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Abstract

This paper complements the Cournot collaboration game outlined in
Goyal and Joshi (2003, sect. 4), with the hypothesis that pairwise R&D
alliance is constrained by knowledge distance. Potential asymmetry of
distance between two knowledge sets is formalized through a quasi-metric
in knowldge space. If the knowledge constraints to collaboration are weak
enough, the paper replicates the result by Goyal and Joshi (2003, sect. 4),
that a �rm is either isolated, or is connected to every other non-isolated
�rm in the industry. If absoprtion of ideas from one�s potential partner
requires su¢ ciently high knowledge proximity, the stable R&D networks
in Cournot oligopoly are shown to display the clustering property, that
is characteristic of real-world industry networks, and of social networks
more generally.

JEL classi�cation : D85, L13, O30
Keywords : Cournot collaboration game, directed knowledge distance,

R&D networks, degree assortativity, clustering

1 Introduction

R&D collaboration between �rms has been growing dramatically in the last
decades of the twentieth century. A large body of empirical evidence docu-
ments the di¤usion of R&D alliances, especially in the high-tech industries,
(pharmaceuticals, ICT, aerospace and defence) where product innovation bears
close roots in abstract and codi�able scienti�c knowledge (Powell et al. 2005,
Roijakkers and Hagedoorn 2006). Di¤usion of R&D networks has been also
signi�cant in a number of medium-tech sectors, like instrumentation and med-
ical equipment, chemicals, automotive, consumer electronics (Hagedoorn 1982,

�e-mail: caminati@unisi.it; fax-number: +39 0577 232661. I wish to thank Antonio
D�Agata for stimulating comments on a preliminary version of this paper, and Stefano Van-
nucci for constructive conversations on quasi-pseudo metrics.
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Schilling and Phelps 2007, Tomasello et al. 2013).1 The target of R&D alliances
was not circumscribed to product innovation. To the extent that the develop-
ment of cost e¤ective processes was often a key to business success, process
innovation could not be disregarded, even where product innovation seemed
to play a prominent role (Pisano 1997). The partial decay of R&D networks
after 1998 (Gulati et al. 2012) marks a new phase of what Gilsing and Note-
boom (2006) interpret as a cyclical evolution, and posits yet another challenge
to economic understanding.
This paper bridges di¤erent strands of the theoretical literature on R&D

network formation. The knowledge portfolio foundation of R&D collaboration
and knowledge spillovers (Cowan and Jordan 2009, Baum et al. 2010, Cami-
nati 2016) is married with the hypothesis that �rms, after cooperating in R&D,
compete in a homogeneous-product market. As in d�Aspremont and Jacquemin
(1988), Salant and Sha¤er (1998), Kamien and Zang (2000), Goyal and Joshi
(2003), and many others, it will be assumed that �rms engage in Cournot com-
petition. On the assumption that the potential gains from an R&D partnership
are only backed by a �xed collaboration cost, a variety of stable network topolo-
gies may be produced, depending on the knowledge constraints to collaboration.
In this perspective, Goyal and Joshi�s (2003) dominant group architecture, in
which every non-isolated �rm in the network cooperates with every other similar
�rm, is a particular outcome, supported by su¢ ciently weak knowledge require-
ments. The paper identi�es conditions such that the stable network topologies,
in spite of their variety, share a feature, di¤erentiating social networks from
other types of networks (Newman and Park 2003).
If a large common understanding is necessary to absorb ideas form an R&D

partner, two R&D partners of the same �rm will be most likley closer in knowl-
edge space, than if they were picked up at random from the set of non isolated
�rms in the industry. This produces a higher local clustering of R&D links, than
it would be observed in a random network of a corresponding size and average
degree.
The rest of the paper is organised as follows. In section 2, the theoretical

background of the analysis is discussed, in the light of the relevant contributions
to the literature. Section 3 introduces the formal de�nition of directed distance
in knowledge space, which is then used to provide a foundation to the notion
that the potential knowldge gain from R&D-collaboration may be asymmetric.
The collaboration game played by oligopolistic �rms is introduced in section 4,
together with the main propositions. Results are discussed in section 5, and
section 6 concludes.

1Around 1980, the fraction of R&D alliances in high-tech and medium-tech industries were
not dissimilar. After 1980, the latter declined to the advantage of the former (Hagedoorn,
2002, p. 482).
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2 Theoretical background

A common backbone of diverse models of R&D-network formation, is that the
sharing of heterogeneous, complementary R&D inputs between direct partners
produces a potential pay-o¤, through the e¤ects on product or process inno-
vation. Firm pro�t is then functionally related to the �rm�s alliance network.
A plausible rationality requirement states that (i) a bilateral R&D partnership
is agreed upon only if the alternative course of action does not increase a sub-
scriber�s pro�t-�ow; (ii) two �rms do not abstain from joining a partnership,
if their pro�ts are both higher after link formation. The two conditions above
are embodied in the notion of pairwise network stability (Jackson and Wolinsky
1996); this is strengthened by Goyal and Joshi (2003) with the further require-
ment that a �rm cannot increase its pro�t by severing all its links at once.
A branch of the literature assumes that �rms produce a homogeneous prod-

