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Abstract

Bertrand-Edgeworth competition has recently been analyzed under imperfect buyer
mobility, as a game in which, once prices are chosen, a static buyer subgame (BS) is
played where the buyers choose which seller to visit (see, e.g., Burdett et al, 2001). Our
paper considers a symmetric duopoly where two buyers play a two-stage BS of imperfect
information after price setting. With prices su¢ ciently close, an equilibrium of the BS
is characterized in which the buyers keep loyal if previously served. Conditional loyalty
is proved to increase the �rms�market power: at the corresponding subgame perfect
equilibrium of the entire game, the price is higher than that corresponding to the
equilibrium of the BS in which the buyers are persistently randomizing.
Keywords: Bertrand-Edgeworth competition, matching, imperfect buyer mobility,

conditional loyalty, assessment equilibrium.
JEL Classi�cation Codes: D430, L130.

1 Introduction

Some recents contributions have addressed Bertrand-Edgeworth competition under imperfect
buyer mobility, inasmuch as each buyer is allowed to visit only one seller after pricing de-
cisions (Peters, 1984; Deneckere and Peck, 1995; Burdett et al., 2001; Geromichalos, 2014).
Due to multiplicity of pure strategy equilibria (PSEs) of the buyer subgame (BS), price
determination has been analyzed subject to the mixed strategy equilibrium (MSE) of the
BS, where "mismatchings" - �rms selling below capacity along with more expensive rivals
receiving positive demand - may arise.
Unlike most of this literature on pricing and "directed" search, Shi (2016) develops a

multistage model where, in each stage, the �rms announce prices as well as any service
priority they might o¤er to loyal buyers and the buyers, based on this information and
the history of previous matchings at the various �rms, choose the probability of visiting
any seller. However, even over a period in which prices remain �xed, buyers frequently
seem to be able to move to another seller; furthermore, they might be uncertain as to
recent capacity utilization at the various sellers. To take account of these features in the
simplest way, our paper incorporates imperfect mobility into a model where two �rms, whose
total capacity equals an inelastic total demand, compete in prices and next two buyers play
a two-stage BS of imperfect information, each time choosing which �rm to visit. With
prices su¢ ciently close to each other, two alternative equilibria of the two-stage BS are
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characterized. In one equilibrium, the MSE of the static BS is played repeatedly. But
another equilibrium exists in which, if served, buyers keep loyal to the seller previously
chosen: on the corresponding equilibrium path, both buyers are served in the second stage
of the BS. Most importantly, the corresponding (subgame-perfect) equilibrium price is higher
than under constant randomization.
The rest of the paper is organized as follows. To prepare the ground for our positive

contribution, Section 2 analyzes duopolistic price determination when the two buyers play
a static BS.1 Section 3 develops our model of price determination in which the two buyers
are playing a two-stage BS of imperfect information, in each stage choosing which seller to
visit. Section 4 brie�y concludes.

2 Pricing with a static buyer subgame

Two risk-neutral �rms, A and B, sell a homogeneous commodity to two risk-neutral buyers,
h and k. (Below, notation will most often be introduced in terms of buyer h.) Each �rm
i 2 fA;Bg independently sets price pi; then a BS is played. In the static BS, any h
demands one unit if minfpA; pBg � 1, 1 being each buyer�s reservation price, and chooses
�h, the probability of visiting A (we conveniently denote h�s strategy by �h rather than
�h = (�h; 1� �h)); then each i costlessly produces yi, the minimum between its forthcoming
demand and capacity yi = 1. Hereafter, we take as given that

maxfpA; pBg � 1: (1)

The set of possible events buyer h may experience is Eh = fehg = fAsh; Arh; Bsh; Brhg:
ish (irh) stands for h visiting i 2 fA;B] and being served (rationed). With both buyers
at i, each is served with equal probability. Denote by �(eh)(�h;�k), uh(�h; �k), (Eyi)(�h;�k),
and (E�i)(�h;�k) = pi(Eyi)(�h;�k), respectively, the probability of eh, h�s payo¤ (expected
surplus), i�s expected output and pro�t under strategy pro�le (�h; �k). Given �k, h�s service
probability and payo¤ are �(Ash)(1;�k) =

