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Sir, – Neurogenic focal muscle hyper-
trophy (NMH) is a rare event in different 
instances of impaired nerve conduction: ac-
quired and inherited polyneuropathies/mul-
tineuropathies [1, 2], post-polio syndromes 
[3], spinal stenosis, spinal muscle atrophies, 
radiculopathies [4]. Unilateral calf hypertro-
phy is an uncommon, but not unique, finding 
in S1 radiculopathy [5]. Muscle histology 
shows denervation, with atrophic as well as 
hypertrophic fibers, and frequent coexistence 
of inflammatory changes. Nevertheless, clin-
ical presentation and responsiveness to treat-
ment are not uniform. We report a 65-year-
old man, who presented with a 2-month 
history of painful progressive enlargement 
of the right calf, which started 5 months af-
ter an acute lumbago, causing pain of poste-
rior right thigh, leg, and heel. The right calf 
was markedly enlarged (7.5 cm right > left), 
tense, and sensitive to touch/pressure, with 
no skin/subcutaneous changes, no involve-
ment of the regional lymph nodes (Figure 1). 
Neurological examination detected weak-
ness of right foot plantar flexion (3/5 MRC 
scale) and absence of right ankle jerk reflex; 
the patient complained of tingling paresthe-

sias in the right foot and continuous calf pain. 
Routine blood tests, including sedimentation 
rate, C-reactive protein, eosinophil count, 
thyroid hormones, liver enzymes, and cry-
ocrit were within normal ranges. ANA-ENA 
screening and search for neurotrophic vi-
ruses were negative. Serum creatine kinase 
(CK) was increased (520 UI/L).

Needle electromyography (EMG) showed 
marked abnormalities consisting of continu-
ous complex repetitive discharges (CRDs), 
polyphasic motor unit potentials with reduced 
voluntary recruitment in the right gastroc-
nemius muscle. EMG recordings of right 
tibialis anterior, quadriceps femoris, gluteus 
maximum, and adductor magnus muscles 
were unremarkable.

Magnetic resonance imaging (MRI) (Fig-
ure 1) showed a volume increase of right leg 
posterior muscles, more evident on soleus 
and medial gastrocnemius, with intrafascial 
edema and mild hypervascularization of hy-
pertrophic muscles.

Lumbosacral spinal MRI and computed 
tomography (Figure 1) evidenced diffuse de-
generative disease of the lumbar spine and a 
L5-S1 right paramedian posterior disc herni-
ation compressing the ipsilateral S1 radicular 
sheath and S1 nerve root.

A biopsy of the medial right gastroc-
nemius muscle (Figure 2) showed grossly 
hypertrophic fibers, grouped atrophy, and 
sparse myonecroses. Target lesions indicat-
ed denervation in most hypertrophic fibers. 
Inflammation consisted of scattered foci of 
mononuclear cells surrounding necrotic fi-
bers. MHC-I (HLA-ABC) neolocalization 
was restricted to necrotic/regenerating fibers. 
Focal increase of acid phosphatase (AP) ac-
tivity and cytoplasmic patchy deposits of 
complement terminal complex (membrane 
attack complex: MAC) were detected in 
the largest fibers with myofibrillar disarray. 
Immunohistochemistry for myosin heavy 
chains (MyHC) showed reactivity of all fi-
bers for the slow isoform, with a milder stain 
in fibers coexpressing fast myosin, resulting 
in transitional hybrid fibers (~ 40%). Recur-
rent regenerating fibers coexpressed neona-
tal/fast/slow myosin. By morphometric 
analysis, the frequency peak of fiber equiva-
lent diameters was observed at ~ 100 µm, 
with recurrent elements being larger than 
200 µm.
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Steroid treatment was carried out with 
prednisone 50 mg/day for 3 weeks, with no 
clinical remission. Consequently, the patient 
was submitted to CT-guided percutaneous 
transforaminal periganglionic, and trans-

articular zygapophyseal infiltration of the 
right L5-S1 root with a mix of local anes-
thetic (Ropivacain, 2 mg) and corticosteroid 
(Triamcinolon, 40 mg), with considerable 
clinical remission: shortly after the proce-

Figure 1. Top left: grossly hypertrophic right calf. Top right: lumbar spine neuroimaging. T1- (A) and T2-
weighted (B) sagittal, T2-weighted consecutive axial (C) MRI, and axial CT (D): disc and facet joints degen-
erative disease at right side of L5-S1 level, including zygapophyseal osteophytes (white closed arrow) and 
paramedian disc herniation (open arrows) in the right S1 lateral recess, compressing ipsilateral S1 root (black 
closed arrow). Bottom: MRI of the legs. T1-weighted image (A): volume increase of soleus and medial gas-
trocnemius muscles (white arrows). Fat-suppressed T2-weighted image: edema, with interfascial component 
(arrows). No fat involution was detectable by T1/T2 images. Regular popliteal artery run-off excluded vascu-
lar impairment (C). Steady-state post-contrast T1-weighted image (D): muscle masses showed homoge-
neous enhancement (*) because of increased interstitial spaces due to inflammatory components.
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Figure 2. Medial right gastrocnemius muscle: biopsy findings. Hematoxylin-eosin: myonecrosis with 
mononuclear invasion (*); atrophic/hypertrophic fibers, internalized nuclei; target lesions as hypereosino-
philic areas. Histogram of fiber equivalent diameter: high percentage of diameters > 100 µm; > 15% small 
atrophic fibers. MHC-I (HLA-ABC) IP: only necrotic (*) and sparse degenerating/regenerating (**) fibers 
show neolocalization. NADH-TR: target lesions as areas devoid of enzymatic activity with peripheral hy-
perreactive rim and coarse architectural changes. MAC IP: patchy cytoplasmic spots on target fibers (suc-
cessive sections*), contrasting with uniform cytoplasmic stain in necrotic fibers invaded by mononuclear 
cells (arrowhead). CD4 – CD8 IP on successive sections: only necrotic fibers present with infiltrates. Acid 
phosphatase hyperactivity in a grossly hypertrophic fiber, with severe disruption of myofibrillar organiza-
tion, as shown in successive section stained for NADH-TR. Serial MyHCs IP: all fibers express slow 
MyHC, target lesions show a hyperreactive rim; variable intensity of MyHC slow stain in grouped fast fibers 
(arrowhead). Regenerating fibers (*) coexpress neonatal, slow, and fast isoforms. (NADH-TR = reduced 
nicotinamide adenine dinucleotide-tetrazolium reductase; AP = acid phosphatase; IP = immunoperoxi-
dase; scale bar: 50 µm).

