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Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are 
endowed with specialized cytolytic machinery that permits them to induce death of their 
targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse 
and by docking the microtubule-organizing center at the synaptic membrane get pre-
pared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest 
that the directionality of lytic granule trafficking along the microtubules represents a fine 
means to tune the functional outcome of the encounter between a T cell and its target. 
Thus, mechanisms regulating the directionality of granule transport may have a major 
impact in settings characterized by evasion from the cytotoxic response, such as chronic 
infection and cancer. Here, we review our current knowledge on the signaling path-
ways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, 
complementing it with information on the regulation of this process in natural killer cells. 
Furthermore, we highlight some of the parameters which we consider critical in studying 
the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic 
T cells, and discuss some of the major open questions.
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Cytotoxic T lymphocytes (CTLs) armed with lytic machinery exert a non-stop patrol of our body to 
identify and eliminate target cells with potentially “dangerous” phenotype. CTLs bear T cell recep-
tors (TCRs) through which they bind antigenic peptides presented on the major histocompatibility 
complex (MHC) molecules of target cells. In this way, they successfully discriminate between healthy 
cells and those presenting non-self peptides, typically of neoplastic or microbial origin. As conse-
quence of non-self recognition, CTLs attack and lyse malignant and infected cells. In this context, 
an impaired functioning of CTLs may lead to immune evasion of tumors and the insurgence of 
chronic infections. Hence, defining the mechanisms underlying CTL-mediated killing could provide 
essential insights into our understanding of immune pathology.

The immune synapse of CTLs represents a highly organized system of intercellular communica-
tion. Its assembly is initiated upon CTL recognition of a cognate target, toward which the CTL 
rapidly polarizes (Figure 1A). Within minutes, CTLs drastically reorganize their cytoskeleton to 
translocate the microtubule-organizing center (MTOC) toward the synaptic interface (1, 2). MTOC 
docking beneath the synapse ensures microtubule-assisted directional transport of specialized secre-
tory lysosomes containing an arsenal of soluble cytolytic proteins, among which granzymes and 
perforin, and membrane-anchored effector molecules such as the Fas ligand (FasL) (3, 4). Exocytosis 
of secretory lysosomes at the synapse leads to a focal release of lytic enzymes into the synaptic cleft 
and promotes the surface exposure of FasL, thus implementing two major mechanisms of intrinsic 
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FiGuRe 1 | Assembly (A) and signaling (B) at the cytotoxic T lymphocyte (CTL) synapse. (A) Encounter between a CTL and a target cell results in the formation of the 
lytic immune synapse characterized by the formation of central supramolecular activation cluster (cSMAC) surrounded by the peripheral supramolecular activation cluster 
(pSMAC) and the distal supramolecular activation cluster (dSMAC) bearing adhesive and mechanosupportive function, respectively. Polarization of the CTL toward the 
synapse is characterized by microtubule-organizing center (MTOC) and lytic granule translocation toward the synaptic cleft. (B) Signaling at the immune synapse 
activates signaling modules responsible for actin cytoskeleton reorganization, which serves to stabilize the nascent synapse and enhance the cytotoxic action of CTL’s 
lytic molecules through a mechanopotentiation mechanism. Actin reorganization at the synapse is achieved mainly through the action of the linker for activation of T cells 
(LAT) signalosome and the nucleation-promotion factors Wiskott–Aldrich syndrome protein (WASP), WAVE, and Arp2/3. Synapse signaling also promotes MTOC 
polarization and granule secretion, which require the activity of protein kinase C isoforms (PKCs) and Ca2+-induced signaling pathways, respectively. Finally, engagement 
of adhesion receptors (LFA-1, CD2, and CD103) and signaling lymphocyte activation molecule receptors (2B4 and Ly108) aid synapse stabilization and actin 
reorganization. Signaling pathways implicated in granule trafficking are as yet to be established.
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TABLe 1 | Loss-of-function analysis of signaling molecules that orchestrate CTL synapse assembly.