�k
2
+ 1 � �k and uh(1; �k) = (1 � pA)�(Ash)(1;�k),

respectively, if visiting A, and �(Bsh)(0;�k) = �k +
1��k
2
and uh(0; �k) = (1� pB)�(Bsh)(0;�k)

if visiting B. With pA and pB meeting system

2pB � 1 � pA �
1 + pB
2

; (2)

the BS has a symmetric equilibrium, (�h; �k) = (e�; e�), where buyers are indi¤erent between
the �rms: e�, the solution of

(1� pA)�(Ash)(1;�) = (1� pB)�(Bsh)(0;�); (3)

equals e� = e�(pA; pB) = 1� 2pA + pB
2� pA � pB

: (4)

1The basic result is already in Burdett et al. (2001, pp. 1062-1067) where the two-seller two-buyer case
is presented before the m-seller n-buyer one.
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Note that pB < 1 (pB = 1) is equivalent to 2pB � 1 < 1+pB
2
< 1 (2pB � 1 = 1+pB

2
= 1); then,

holding system (2), pA < 1 (pA = 1) too. Clearly, e�(p; p) = 1=2 (any p < 1); for de�niteness,
we also let e�(1; 1) = 1=2. With pB < 1, e� 2 (0; 1) if and only if

2pB � 1 < pA <
1 + pB
2

: (20)

Then two asymmetric pure strategy equilibria (PSEs) also exist, (�h; �k) = (�k; �h) = (1; 0):
they Pareto dominate the mixed strategy equilibrium (MSE) (e�; e�) since uh(e�; e�) < minf1�
pA; 1� pBg. Yet, absent preplay communication, the MSE seems compelling given the likely
mismatchings between demands and capacities.2 Finally, strategy �h = 0 (�h = 1) is strictly
dominant if pA > (1 + pB)=2 (pA < 2pB � 1). Based on the above, we rely on equilibrium
(�h; �k) = (�

�; ��) of the BS, where3

�� = ��(pA; pB) =

8<:
1 if pA < 2pB � 1e� 2 [0; 1] if 2pB � 1 � pA � 1+pB

2

0 if pA >
1+pB
2
:

(5)

Then EyA = (EyA)(��;��) = ��2 + 2��(1 � ��) and E�A = pA(EyA)(��;��), respectively. It
follows from Eq. (5) that pi 2 (0; 1) since, no matter pB 2 [0; 1], pA = 1 and pA = 0 are never
best responses.4 This stands in stark contrast with the case of perfect mobility, where pi = 1
is strictly dominant (no matter pB, A sells capacity for any pA � 1).5 We have @E�A

@pA
=

(EyA)(��;��) + pA
d(EyA)(�;�)

d�
@��

@pA
; holding system (20), �� = e�, @��

@pA
= @e�

@pA
= �3(1�pB)

(2�pA�pB)2 ,
@2��

@p2A
=

@2e�
@p2A

= �6(1�pB)
(2�pA�pB)3 , and

@2E�A
@p2A

= 2
d(EyA)(�;�)

d�
@e�
@pA

+ pA
d2(EyA)(�;�)

d�2

�
@e�
@pA

�2
+ pA

d(EyA)(�;�)
d�

@2e�
@p2A

< 0.

At a symmetric equilibrium, e� = 1=2 and pA = pB = p: hence @E�A
@pA

= 0 yields p = 1=2.

3 Pricing with a dynamic buyer subgame

In this section, a two-stage BS of imperfect information is played after price announcements
in t = 0: in stage t = 1; 2, h demands one unit if minfpA;pBg � 1 and chooses �h;t, the
probability of visiting A; each i 2 fA;Bg produces the minimum between its forthcoming
demand and capacity yi = 1. We let h maximize his expected total surplus and i maximize

its expected total pro�ts,
2P
t=1

E�i;t = pi
2P
t=1

Eyi;t. Eh;t = feh;tg= fAsh;t; Arh;t; Bsh;t; Brh;tg

stands for the set of stage-t possible events regarding h, �(eh;t)(�h;t;�k;t) for the probability of
eh;t under (�h;t; �k;t). With both buyers at i in t = 2, each is served with equal probability,

2Of course, coordination would be increasingly problematic the larger the number of buyers n. For

instance, with yA = yB = n=2 and pA = pB , there are
�

n
n=2

�
PSEs.