uct, and R&D aims at process, cost-reducing, innovations. Following a tradition
initiated with d�Aspremont and Jacquemin (1988), a number of papers restricts
the analysis to a Cournot duopoly, in which a �rm�s marginal cost is a func-
tion of the variable R&D investments carried out by the �rm, and its potential
partner2 . Goyal and Joshi (2003) extend the analysis to a oligopolistc indus-
try with a variable number n of �rms, on the simplifying assumption that the
marginal cost reduction from an R&D alliance is �xed and uniform across all
potential partners, and is backed by a �xed collaboration cost. A �rm�s choice
to form (or con�rm) an allaince depends on the way in which the state of com-
petition in the market for output is related to the possibly complex topology of
the collaboration links within the network. Goyal and Joshi (2003) show that
if the �rms in the industry engage in Cournot competition, a form of �increas-
ing returns�to neighbor selection applies. On the assumption that a �rm i in
the industry produces its Cournot output qi(g), conditional on the network g
of alliances, i�s pro�t gain, from adding a link ih to its alliances in g, is lower
than the gain from adding a second link ij to its alliances in (g + ih)3 . With
costly collaboration, this form of increasing returns to link formation implies
that isolated and non-isolated �rms may be simultaneously present in a stable
network of the industry; but a �rm is either isolated, or has an R&D link with
any other non-isolated �rm in the network. In other words, a stable network has
at most one non-trivial component, and the �rms in this components are fully
connected among them. We may therefore conclude that quantity competition,
in the framework of Gayal and Joshi (2003), implies that every highy-degree
�rm4 , if there is any, is invariably linked to other similar �rms. Notice that this
is a peculiar form of positive assortativity by degree.
In a second class of models (Baum et al. 2010, Cowan and Jonard 2009, Eg-
2d�Aspremont and Jacquemin (1988) focus on Cournot equilibria with cooperative sym-

metric R&D investment of the two potential partners. Other contributions in the same vein
are reviewed in De Bondt (1996). Salant and Sha¤er (1998) introduce the possibility of asym-
metric R&D investment by the partners.

3 (g+ ih) is the network obtained by adding the link ih, joining �rms i and h, to the set of
alliances in g.

4The degree of a network member is its number of links in the network.
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betokun and Savin 2014, Caminati 2016) �rms produce a heterogeneous prod-
uct, and competition in the market for output is abstracted from. The resources
shared between R&D partners bear more explicitly, in this case, upon the cog-
nitive competences grounded in the �rms knowledge portfolios. The relevance
of this interpretation �nds empirical corroboration in Mowery et al. (1998).
The foundations of the knowledge-portfolio approach are traceable in the

seminal intuitions elaborated in Nooteboom (2000), Nooteboom et al. (2007),
Gilsing et al. (2008). They relate the e¤ectiveness of �rm�s interaction with a
potential R&D partner to the novel ideas potentially accessible in the partner�s
knowledge base, and the capability to absorb (Cohen and Levinthal 1990) )
the novelty in question. On the one hand, absorptive capacity is conditional
upon a background of common understanding, hence it is frustrated when the
sharing of ideas between partners is too ephimeral (novelty is too large). On
the other, interaction does not lead to any substantial gain in competence or
creativity, if cognitive distance, hence novelty, is too low. Building upon this
broad intuition, Nooteboom (2000) goes as far as suggesting the notion of an
�optimal cognitive distance�, stemming from a relation between e¤ectiveness of
knowledge interaction and cognitive distance, that is described by an inverted
U curve5 .
The topology of pairwise stable networks produced by the knowledge port-

folio models are bound to depend on the assumed distribution of knowledge.
There is however agreement on the �nding that R&D alliances tend to orga-
nize into clusters, broadly corresponding to knowledge communities, and, on
average, the number of pairwise alliances in the set of a �rm�s direct partners
is larger than it would be expected, if the wiring of connections was random6

(Baum et al. 2010, Caminati 2016).
A third class of models (Kamien and Zang 2000, D�Agata and Santangelo

2003) assumes Cournot competition in the market for output, but contrary to
Goyal and Joshi (2003) and d�Aspremont and Jacquemin (1988), the marginal-
cost reduction from alliance formation is not independent of the partners spe-
cialized knowledge. The idea is that the knowledge spillovers between two R&D
partners depend on the congruence of their R&D approaches (Kamien and Zang
2000), or the distance between their respective technological pro�les7 (D�Agata
and Santangelo 2003). In these models, the R&D approach, or the technology
pro�les, are not inherited from history, but are endogenous choice variables, that
are �xed before alliance formation. D�Agata and Santangelo (2003) introduce
Granstrand�s (1994) (symmetric) distance on the � algebra of the subsets of a
knowledge space. Relying upon Nooteboom (2000), they provide a foundation
for symmetric knowledge spillovers between two R&D partners, as a non-linear

5Wuyts et al. (2006) �nd evidence of a inverted U relationship between �rm innovation
success and cognitive distance with respect to R&D partners. Some empirical proxy-measures
of cognitive distance (Nooteboom 2000, p. 301, Nooteboom et al. 2007) are closer to a notion
of knowledge overlap.

6 In other words, the clustering coe¢ cient is larger than in a random network of a corre-
sponding size and average degree. Further restrictions (concerning degree assortativity) are
produced by su¢ cient variation in the size of network clusters (Caminati 2016).

7A technological pro�le de�nes the area of a �rm�s knowledge specialization.
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function of the cognitive distance between them.
The presents paper bridges the above strands of the literature, while de-

parting in one, or more, respects from each. In the short run, a �rm�s initial
knowledge base is inherited from history, hence, it is exogenously �xed by a
given cross-�rm knowledge distribution A = fA1; :::; Ang. The pairwise interac-
tion between potential R&D partners yields asymmetric spillover opportunities,
that depend on the directed (non-symmetric) cognitive distances between the
partners. This requires introducing a quasi-metric in knowledge space. Collab-
oration will materialize only if the spillover opportunities of both partners are
non-negligible.
As in Goyal and Joshi (2003, section 4), we assume that the n �rms in

a oligopolistic industry play a two-stage Cournot-collaboration game8 . In the
�rst stage, an R&D network g is formed, giving rise to the knowledge spillovers
that are elicited by the exogenous knowledge distribution A. In the second
stage, conditional on the alliances in g, the n �rms compete over quantities
in the homogeneous product market. In this framework, network stability is a
temporary-equilbrium notion, conditional on a given A distribution at time t.
An A-stable network g meets the two conditions (i) and (ii) de�ning Jackson
and Wolinsky (1996) pairwise-stable networks, and the further restriction that
a �rm does not have a strict incentive to sever all its links at once (Goyal and
Joshi 2003).
The results below show that a pairwise R&D alliance will form, only if