Clinical Neuropathology, Vol. 37 – No. 3/2018 – Letters to the editor 148



dure, pain and muscle tenderness decreased 
and within 4 weeks a 2.5-cm reduction of 
the right calf circumference was discern-
ible. Nevertheless, 2 months later, pain and 
swelling recurred so that surgical discectomy 
was performed. Three months later, the right 
calf circumference, although still hypertro-
phied, was 3.5 cm less. Clinical examina-
tion showed full recovery of the right plantar 
flexion (MRC: 5), a sharp decrease of the 
foot paresthesia, and a reduction of the calf 
tension. EMG demonstrated a reduction of 
CRDs with improved muscular recruitment.

Coexisting inflammatory changes have 
led to inclusion of NMH into the domain of 
focal myositis (FM) [5, 6], a benign pseudo-
tumor lesion within a single skeletal muscle, 
predominant at the lower limbs, possibly re-
current or evolving into diffuse myositis [7]. 
Unlike the present case, histology of pure 
FM usually shows no neurogenic changes 
and a prominent inflammation [8, 9].

In most calf NMH cases, increased CK 
plasma levels and focal inflammation likely 
represent a reactive response to degeneration 
remodeling of denervated fibers [5]. Corre-
spondingly, MHC-I upregulation and T-cell 
deposits were extremely limited in our pa-
tient’s gastrocnemius muscle, in contrast to 
the usual pattern of myositides. It is notewor-
thy that the pathophysiology of NMH does 
not seem to be univocal. In most radiculop-
athy-associated NMH cases, CRDs, gener-
ated by denervated fibers, are likely to act 
as hypertrophying agents, in analogy with 
increased muscle mass and fiber diameters 
obtained by functional muscle electrical 
stimulation, both experimentally [10] and in 
conus/cauda syndrome patients [11]. None-
theless, NMH reports in absence of CRDs 
[5, 12] suggest coexisting pathomechanisms, 
such as compensatory overload; according-
ly, in our case, a minority of hypertrophied 
“non-target” fibers, thus possibly not dener-
vated, were detected.

The unusual cytoplasmic multifocal de-
posits of MAC on MHC-I-negative, hyper-
trophic fibers, might therefore depend on the 
double stress of denervation and hyperactiv-
ity, with subsequent increase of intracellu-
lar proteases and degenerative events, also 
consistent with focal AP reactivity. In our 
patient, steroid unresponsiveness was con-
gruous with paucity of muscle inflammatory 

changes. However, the varying response to 
steroids does not strictly correlate with in-
flammation, neither in FM [9] nor in radic-
ulopathy-associated NMH [6], suggesting, 
besides a direct action on radicular compres-
sion, a steroid activity on the suppression of 
the membrane excitability.

Genetic factors or selective axon vul-
nerability have been suggested to be re-
sponsible for the uncommon occurrence of 
large “atrophy-resistant” fibers in muscle of 
subjects with spinal cord injuries [13]; yet, 
unrecognized motoneuron/muscle molecular 
features might also explain the low preva-
lence of NMH associated with the relatively 
frequent S1 radiculopathy.

A transitional “hybrid” fiber phenotype, 
coexpressing different isoforms of myosin 
and other contractile proteins, has been re-
ported in denervated muscle, with a shift to 
fast type 2 fibers [14], whereas a fast-to-slow 
shift occurs following electric stimulation or 
excessive exercise [15]. Our finding of an 
ongoing major transition to the slow phe-
notype suggests that histotype shift, from 
continuous muscle activity, might cause the 
reported type 1 predominance in gastrocne-
mius NMH [3]. Serial MyHC immunohis-
tology for analysis of histotype transition 
was not, to our best knowledge, previously 
performed in NMH. Comparison of this fea-
ture in CRD+ and CRD– cases of neurogenic 
muscle hypertrophy would be of interest.

In our patient, with conspicuous repeti-
tive discharges causing type shift and de-
generative muscle changes, only surgery led 
to stable improvement. The case calls for 
attention to the relevance of a thorough in-
strumental and pathological investigation in 
the uncommon occurrence of NMH, with the 
aim of establishing the most effective thera-
peutic strategy.
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