3With either e� = 1 (i.e., pA = 2pB�1) or e� = 0 (i.e., pA = (1+pB)=2), (�h; �k) = (e�; e�) is an equilibrium
in weakly dominant strategies in the continuum of equilibria (�h; �k) = (e�; �k).

4If pB 2 [0; 1), then, for pA = 1, �� = E�A = 0, whereas, for pA 2
�
0; 1+pB2

�
, E�A > 0; if pB = 1,

then, for pA = 1, E�A = 3=4 (since ��(1; 1) = e�(1; 1) = 1=2), whereas, for pA negligibly less than 1,
�� = E�A = 1.

5With perfect mobility and pB < pA � 1, buyers try B �rst and then the rationed buyer moves to A.
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regardless of whom i served in t = 1. When choosing �h;2, h recalls eh;1 and makes an infer-
ence on ek;1 2 Ek;1 = fAsk;1; Ark;1; Bsk;1; Brk;1g from his information set Ih = (eh;1; (pA; pB))
(henceforth, Ih = (eh;1; �); for brevity) and his conjecture on k�s previous move.
A behavioral strategy, �h, is a pair of functions (�h;1(pA; pB); �h;2(Ih)). �hj2 stands for

a strategy prescribing �h;2 = �h;2(Ih), precisely as �h. In any BS, h�s (ex-ante) payo¤

with strategy pro�le (�h;�k) is written Uh(�h;�k) =
2P
t=1

uh;t(�h;�k), where uh;t(�h;�k)

(t = 1; 2) is h�s (ex-ante) stage-t payo¤; uh;t(�h;t;�k) stands for h�s (ex-ante) stage-t payo¤,
if playing �h;t and with k adhering to �k.
In BSs where system (20) holds, there are equilibria in which, already in t = 1, one of the

two asymmetric PSEs of the static BS is played. Absent preplay communication, though,
we look at alternative equilibria. In one such equilibrium there is constant randomization,
under system (20).

Proposition 1 Let �� = (��h;1; �
�
h;2) = (�

�; ��). Strategy pro�le (�h;�k) = (��;��) induces
a Nash equilibrium in each BS.

Proof. uh;t(�h;t;��) = �h;t�(Ash;t)(1;��)(1�pA)+(1�(�h;t))�(Bsh;t)(0;��)(1�pB). Under
(2), uh;t(�h;t;��) = �(Ash;t)(1;e�)(1 � pA) = �(Bsh;t)(0;e�)(1 � pB) = uh(e�; e�) = uh;t(�

�;��)
no matter �h;t (see Eq. (5) and (3)). If pA >

1+pB
2
, �h 6= �� implies �h;1(pA; pB) > 0

and/or �h;2(Ih) > 0 (some Ih). Thus, at any deviating stage t, uh;t(�h;��) is a convex linear
combination of (1�pA) and 1�pB

2
, less than uh;t(��;��) =

1�pB
2
for any positive weight upon

1� pA. A similar argument holds if pA < 2pB � 1.
However, another equilibrium exists where, with prices su¢ ciently close to each other,

the following norm of "conditional loyalty" (CL) is observed.

De�nition 1. According to CL, if previouly served, a buyer visits in t = 2 the same
seller as in t = 1, while visiting the other seller if rationed. �
CL has straightforward implications.

Proposition 2 Under CL, both buyers are served in t=2; a unilateral deviation from CL
results in each buyer being rationed with positive probability.

Proof. In t = 1, let h be served and k be rationed by A or h and k be served by A and
B, respectively. Under CL, (�h;2; �k;2) = (1; 0) and both are served in t = 2. If h deviates,
�h;2 < 1 and service probability is �h;2+

1��h;2
2

< 1 for each; if k deviates, �k;2 > 0, implying
service probability �k;2

2
+ 1� �k;2 < 1 for each.