the directed distances between the partners are not too large or small. This
implies that, contrary to Goyal and Joshi (2003), a non-empty A-stable network
may embed more than one non-trivial component. In addition, an empirical
property of social networks is recovered in this framework. If a su¢ ciently large
common understanding is necessary to make an R&D collaboration viable, the
clustering coe¢ cient in a stable network is larger than it would be if the wiring of
connections between the �rms in the network was random. To the extent that a
large common understanding signals membership in a knowledge community, the
result is reminiscent of the argument by Newman and Park (2003), explaining
the high local clusering of social networks, on the ground that human agents
are typically organized into social communities.
In the long-run, the knowledge distribution among the n �rms in the indus-

try is endogenous, as a result of the idea spillovers between partners, and of
the innovations produced by R&D. It is argued that the focus on asymmetric
directed knowledge distances bears implications for network evolution. Brief eu-
ristic remarks on this point are o¤ered in section 5, as a suggestion for further
work.

8 In Goyal and Joshi (2003) other forms of imperfect competition are also considered.
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3 Cognitive distance and knowledge spillovers

3.1 Directed distance in knowledge space

What follows avoids taking a theoretical stance on the issues concerning what
human knowledge is and how it works.9 Following in the footsteps of Granstrand
(1994), our analysis is built on the main parsimonious assumptions that: (i)
there is a meaningful set-theoretical description of a knowledge base as a subset
of a knowledge universe 
, and (ii) the description obeys to the mathematical
operations of set union, intersection and complementation. On this premise, we
introduce a quasi-metric on a �-algebra of subsets of 
, that de�nes the directed
distance d(A;B) of a knowledge base A relative to a knowledge base B, with
the property d(A;B) 6= d(B;A).
Unlike the knowledge representation most prevalent in game theory10 , the

items composing the knowledge universe 
 are not possible occurrences, that
may or may not obtain. It will be assumed that the items in 
 are all �true�, in
that each of them identi�es an idea accepted by (a subset of) the scienti�c and
egineering community at the given date t. It is worth observing in this respect
that scienti�c ideas are often accepted as useful items of knowledge, long before
a proof is available of their consistency with, and position in the hierarchy of, the
other idas in 
11 . With this motivation, we resort to a knowledge representation
avoiding any committment concerning the hierarchy/consistency of the ideas in

.
Knowledge heterogeneity among the �rms in the same industry may re�ect

the diversity of their research programs, of their category representations12 of
the same real-world objects, or, more generally, of their histories. The sources of
knowledge heterogeneity are neglected, in what follows. The initial knowledge
distribution results from the random assignment of any idea in the industry
knowledge base 
 to the �rms in the industry. Contrary to Olsson (2000), 

is de�ned at a given date t and does not include the ideas that have yet to be
discovered at t.
Let 	 be a �-algebra of subsets of 
, that is, a collection of subsets of


, containing the empty-set ?, and closed with respect to the formation of
complements and of countable unions and intersections. In particular, we have
that 
 2 	. The couple (
;	) de�nes a measurable space and we assume the
existence of a �nite measure � on (
;	)13 . As a trivial example, consider the

9Nooteboom (2000) argues that such issues are highly consequential to the theory of orga-
nizational learning.
10The information of an individual about real world occurrences is there described as a

partition on the set of the possible states, or histories, of the world (Aumann 1999).
11The history of the reduction of heath theory to statistical mechanics is a classic example

(Nagel 1979, pp. 338-345).
12Representations may be more abstract or concrete (Boland et al 2001).
13� is a non-negative real valued set function � : 	! [0;1) such that �(?) = 0, �(
) <1,

and for Ek 2 	, any countable disjoint collection fEkg1k=1 satis�es the condition

� ([1k=1Ek) =
1X
k=1

�(Ek):
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case in which 
 is a �nite set, and for any E 2 	, de�ne �(E) = #E.
A metric on the set 	 is a non-negative distance function d : 	�	! [0;1)

such that for any triplet of subsets A;B;C 2 	 the following properties hold:

1. d(A;A) = 0 identity recognition

2. d(A;B) = 0 only if A = B identity of indiscernibles

3. d(A;B) = d(B;A) symmetry

4. d(A;C) � d(A;B) + d(B;C) triangle inequality

If the non-negative distance function d meets 1, 3, 4, but 2 may fail, it is
called a pseudo-metric on 	. If it meets 1, 2, 4, but the symmetry condition 3
may fail, it is a quasi-metric (Wilson 1931). Finally, the function d is a pseudo-
quasi-metric on 	, if it meets 1 and 4 above14 .
Let N = f1; :::; ng be a �nite set of �rms; A = fAigi2N is a knowledge

distribution on N ; Ai is the knowledge base of �rm i 2 N , and [iAi = 
 is
the knowledge base of the industry. The distance between subsets of 
 is the
metric d : 	�	! [0; 1] de�ned by (Granstrand 1994):

d(Ai; Aj) =
�(Ai [Aj)� �(Ai \Aj)

�(Ai [Aj)
for Ai 6= Aj ,

and d(Ai; Aj) = 0 otherwise.
The undirected cognitive distance between �rms i, j 2 N is the pseudo-

distance dk : N �N ![0; 1] de�ned by dk(i; j) = d(Ai; Aj).
For the sake of later reference we introduce the following simplifying nota-

tion. The measure of the set of ideas that are known to i, but not to j, is
the novelty nij = �(Ai � Ai \ Aj). The knowledge overlap between i and j is
�ij = �(Ai \Aj).

