In addition, these results further underscore the
relevance of the Th17 response in the pathogenesis of MM.
Altogether, these findings are of clinical interest, taking into

account recent clinical trials, where anti-inflammatory agents such
as aspirin and curcumin revealed a promising therapeutic activity
in both monoclonal gammopathy of undetermined significance
and sMM patients.59,60 Moreover, the actual role of miR-29b within
DCs in the different stages of disease evolution, from monoclonal
gammopathy of undetermined significance to overt MM, will be
investigated in follow-up studies.
In the general view of miR-29b anti-inflammatory potential, we

already reported that its overexpression in osteoclast precursors
reduced their bone lytic capability;25 In addition, we observed that
enforced expression of miR-29b in MM cells could affect survival
and angiogenesis through suppressor of cytokine signaling 1
upregulation, and VEGFA and IL8 downregulation.22,23,31,61 Here
we show that miR-29b overexpression in DCs affect their pro-
inflammatory and pro-tumor potential through different molecu-
lar mechanisms. Taking into account the prominent role had by
chronic inflammation in MM pathology, these results indicate that

Figure 6. (A) The left and center histograms report the results of the proliferation assays performed on MM cells (U266) stained with
Carboxyfluorescein succinimidyl ester and co-cultured with NC-DCs or 29b-DCs, or cultured in the presence of conditioned medium obtained
from MM/NC-DCs and MM/29b-DCs co-cultures, respectively. The right histogram represents the number of MM cells attracted by the
conditioned medium obtained from MM/NC-DCs and MM/29b-DCs co-cultures (migration assay). The blots on the right side of the panel
represent the main survival and proliferation signaling (ERK, AKT, SRC and p21) in MM cells evaluated after 48 h co-culture with NC-DCs or
29b-DCs by western blotting. *Po0.05. (B) Left, evaluation of DNA damage response activation in MM cells (U266) co-cultured with either NC-
DCs or 29b-DCs in western blotting; right, evaluation of g-H2AX nuclear foci (DNA double-strand break markers) in confocal microscopy in MM
cells (U266) co-cultured with either NC-DCs or 29b-DCs. (C) This cartoon shows the main molecular and functional changes induced by
miR-29b enforced expression in DCs in the context of MM microenvironment. (a) The ‘normal’ pathologic status, in which MM cells induce a
downregulation of miR-29b in DCs thus promoting an inflammatory microenvironment that leads to a survival advantage. (b) The changes
that we demonstrated occuring after miR-29b transfection in DCs.

Table 1. Main effects induced by miR-29b enforced expression in DCs

Affected function Effects Traslational relevance

DC maturation ↓ CD83/86 double-positive mature
DCs

Production and secretion of
cytokines and chemokines

↓ IL-23, CCL2, CXCL10, IL1β, MIP1α
IL8, CCL8, CCL7, CXCL2

Chemotaxis ↓ Capability of DCs to attract CCR2+
pro-inflammatory monocytes

Impairment and recover of the inflammatory-immunosuppressive
human BM milieu, which strongly contribute to MM progression, bone
disease and immune escape

Th17 polarization and expansion ↓ IL-23
↓ RORc, IL-17A
↓ Th17

Pro-inflammatory molecular
networks

↓ NF-κB, STAT3, MAP2K4
↑ SOCS1

Inflammasome machinery ↓ Caspase1, BIRC3
Angiogenesis ↓ Ability to develop tube-like

structures
Reduction of MM cell growth and extramedullary dissemination

Survival signaling in MM co-
cultured with DCs

↓ ERK, AKT, SRC
↑ P-21, c-PARP

Decrease in MM cells proliferation

Genetic instability in MM co-
cultured with DCs

↓ p ATM, pATR, CHK1, CHK2, H2AX Reduction of inflammation-related DNA damage and potentially of
mutations responsible for tumor progression, drug resistance and
immune escape

Abbreviations: BM, bone marrow; DC, dendritic cell; IL-23, interleukin-23; MM, multiple myeloma; NF-κB, nuclear factor-κB; SOCS1, suppressor of cytokine
signaling 1; STAT3, signal transducer and activator of transcription 3.
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miR-29b deregulation in different cell components of the BMM as
well as in MM cells has a major role in disease development and
progression, directly modulating BMM and inducing bone
destruction. Our findings provide therefore the rationale for the
development of a miR-29b-based treatment for MM.
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