The following strategy incorporates CL.
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De�nition 2. ��� = (���h;1; �
��
h;2), where

���h;1 = �
��
h;1(pA; pB) =

8<:
1 if pA <

3pB�1
2
;ee� 2 [0; 1] if 3pB�1

2
� pA � 1+2pB

3
;

0 if pA >
1+2pB
3

; (6)

���h;2 = �
��
h;2(Ih) =

8>>>><>>>>:
1 if eh;1 2 fAsh;1; Brh;1g and 2pB � 1 < pA < 1+pB

2
,

if pA � 2pB � 1 < 1, or if pA < pB = 1;
0 if eh;1 2 fBsh;1; Arh;1g and 2pB � 1 < pA < 1+pB

2
;

if 1+pB
2
� pA < 1, or if pB < pA = 1;
1
2

if pA = pB = 1;

(7)

and

ee� = ee�(pA; pB) = � 1+2pB�3pA
2�pA�pB ; if 3pB�1

2
< pA � 1+2pB

3
or 3pB�1

2
� pA < 1+2pB

3
;

1
2

if pA = pB = 1:
(8)

�
Remarks. Before establishing (���;���) as an equilibrium, some remarks on ��� are in

order.

1. pB < 1 (pB = 1) is equivalent to 2pB � 1 < 3pB�1
2

< 1+2pB
3

< 1+pB
2

< 1 (2pB � 1 =
3pB�1
2

= 1+2pB
3

= 1+pB
2
= 1). Consequently: with pB < 1, system

3pB � 1
2

� pA �
1 + 2pB
3

(9)

is stricter than system (20) and implies pA < 1; with pB = 1, system (9) is equivalent
to system (2) and implies pA = 1.

2. According to Eq. (6), CL applies if system (20) holds; if (20) doesn�t hold, then in t = 2
the cheapest �rm is visited if pA 6= pB while ���h;2 = 1=2 if pA = pB = 1.

3. Holding system (9), ���h;1 = ee�. More speci�cally, according to Eq. (8): with at least
one of inequalities (9) strict, ee� is the unique solution of equation

�(Ask;1)(�h;1;1)(1� pA)2 +
�
1� �(Ask;1)(�h;1;1)

�
(1� pB)

= �(Bsk;1)(�h;1;0)(1� pB)2 +
�
1� �(Bsk;1)(�h;1;0)

�
(1� pA); (10)

making k�s payo¤ (under CL by h and k) be independent of �k;1;6 if instead pA = pB =
1, ee� = 1=2 (for de�niteness). If system (9) does not hold, the cheapest �rm is visited
in t = 1. �

Proposition 3 Strategy pro�le (�h;�k) = (���;���) induces a Nash equilibrium in each
BS.

6By Proposition 2, the LHS (RHS) of Eq. (10) is k�s payo¤ if visiting A (B) in t = 1, conditional on �h;1
and CL by h and k. (By the way, �(Ask;1)(�h;1;1) =

�h;1
2 + 1� �h;1 and �(Bsk;1)(�h;1;0) = �h;1 +

1��h;1
2 .)
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Proof. In the Appendix.
Since any dynamic BS has no proper subgames, a Nash equilibrium of it is subgame

perfect. Hence one should check that the equilibrium strategy prescribes a best response
at information sets o¤ the equilibrium path. It is obviously so for the equilibrium (��;��),
since eh;1 does not a¤ect h�s prediction on k�s move in t = 2. Proposition 4 will show that,
along with a proper belief system �, the equilibrium (���;���) represents an "assessment
equilibrium",7 in the speci�c meaning to be speci�ed shortly. At any Ih, buyer h holds
a belief �(Ek;1 j Ih), an (ex-post) probability distribution over Ek;1, which allows him to
compute uh;2(�h;2;���j2 ;�(Ek;1 j Ih) j Ih), his stage-2 payo¤ conditional on Ih, when playing
�h;2 and with k adhering to ��� in t = 2. The assessment (���;���;�) is "sequentially
rational": at any Ih, �h;2 = ���h;2(Ih) maximizes uh;2(�h;2;�

��
j2 ;�(Ek;1 j Ih) j Ih). It is also

"structurally consistent": at any Ih, the belief �(Ek;1 j Ih) is derived by Bayes�rule and the
strategy k is conjectured to have followed in t = 1.