De�nition 1 The directed distance of a knowledge set Ai relative to a
knowledge set Aj is the quasi-metric dd : 	�	! [0; 1] de�ned by:

dd(Ai; Aj) =
�(Ai �Ai \Aj)
�(Ai [Aj)

. (1)

Because dd trivially meets identity recognition and identity of indiscernibles,
only the triangle inequality remains to be ascertained. This is proved in the
appendix.
Notice that dd(Ai; Aj) + dd(Aj ; Ai) = d(Ai; Aj) is a metric on 	. As a

striking motivation for introducing a directed distance in the �-algebra of subsets
of the universal knowledge set 
, consider the case in which Ai � Aj 6= ?, where

Cf. Royden and Fitzpatrik (2010), pp. 337-340.
14See Künzi (1992, 2001). A less than fully settled nomenclature may produce occasional

di¤erences in de�nition. See, for instance, Basili and Vannucci (2013).
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� is strict set inclusion. In this case, Ai\Aj = Ai, and dd(Ai; Aj) = 0, whereas
dd(Aj ; Ai) > 0.

De�nition 2 The directed cognitive distance of �rm i relative to �rm j is
the pseudo-quasi-metric � : N�N ! [0; 1], de�ned by �(i; j) = dd(Ai; Aj) = �ij .

Straightforward computation reveals that for i, j 2 N , �ii = 0, and �ij + �ji
is the pseudo cognitive distance between i and j.

0 � �ij + �ji = dk(i; j) � 1 (2)

3.2 Knowledge spillovers

Two �rms i, j 2 N are prepared to share their knowledge if and only if they form
an R&D alliance. The R&D relation between them is described by the binary
variable ij 2 f0; 1g, with the interpretation that ij = 1 if the �rms are linked
by an R&D partnership, and ij = 0 otherwise. The set of pairwise relationships
between �rms is represented by the network g = f(ij)i, j2Ng, ii(g) = 0, 8i 2 g.
With some abuse of language, we say that the �rms i, j 2 N are nodes of g. In
this section, a given distribution of knowledge A = fAigi2N is �xed, to de�ne
the opportunity Sij of a knowledge spillover from �rm j to �rm i. Spillover
opportunity Sij is de�ned by

Sij = �ji � [max(0; � � �ij � �ji)].

Recalling that

(�ij + �ji) = dk(i; j) = 1�
�ij

�(Ai [Aj)
,

�rm i has a positive opportunity to draw a knowledge gain from its partner
j, only if novelty nji > 0, and the ratio of knowledge overlap �ij to joint
knowledge �(Ai [ Aj) is larger than 1 � � > 0. Here � 2 (0; 1) is a maximum
threshold beyond which excessive undirected knowledge distance (low knowledge
proximity) frustrates knowledge interaction. 15 The value of � re�ects the nature
of the R&D projects shared by �rms, collaboration on more incremental projects
requiring higher proximity of the competence bases, hence a lower �.
In this paper we focus on the qualitative nature of the conditions enabling, or

forbidding, e¤ective knwledge interaction between partners, avoiding any more
demanding discussion on spillover size.16 To this end, we introduce the simplify-
ing assumption that, provided the conditions for e¤ective knowledge absorption
from an R&D partner are ful�lled, the directed �ow of ideas materializing in a

15The statement is reminiscent of, but weaker than, Nooteboom�s (2000) notion of an
inverse-U shaped relation between cognitive distance and e¤ectiveness of knowledge inter-
action. Moreover, we do nat have here a �optimal cognitive distance�in Nooteboom�s sense.
16A discussion of this kind would itsef require a deeper understanding and discussion of

knowledge measurement. D�Agata and Santangelo (2003) de�ne the undireted knowledge
spillover between two R&D partners i and j, in terms of the undirected knowledge distance
dk(i; j) between them.
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unit time interval is �xed. Given a network g, and knowledge distribution A,
�rm i can absorb ideas from �rm j if and only if ij(g) = 1, and the spillover op-
portuinity Sij is larger than a minimum threshold � . The size of � is related to
the indivisibility od ideas. More formally, we assume that the directed spillover
sij(g) from j to i is a binary variable sij(g) 2 f0; 1g:

8i; j 2 N , sij(g) = 1, if ij(g) = 1, and Sij > � , (3)

sij(g) = 0 otherwise (4)

It is worth stressing that the knowledge incentives to collaboration may well
be asymmetric, if network g is arbitrary, as it may be the case that sij(g) = 1,
but sij(g) = 0, or vice versa. The knowledge-portfolio literature mostly over-
looks the distinction between directed and undirected knowledge distance, and
the potential asymmetry of the knowledge incentives to collaboration (Cowan
and Jonard 2009, Egbetokun and Savin 2014, D�Agata and Santangelo 2003. An
exception is Caminati 2016). The distinction is redundant only if the knowledge
endowments are of equal measure, �(Ai) = �(Aj), i; j 2 N , with the implica-
tion that the directed knowledge distances, and collaboration incentives, are
symmetric.

4 Collaboration in Cournot oligopoly

The foundation of knowledge interaction on directed cognitive distance is used
in this section to build a collaboration game played by oligopolistic �rms. The
game is otherwise reminishent of Gojal and Joshi (2003). Any two �rms in the
set N = f1; :::; ng have the opportunity to collaborate on a shared R&D project.
For every research link a �rm incurs a �xed collaboration cost f > 0, and obtains
the potential access to the partner�s private knowledge, which is relevant to the
project in question. After collaboration, if any, the n �rms engage in Cournot
competition in the market for the homogeneous product.
To the reader�s convenience, we recall some standard de�nitions on networks

(Gojal and Joshi 2003), and the related notation used in the sequel. The empty
network ge is de�ned by ij(ge) = 0;8i; j 2 N . The undirected network g+ ij is
obtained by replacing ij(g) = 0 with ij(g) = 1. g� ij is the undirected network
obtained by replacing ij(g) = 1 with ij(g) = 0. g�i is the network obtained by
severing i�s links in g, replacing any ij(g) = 1 with ij(g) = 0. If i is a isolated
node of g, g�i = g.
A path of length m in g, connecting �rms i and j, is a set of m distinct �rms

fi1; :::; img such that ii1 = i1i2 = :::im�1im = imj = 1. Two neighbors i and j
are connected by a path of length zero, that is, ij = 1. A network g0 � g is a
component of g if: (i) for all i; j 2 g0, with i 6= j, there is a path in g0 connecting
i and j; (ii) for all i 2 g0 and j 2 g, ij(g) = 1 implies j 2 g0. A network g is
connected if it has a unique component g0, and g0 = g. The complete network
gc is de�ned by ij(gc) = 1;8i; j 2 N .

9



In this paper we restrict our attention to costly collaboration. On the as-
sumption that f > 0, �rms i and j are not prepared to form an R&D alliance
unless they both have the opportunity to earn a positive spillover from their
partner; if this is the case, we say that the link ij(g) = 1 is viable.
De�nition 3. For any network g, and �rms i, j 2 N , a link ij(g) = 1

is viable if and only if Sij > � , and Sji > � , hence ony if (�ij + �ji) � [� �
(�ij + �ji)] > 2� . Using (3) above, any viable link ij(g) = 1 is such that
sij(g) = ij(g) = sji(g).

Firm i process innovations resuts from the number of its viable collaborations
with the other �rms; this is

si(g) =
X
j 6=i

sij(g). (5)

Firms face a constant returns to scale production technology with marginal
production cost

ci(g) = 
0 � 
si(g) (6)

where 
 > 0, and 
0 is the marginal cost of any isolated �rm in g. In particular,
ci(g

e) = 
0. The total collaboration cost borne by �rm i is f � �i(g), where
�i(g) =

P
j 6=i ij(g) is the number of i�s network partners. Notice that �i(g) �

si(g), and strict inequality holds if, and only if, there are i�s links in g that are
not viable.

Assumption A1. The knowledge distribution A = fAigi2N is obtained
from the random assignment to each i 2 N of any idea a 2 
, with uniform
probability p(a) = 0:5. On the understanding that �(
) and n are large enough,
a representative A distribution is assumed such that each pair of �rms in N have
a non-vanishing knowledge overlap, and each pair member has some knowledge
that is unknown to the other:

�ij > 0; and dk(i; j) < 1;8i; j 2 N; i 6= j. (7)

The expected directed and undirected knowledge distance between two �rms
in the industry are de�ned by:

E(�ij)i 6=j =
1

n

X
i

0@ 1

n� 1
X
j

�ij

1A ; E(dk(i; j))i 6=j = E(�ij+�ji)i 6=j = 2E(�ij)i 6=j .

(8)

Given a knowledge distribution A, the n �rms form collaborations in the
�rst stage of the game and engage in quantity Cournot competition on the
homogeneous-product market, in the second stage. The linear inverse market-
demand function is

p = ��
X
i2N

qi, � > 0
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The gross pro�t of �rm i induced by g is

�i(g) = p � qi(g)� ci(g)qi(g), (9)

and net pro�t is �i(g) = �i(g) � f � �i(g). The standard solution procedure
starts from the second stage, and �nds the unique product-market equilibrium
resulting from g, and the induced marginal cost vector c(g) = fc1(g); :::; cn(g)g.
The incentives to form new links, and to delate or preserve existing ones,

depend on the knowledge spillovers triggered by the directed knowledge dis-
tances between partners, and their interaction with Cournot output. A network
g is A-stable if the stability condition of Jackson and Wolinsky (1996), and the
additional global-check condition of Goyal and Joshi (2003, p. 73) are satis�ed:
the former requires that any two partners do not have a strict incentive to sever
their link, and any two �rms, that are not members of a partnership, do not have
a strict incentive to form one; the latter requires that a �rm cannot increase its
net pro�t by severing all its links at once. More formally:

De�nition 4. Given a knowledge allocation A, an A-stable network g meets
the following conditions.
(i) If gij = gji = 1, then: �i(g)��i(g� ij) � f , and �j(g)��j(g� ji) � f .
(ii) If gij = gji = 0, then �i(g+ij)��i(g) > f implies �j(g+ji)��j(g) < f .
(iii) �i(g)� f � �i(g) � �i(g�i);8i 2 N .

In the second-stage game each Cournot ologopolist i formulates a prediction
on qj 6=i and maximizes pro�t (9), subject to the prediction. Given a network g,
the Cournot equibrium output of the game is

qi(g) =
�� 
0 + n
 � si(g)� 


P
j 6=i sj(g)

n+ 1
: (10)

In particular, the Cournot output in the empty network is uniform, qi(ge) =
(�� 
0)=(n+1). We assume that 
 is su¢ ciently low relative to (�� 
0) that,
for any network g, and any i 2 g, the Cournot output qi(g) is strictly positive.
The Cournot-equilibrium gross pro�t is:

�i(g) = q
2
i (g) (11)

Remark 1. Given a network g, and �rms i, j 2 N , such that ij(g) = 0,
the change of i�s gross pro�t, following upon the formation of a link with �rm
j, obeys to:

�i(g + ij)� �i(g) = (qi(g + ij)� qi(g)) � [2qi(g) + (qi(g + ij)� qi(g))] (12)

The following properties hold:

sign [�i(g + ij)� �i(g)] = sign [qi(g + ij)� qi(g)] (13)

�i(g + ij)� �i(g) > f iff qi(g + ij)� qi(g) > x(qi(g); f) (14)
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where x(qi(g); f) is the minimum change in i�s output making �rm i willing to
add link ij to its connections in g, and is defned by x(q; f) � [(q2 + f)1=2 �
q]. The function x(q; f) is strictly increasing with f , decreasing with q, and
limf!0 x(q; f) = 0.