Proposition 4 Any assessment (���;���;�) - � being any structurally consistent belief sys-
tem - meets sequential rationality in any BS.

Proof. Sequential rationality is trivial if pA = pB = 1; it is also immediate if 1+pB
2

�
pA < 1 or pB < pA = 1 (pA � 2pB � 1 < 1 or pA < pB = 1) since then �h;2 = 0 (�h;2 = 1)
is obviously a best response to ���k;2 = 0 (���k;2 = 1). Then consider BSs where system (20)
holds. At Ih = (Arh;1; �), h obviously infers that k was served by A in t = 1 and k�s loyalty is
thus predicted: uh;2(�h;2;���j2 ;�(Ek;1 j Ih) j Ih) = �h;2(1� pA)=2+ (1� �h;2)(1� pB), which is
maximal for �h;2 = ���h;2(Arh;1; �) = 0 since pA > 2pB � 1. At Ih = (Ash;1; �), any structurally
consistent belief is such that �(Ark;1 j Ih) + �(Bsk;1 j Ih) = 1.8 Therefore, k is expected
to visit B in t = 2: uh;2(�h;2;���j2 ;�(Ek;1 j Ih) j Ih) = �h;2(1 � pA) + (1 � �h;2)(1 � pB)=2,
which is maximal for �h;2 = ���h;2(Ash;1; �) = 1 since pA < 1+pB

2
. Similar arguments hold for

Ih = (Bsh;1; �)) and Ih = (Brh;1; �).
Based on Propositions 1 and 3, we now solve for the entire game.

Proposition 5 (i) ((pA; pB); (�h;�k)) = ((p�; p�); (��;��)), with p� = 1=2, is a subgame
perfect equilibrium (SPE) of the entire game.
(ii) ((pA; pB); (�h;�k)) = ((p��; p��); (���;���)), with p�� = 7=12, is another SPE.

Proof. (i) If (�h;�k) = (��;��),
2P
t=1

E�A;t(pA; pB) = 2pA (EyA)(��;��). Holding system

(2), @
2P
t=1

E�A;t(pA; pB)=@pA = 2
�
(EyA)(�;�) + pA

d(EyA)(�;�)
d�

@e�
@pA

�
. At a symmetric equilib-

rium, � = 1=2 and pA = pB = p: hence @
2P
t=1

E�A;t(pA; pB)=@pA = 0 yields p = 1=2, as with

the static BS.
7By this terminology Binmore (1992, pp. 536-540) refers to a weakened version of Kreps and Wilson�s

(1982) "sequential equilibrium."
8For instance, if k is conjectured to have obeyed ��� in t = 1, �(Ark;1 j Ih) =

ee�
2�ee� and �(Bsk;1 j

Ih) =
2�2ee�
2�ee� if 3pB�1

2 � pA � 1+2pB
3 , �(Bsk;1 j Ih) = 1 if (1 + 2pB)=3 < pA, and �(Ark;1 j Ih) = 1 if

pA < (3pB � 1)=2.
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Figure 1: The curve shows A�s payo¤ function for pB = p�� = 7=12 = 0:583, conditional on the
equilibrium (���;���) of the BS.

(ii) For any pB 2 (0; 1),9 with (�h;�k) = (���;���) A�s payo¤ is

2X
t=1

E�A;t(pA; pB) =

8>><>>:
2pA if 0 � pA < 3pB�1

2

pA (EyA)(ee�;ee�) + pA if max
�
0; 3pB�1

2

	
� pA � 1+2pB

3
;

pA if 1+2pB
3

< pA <
1+pB
2

0 if pA � 1+pB
2
;

(11)

a continuous function of pA for pA 2
�
0; 1+pB

2

�
. Over the range

�
max

�
0; 3pB�1

2

	
; 1+2pB

3

�
,

@
P2
t=1 E�A;t(pA;�)