We can check from equation (10) that, if a link ij is not viable, then, qi(g+
ij)� qi(g) = 0. In this case, because the function x(qi(g); f) is strictly positive
at f > 0, we have qi(g + ij)� qi(g) < x(qi(g); f). This shows that a necessary,
but not su¢ cient, condition to the formation of any link ij = 1, is that the link
in question is viable. When this is the case, sij(g + ij) = sji(g + ij) = 1, and

qi(g + ij)� qi(g) =

(n� 1)
n+ 1

: (15)

Proposition 1 Assume that g is A-stable, and ij(g) = 1. The following nec-
essary twin conditions apply:



n� 1
n+ 1

� x(qi(g � ij); f) (16)



n� 1
n+ 1

� x(qj(g � ij); f) (17)

It is worth observing that a non-negligible collaboration cost f > 0, gives rise
to a mild form of increasing returns to link formation. To see this, we use remark
1 to state that, if �rm i is willing to add the link ij = 1 to its collaborations
within a network g, then, it must be the case that corresponding change in i�s
Cournot output satis�es qi(g + ij) � qi(g) � x(qi(g); f) > 0. Assuming that
the network (g + ij) is formed, we observe that the change in Cournot output
making �rm i willing to form also a second link ih = 1 is at least as large as
qi(g + ij + ih) � qi(g + ij) � x(qi(g + ij); f): Because the function x(q; f) is
strictly decreasing in q, we have:

0 < x(qi(g + ij); f) < x(qi(g); f)

Obviously enough, the second link ih = 1 will not form, if it is not viable, in
which case qz(g + ij + ih)� qz(g + ij) = 0, for z = i, z = h, or both.
A stronger form of increasing returns to link formation is enforced, if for any

network g, and 8i, j 2 N , the equality sij(g) = ij(g) holds true.17 Within such
a fremework, Goyal and Joshi (2003, lemma 4.1) prove that the change in i�s
gross pro�t from adding any marginal link to the network (g+ ij), is larger than
the change in i�s gross pro�t from adding the link ij to the network g. More
formally, �i(g + ij + ih) � �i(g + ij) > �i(g + ij) � �i(g). In this paper, the
statement may not hold, simply because the link ih may not be viable. Contrary

17This happens in the present paper, if knowledge distances do not matter, because all links
are viable (see below).
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to Goyal and Joshi (2003), it may here be the case that �rm i is not prepared
to jointly sever all its links at once, but is prepared to sever one, or more, of its
links separately, if they are not viable. Condition (iii), of the stability de�nition
3, is therefore no stronger than condition (i), and the former does not generally
imply the latter.

Proposition 2 Assume that the network g is A-stable. If i; j 2 N(g), and
ij(g) = 0, the link ij is not viable.

Proof. As one may easily check from equation (10), the equality between
the degree �i(g) and the total spillover si(g), earned by members of an A-
stable network g, induces a perfect correlation between degree �i(g) and Cournot
output qi(g), across network participants. To the extent that qi is perfectly
correlated with degree, and the function x(qi(g); f) is decreasing in qi(g), i�s
constraints to form a new link with any other �rm j 2 N are weaker, if i�s
degree �i(g) is higher. The assumption i; j 2 N(g) can be written �i(g) � 1,
�j(g) � 1. By proposition 1, there is h 2 N(g), z 2 N(g) such that



n� 1
n+ 1

� x(qi(g � ih); f)



n� 1
n+ 1

� x(qj(g � jz); f)

Now suppose proposition 2 is false, hence the link ij is viable. Because qi(g) >
qi(g � ih), and qj(g) > qj(g � jz), it must be the case that:

qi(g + ij)� qi(g) =

(n� 1)
n+ 1

> x(qi(g); f)

qj(g + ij)� qj(g) =

(n� 1)
n+ 1

> x(qj(g); f)

This contradicts the assumption that g is A-stable, and completes the proof.

4.1 Viable links

To �x a reference point, it is worth considering the twin restrictions � = 0,
� = 1, that make the Cournot collaboration game of this paper a replica of the
corresponding game in Goyal and Joshi (2003, section 4). With such restrictions
in place, all links are viable, hence knowledge distances do not matter. This
leads to sij(g) = ij(g), and si(g) = �i(g), 8i, j 2 N .18 Using (ii) of the stability
de�nition 4, if g is A-stable, and ij(g) = 0, then, i and j cannot both have a
strict incentive to form the link ij = 1. Equivalently, it cannot be the case that,
for both h = i, and h = j, the following inequality holds:



n� 1
n+ 1

> x(qh(g); f) (18)

18Notice that lemma 4.1 of Goyal and Joshi (2003) applies in this special case.
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By continuity of x(q; f), in its domain of de�nition, there exists a critical
value fMin > 0, such that If the collaboration cost f < fMin the right-hand
side of (18) is strictly lower than the left-hand side, hence, the inequality (18)
is necessarily veri�ed. This means that at 0 < f < fMin the unique A-stable
network g is the complete network g = gc. If the collaboration cost f is larger
than a critical value fMax, an A-stable network g is empty.19 At 0 � f � fMax

there exist a non-empty set G(f) of A-stable networks, such that, if g 2 G(f),
the set N(g) of non-isolated �rms in g has size n(g), with 2 � n(g) � n.
Because all links are viable, proposition 2 implies that if a non-empty net-

work g is A-stable, and i, j 2 N(g), then ij(g) = 1. Equivalently, at 0 �
f � fMax, a non-empty A-stable network g has the dominant-group architec-
ture, g = gk, with k = n(g) (Goyal and Joshi 2003, sect. 4). Any �rm i 2 N(g)
has uniform degree �i(g) = k � 1, and uniform Cournot output20

qi(g) =
�� 
0 + 
 � (k � 1)(n+ 1� k)

n+ 1
.

A isolated �rm i 2 fN �N(g)g has Cournot output

qi(g) =
�� 
0 � 
k(k � 1)

n+ 1
:

The subnetwork formed by the connected component of g has global clustering
coe¢ cient21 CN = 1; this is no larger than it would be in a random network of
equal size and average degree.

4.2 Viable and non-viable links: clustering in an A-stable
network

This section introduces tighter conditions for link viability. In particular, we
assume � < 1 and � > 0, such that each �rm i in the industry has a viable link
with some, but not all other �rms in the industry. More formally, the following
restrictions of assumption A:1 hold.

8i 2 N , 9 j 2 N , such that [min(�ij ; �ji)] � [� � (�ij + �ji)] < � (19)

8i 2 N , 9 h 2 N , such that [min(�ih; �hi)] � [� � (�ij + �ji) > � . (20)

Restriction (19) implies that link viability will strictly bind the formation of
some alliances, no matter how small is the collaboration cost f . Contrary to

19fMin and fMax correspond to F0 and F3 of proposition 4.1, Goyal and Joshi (2003).
20The correspondence between the collaboration cost f and the interval fkMin(f),

kMin(f) + 1, :::, kMax(f)g spanning the (non-trivial) component size k of a A-stable net-
work g = gk, is described by proposition 4.1 of Goyal and Joshi (2003).
21The global clustering coe¢ cient of a network g is

C(g) =
number of closed triangles in g

number of triangles in g
.
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the results in the previous section, at 0 < f < fMin the complete network g = gc

is no longer A-stable, and a non-empty A-stable network g does not have the
dominant group architecture. By (20) every �rm i 2 N has a viable link with
some other �rm; thus, every �rm has a strict incentive to form a collaboration
with some other �rm, if the collaboration cost is low enough; when this is the
case, an A-stable network g has a number of non isolated nodes n(g) = n, has
average degree

��(g) =
1

n

X
i2N

�i(g) < n� 1,

and may have any number K of components, 1 � K � n=2.
We are now ready to prove the result:

Proposition 3 Assume (7), (8), (19), (20). If the maximum undirected knowl-
edge distance consistent with link formation is low enough, an A-stable network
g is such that (global) clustering coe¢ cient C(g) is larger than it would be ex-
pected, if the wiring among the non-isolated nodes of g was random, and the
number of links among them was unchanged.

Proof. Assume g is A-stable. For the sake of the argument, let us �rst
consider the restriction 0 < f < fMin, with the implication that the set of non
isolated �rms in g is N(g) = N . Firms i and j can be R&D partners in g,
only if dk(i; j) < �. A corresponding constraint dk(i; h) < � applies, if the same
�rm i is linked to a second �rm h. Moreover, the triangle inequality implies
dk(j; h) � dk(i; j) + dk(i; h) < 2�. Recalling (8), on the assumption that � is
lower than E(�ij)i 6=j , we conclude that dk(j; h) < E(dk(i; j))i 6=j = 2E(�ij)i 6=j .
In words, the undirected distance between any two �rms j, h 2 N(g), that are
linked to an identical third partner, is strictly lower than it would be expected,
if two �rms were picked-up at random from the set N(g) = N . If we now
consider the full range 0 < f < fMax, it may well be the case that N(g) � N .
Stronger partner selection induced by a higher collaboration cost, only requires
that a su¢ ciently high Cournot output is necessary to the membership in the
set N(g); it does not however impinge upon the expected undirected knowledge
distance between two random members of N(g). It is still the case that, if
� is low enough, the undirected knowledge distance between two �rms, that
are linked to an identical third partner in N(g), is strictly lower than it would
be expected, if two �rms were picked-up at random from N(g). Because link
formation is constrained by viability, we conclude that the frequency with which
two neighbors of the same partner are direct neighbors in N(g) is higher than
the average frequency of collaboration in N(g), or equivalently, it is larger than
it would be expected, if the wiring of the connections among the �rms in N(g)
was random, and the number of links among them was unchanged. This proves
the proposition.
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5 Discussion

Variety in the size and composition of the knowledge endowments, induced by
a cross-�rm knowledge distribution A, a¤ects the competence-based opportuni-
ties of R&D alliance. In a oligopolistic industry with quantity competition, the
topology of an A-stable R&D network is produced by the way these opportuni-
ties interact with the distribution of Cournot output across the n �rms in the
industry.
When the knowledge constraints to cooperation are not biting, it is as if the

knowledge spillovers between partners fall �like manna from haven�. In this case
all potential links are knowledge-viable, and the game played by �rms produces
the dominant-group architecture g = gk, such that the non isolated nodes of g
form a complete subnetwork (Goyal Joshi 2003, sect. 4). It is worth observing
that in a gk architecture, the fraction of one�s neighbors that are neighbors is
maximal, but is no larger than it would be, if the wiring of connctions among
the non-isolated �rms in g was random. The obvious reason is that, when each
non-isolated node is linked to any other, there is no scope for randomness in the
wiring of connections.
Di¤erent properties are enforced by the assumption that knowledge spillovers

between partners do not fall from haven. Although a perfect correlation remains
between �rm degree and output, and a higher Cournot output makes collabora-
tion less vulnerable to a rise of collaboration costs, tight knowledge constraints
to cooperation may prevent R&D alliance between �rms, no matter how large
their output may be.22

Tight knowledge proximity constraints to cooperation produce the further
property that, in an A-stable network g, the fraction of one�s neighbors that
are neighbors is larger than it would be, if the wiring of connctions among the
non-isolated �rms in g was random. High local clustering of R&D links is a
charachteristic prediction of knowledge-based models of R&D network forma-
tion (Baum et al. 2010). The remarks above show that the prediction may
not be lost, when knowledge based R&D collaboration is followed by quantity
competition in the market for output.23 .
It may be worth adding that, if the A distribution produces a modular cross-

�rm distribution of the knowledge distances24 , the local clustering of R&D links
leads to a multiplicity of clusters, such that the frequency of connection within a
cluster is higher than the frequency of connection between the clusters. In view
of the knowledge-proximity constraints to cooperation, a cluster may then be
interpreted as a knowledge community. On the hypothesis that there is su¢ cient
variation in cluster size, clustering is associated to the further property that a
disproportionately large fraction of high-degree nodes are linked to other high-

22The possiblity of a multiplicity of network components cannot be ruled out.
23 If the local clusters of nodes are connected by sparse clique-spanning ties, the A-stable

network g is a small-world (Watts and Strogatz 1998, Watts 1999).
24This means that the set N of �rms in the industry can be partitioned into a multiplicity of

groups, such that average undirected knowledge distance within a group is lower than average
undirected knowledge distance between groups.
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degree nodes. In other words, assortativity by degree is positive, as is typically
the case in social networks (Newman and Park 2003, Caminati 2016).25