@pA
= (EyA)(�;�)+pA

d(EyA)(�;�)
d�

@ee�
@pA
+1, which is positive on a right neighbourhood

of max
�
0; 3pB�1

2

	
and negative on a left neighbourhood of 1+2pB

3
, while @2

P2
t=1 E�A;t(pA;�)

@p2A
<

0:10 thus, in that range,
P2

t=1E�A;t(pA; �) has a unique, internal maximum.
P2

t=1E�A;t(pA; �)
is kinked at pA =

1+2pB
3

11 and increasing for pA 2
�
1+2pB
3
; 1+pB

2

�
. At a symmetric equilib-

rium, (pA; pB) = (p��; p��) (p�� = 7=12). (In fact, p�� = argmax
2P
t=1

E�A;t(pA; p
��) since,

while @
2P
t=1

E�A;t(pA; p
��)=@pA > 0 for pA 2

�
1+2p��

3
; 1+p

��

2

�
,
P2

t=1E�A;t(p
��; p��) = 49=48 >

lim
pA! 1+p��

2

�

2P
t=1

E�A;t(pA; p
��) = 1+p��

2
= 38=48 (see Figure 1).

To see why CL raises the �rm�s market power, note that
@

2P
t=1

E�A;t(pA;pB)

@pA
j(pA;pB)=(p;p) reads

9One can easily prove that, with (�h;�k) = (���;���), pi = 1 (as well as pi = 0) is never a best response.
10 @

2P2
t=1 E�A;t(pA;�)

@p2A
= 2

d(EyA)(�;�)
d�

@ee�
@pA

+ pA
d2(EyA)(�;�)

d�2

�
@ee�
@pA

�2
+ pA

d(EyA)(�;�)
d�

@2ee�
@p2A

, with @ee�
@pA

=

� 5(1�pB)
(2�pA�pB)2 < 0 and

@2ee�
@p2A

= �10(1�pB)
(2�pA�pB)3 < 0.

11 lim
pA!( 1+2pB3 )

�
@
P2

t=1 E�A(�)
@pA

= �1�17pB
5(1�pB) < 0 < limpA!( 1+2pB3 )

+
@
P2

t=1 E�A(�)
@pA

= 1:
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2 (EyA)(1=2;1=2) + 2p
d(EyA)(�;�)

d�
j�= 1

2
� @e�
@pA

j(pA;pB)=(p;p)=
�
2� 3

4

�
+ (�3

2
p
1�p) under equilibrium

(��;��) and (EyA)(1=2;1=2) + 1 + p
d(EyA)(�;�)

d�
j�= 1

2
� @ee�
@pA

j(pA;pB)=(p;p)=
�
3
4
+ 1
�
+ (�5

4
p
1�p)

under equilibrium (���;���). Now, 3
4
+ 1 > 2 � 3

4
and �5

4
p
1�p > �3

2
p
1�p : either inequality

follows since (���;���) implies full capacity utilization in t = 2. Thus, the incentive to
unilaterally increasing pA is higher under equilibrium (���;���) and, as a consequence,

@

2P
t=1

E�A;t(pA;pB)

@pA
> 0 at (pA; pB) = (p�; p�).

4 Conclusion

Our duopolistic price game with a two-buyer dynamic BS provides two main insights. First,
even with product homogeneity, repeat purchasing decisions over the time period in which
prices are �xed creates an incentive for conditional loyalty. Quite remarkably, this incen-
tive arises even with no service priority to loyal customers and with imperfect information
on other buyers�previous moves. Second, the equilibrium of the BS exhibiting conditional
loyalty does a¤ect the �rm�s market power. Whether similar results arise in more general
models is an issue that we leave to future research. One might check whether a (properly de-
�ned) strategy incorporating conditional loyalty is again part of an "assessment equilibrium"
of the BS when n buyers are playing a multistage BS in the face of m sellers;12 furthermore,
one might explore how such an equilibrium would a¤ect pricing as well as entry and capacity
decisions.
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APPENDIX

Proof of Prop. 3. In BSs where system (9) holds, Uh(���;���) =
2X
t=1

uh;t(�
��;���),

where

uh;1(�
��;���) =

 ee�2
2
+ ee�(1� ee�)! (1� pA) + (1� ee�)2

2
+ (1� ee�)ee�! (1� pB); (12)

and13

uh;2(�
��;���) =

X
eh;12Eh;1

� (eh;1)(���h;1;���k;1)
uh;2(�

��;��� j (eh;1; �)) =

� (Ash;1)(���h;1;���k;1)
uh;2(�

��;��� j (Ash;1; �))+

� (Arh;1)(���h;1;���k;1)
uh;2(�

��;��� j (Arh;1; �))+

� (Bsh;1)(���h;1;���k;1)
uh;2(�

��;��� j (Bsh;1; �))+

�(Brh;1)(���h;1;���k;1)uh;2(�
��;��� j (Brh;1; �)) = ee�2

2
+ ee�(1� ee�)! [1� pA] + ee�2

2
[1� pB]+ 

(1� ee�)2
2

+ (1� ee�)ee�! [1� pB] + (1� ee�)2
2

[1� pA]: (13)

If �h involves a deviation only in t = 1 (i.e., �h;1 6= ee�), Uh(�h;���) = Uh(�
��;���)

(see Remark 3). If �h involves a deviation only in t = 2, some of the following hold:

13For instance, in Eq. (13), � (Ash;1)(���h;1;���k;1)
=
�ee�2
2 +

ee�(1� ee�)� since Ash;1 = (Ash;1 \Ark;1)[ (Ash;1 \
Bsk;1); also, uh;2(���;��� j (Ash;1; �)) = 1� pA is buyer h�s stage-2 payo¤, under strategy pro�le (������),
conditional on (Ash;1; �).
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�h;2(Ash;1; �) < 1, �h;2(Arh;1; �) > 0; �h;2(Bsh;1; �) > 0, �h;2(Brh;1; �) < 1. Then:

uh;2(�h;�
��) =

X
eh;12Eh;1

� (eh;1)(���h;1;���k;1)
uh;2(�h;�

�� j (eh;1; �)) = ee�2
2
+ ee�(1� ee�)!��h;2(Ash;1; �)(1� pA) + (1� �h;2(Ash;1; �)) 1� pB

2

�
+ (14)

ee�2
2

�
�h;2(Arh;1; �)

1� pA
2

+ (1� �h;2(Arh;1; �))(1� pB)
�
+ 

(1� ee�)2
2

+ (1� ee�)ee�!��h;2(Bsh;1; �)1� pA
2

+ (1� �h;2(Bsh;1; �))(1� pB)
�
+

(1� ee�)2
2

�
�h;2(Brh;1; �)(1� pA) + (1� �h;2(Brh;1; �))

1� pB
2

�
; (15)

Since system (9) holds, system (20) a fortiori holds (see Remark 1). As a consequence,
uh;2(�h;�

�� j (eh;1; �)) < uh;2(���;��� j (eh;1; �)) at any (eh;1; �) where �h deviates from ���.
Let, for instance, �h;2(Ash;1; �) < 1. Then uh;2(�h;��� j (Ash;1; �)) = �h;2(Ash;1; �)(1� pA) +
(1� �h;2(Ash;1; �)) 1�pB2 < uh;2(�

��;��� j (Ash;1; �)) = 1� pA, since pA < 1+pB
2
.

Next, let system (20), but not system (9), hold:14 for instance, 1+2pB
3

< pA <
1+pB
2
, so

that ��� prescribes ��h;1 = 0 and CL. The argument remains essentially unaltered if �h en-

tails a one-stage deviation in t = 2. With a one-stage deviation in t = 1,
2X
t=1

uh;t(�h;�
��) =�

�h;1(1� pA) + (1� �h;1)1�pB2
�
+
�
�h;1(1� pA) + (1� �h;1)

�
1
2
(1� pB) + 1

2
(1� pA

��
, less than

2X
t=1

uh;t(�
��;���) = 1�pB

2
+
�
1
2
(1� pB) + 1

2
(1� pA)

�
since 1+2pB

3
< pA.

Finally, one can easily check that a two-stage deviation from ��� is not rewarding (the
"one-stage deviation property" holds).

14In BSs where system (2�) does not hold, ��� makes the same prescriptions as ��.
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