This paper claims that the formation of R&D alliances may be a¤ected by
the potential asymmetry of the pairwise knowledge distances between �rms.
Other implications of this asymmetry bear on the persistency, rather than the
formation, of R&D networks. This is clari�ed by the following remark.
Innovation and knowledge spillovers make the knowledge distribution en-

dogenous, with potential convergence or divergence in the size and composition
of the knowledge endowments, that depend crucially on the topology of the
R&D network. In one speci�c instance, the wildly complex in�uence of network
topology can be thamed by simple euristic arguments leading to cogent conclu-
sions. If a �rm i 2 N is the terminal node of a path in an A-stable network g
(that is, there is i 2 N , such that �i(g) = 1), the �rm i in question lacks sources
of knowledge, outside the collaboration with its unique R&D partner, say j. If
the knowledge produced by the alliance ij is shared between the partners, the
directed knowledge distance �ij is bound to converge to zero, in the long run.
As a result, j�s pay-o¤ to collaborate with i will eventually vanish, bringing the
collaboration to an end. This suggests that some forms of network topology,
like the star network, though possibly stable in the short.run, are inherently
unpersistent in the long run.

6 Conclusions

This paper complements the Cournot collaboration game outlined in Goyal and
Joshi (2003, sect. 4), with the knowledge portfolio approach to R&D colabora-
tion (Cowan and Jonard 2009, Baum et al. 2010, Caminati 2016). In particular,
the paper assumes that a �rm can receive a knowledge spillover from another,
only if the latter has some novel ideas to o¤er, and the two �rms in question
share a su¢ ciently large mutual understanding. It is agued that short-run R&D
alliance formation is constrained by the directed knowledge distances between
the potential partners, re�ecting the given initial cross-�rm knowledge distrib-
ution.
Our results show that, unless the knowledge constraints to collaboration are

weak enough, a stable network will not generally display the dominat group ar-
chitecture. In this sense, the result is a generalization of Goyal and Joshi (2003,
sect. 4). Although a perfect correlation between �rm�s degree and Cournot

25The empirical relevance of this conclusion is limited by the following remarks. In a
narrowly de�ned industry, modularity in knowledge distribution is less plausible. In fact,
Tomasello et al. (2013) �nd that in most (SIC three digits) sector networks, assortativity by
degree is very close to zero or even negative. It is positive in multisector networks.
The assortativity coe¢ cient r(g) is de�ned by:

r(g) =

P
ij

�
ij(g)� �i(g) � �j(g)=T

�
�i(g) � �j(g)P

ij

�
�i(g)�(i; j)� �i(g) � �j(g)=T

�
�i(g) � �j(g)

where �(i; j) = 1, if i = j, and �(i; j) = 0 otherwise; T =
P
i �i(g).
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output still applies, and a higher Cournot output makes collaboration less vul-
nerable to collaboration costs, R&D cooperation between two positive-degree
�rms may be prevented by tight knowledge constraints.
It is shown that su¢ ciently tight knowledge-proximity constraints to R&D

collaboration produce stable networks with a (global) clustering coe¢ cient, that
is higher than it would be expected, if the wiring among the non-isolated �rms in
the network was random, while the number of links among them was unchanged.
High local clustering is a characteristic of many real-world social networks,

and di¤erentaiates them from other types of networks (Newman and Park 2003).
It is �nally suggested that the constraints to alliance formation induced by

asymmetric knowledge distances between the partners may bear strong impli-
cations for network evolution, and the interpretation of network decay.
.

Appendix
A. Directed distance in knowledge space
Let A, B, C any triplet of subsets in 	. The directed-distance function

dd : 	�	! [0; 1] de�ned by

dd(A;B) =
�(A�A \B)
�(A [B) (21)

is a quasi-metric on 	.
Because dd trivially meets identity recognition and identity of indiscernibles,

only the triangle inequality remains to be ascertained, that is:

dd(A;B) + dd(B;C) � dd(A;C) (22)

This is proved as follows. First, we observe that the following fact holds26 :

(A�A \B) [ (B �B \ C) � (A�A \ C) (23)

Statement (23) implies:

A [B [ C = (A \B \ C) [ (A�A \B) [ (B �B \ C) [ (C � C \A) (24)

and, the more stringent equality

�(A[B[C) = �(A\B\C)+�(A�A\B)+�(B�B\C)+�(C�C\A). (25)

Now use (25) and the obviuos fact

�(A [ C) = �(A \ C) + �(A�A \ C) + �(C � C \A)

to obtain:

�(A�A \B)
�(A [B) +

�(B �B \ C)
�(B [ C) � �(A�A \B) + �(B �B \ C)

�(A [B [ C) =

26 If a 2 (A � A \ C), then either a 2 (A � A \ B), or a 2 A \ B, hence a 2 (B � B \ C).
This proves (23).
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=
�(A [B [ C)� �(A \B \ C)� �(C � C \A)

�(A [B [ C) � 1��(A \B \ C)
�(A [B [ C)�

�(C � C \A)
�(A [ C) =

��(A \B \ C)
�(A [B [ C) +

�(A \ C)
�(A [ C) +

�(A�A \ C)
�(A [ C) � �(A�A \ C)

�(A [ C)
This proves the triangle inequality (22).

B. Proof of Remark 1
Statements (12) and (13) are straightforward. The condition �i(g + ij) �

�i(g) > f can be written:

y2i (g + ij) + 2qi(g) � yi(g + ij) > f

where: yi(g + ij) = qi(g + ij)� qi(g). We conclude that �i(g + ij)� �i(g) > f
if and only if:

yi(g + ij) > [(q
2
i (g) + f)

1=2 � qi(g)] � x(qi(g); f)

This proves statement (14).
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