Defective protein Cytotoxicity Conjugate 
formation

MTOC 
polarization

Granule 
polarization

Degranulation Method of interference

Proximal signaling molecules of the TCR cascade
Lck − + No docking − − Genetic KO (23)
Fyn − + − − − Genetic KO (23)
ZAP-70 − + − − − Inhibitor (22)
LAT Decrease + Decrease Decrease N/a Genetic KO (42)
Itk − + + + − Genetic KO (40)

integrins and cytoskeleton
LFA1 Decrease N/a N/a Decrease + Blocking Fab (10)

Decrease Decrease Decrease N/a N/a Blocking Ab and inhibitory action of galectins (52)
CD103 − N/a N/a Decrease Decrease siRNA KD of E-cadherin on target cells (44)

− Decrease N/a Stimulated by 
E-cadherin coated 
beads

Blocked by siRNA 
E-cadherin KD

siRNA KD of E-cadherin on target cells (48, 49)

WASP Decrease N/a + Decrease + Genetic KO (84)

Calcium signaling
OraI1 − + + + − Pharmacological inhibition of store-operated Ca2+ 

entry (36)

Costimulation
SAP Decrease Decrease − N/a N/a Genetic KO (105)

Molecules co-localizing with lytic granules
PKCδ − + + − − Genetic KO (135, 136)

N/a, not assessed; +, preservation of function; −, complete loss-of-function; KO, knockout; KD, knockdown; CTL, cytotoxic T lymphocyte; MTOC, microtubule-organizing center; 
TCR, T cell receptor; WASP, Wiskott–Aldrich syndrome protein; LAT, linker for activation of T cells; E-cadherin, epithelial cadherin-1; Itk, interleukin-2-inducible T cell kinase; PKC, 
protein kinase C isoform.
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cytotoxicity of CTLs. Killing by perforin/granzyme-dependent 
or FasL-dependent pathway is equally important for protective 
immunity and tumor surveillance since genetic deficiency for 
any of these molecules leads to immune pathology (5, 6). Recent 
evidence suggests that the two mechanisms are mediated by dis-
tinct pools of secretory lysosomes, one preferentially containing 
perforin and granzymes (conventionally called “lytic granules”) 
and the other preferentially containing FasL (4). Here, we will 
focus on perforin-containing lytic granules, as the biology of this 
vesicular compartment has so far been investigated in more detail.

The polarization and exocytosis of lytic granules at the 
immune synapse are driven by local signaling, which triggers 
two major polarization events, namely (i) the polarization and 
docking of the MTOC at the synapse and (ii) the polarization 
of lytic granules toward the docked MTOC, followed by granule 
exocytosis or “degranulation,” which results in the focal release 
of granule contents. Notably, at variance with the mechanisms 
regulating MTOC translocation, the signaling events that regulate 
lytic granule polarization remain as yet to be fully characterized. 
Understanding how granule convergence at the synapse is regu-
lated could shed substantial insight into the mechanisms driving 
CTL dysfunction.

Here, we present an overview of the mechanisms that 
orchestrate the polarized transport of lytic granules in CTLs and 
incorporate some relevant information on the signaling of natural 
killer (NK) cells for a comparative analysis of polarizing signals in 
these two types of cytotoxic lymphocytes. We also discuss recent 
experimental evidence describing dysfunctional non-polarized 
immune synapses. Finally, we comment on the parameters of 

experimental setups that we consider important for the study 
of polarized trafficking in CTLs and highlight the major open 
questions concerning its orchestration.

DiReCTiONALiTY OF GRANuLe 
SeCReTiON iN CTLs iS DiCTATeD BY  
THe TCR AND COSTiMuLATORY SiGNALS

Many of the signaling pathways contributing to the assembly of 
the CTL synapse have been dissected (Table 1). Loss-of-function 
studies, interestingly, allowed us to establish that CTL polarization 
is controlled at two levels: at the level of early polarization events 
regulating MTOC recruitment and at the level of late polariza-
tion and fusion events regulating granule convergence toward 
the MTOC and degranulation into the synaptic cleft. Regulation 
of late polarization events in CTLs could have a critical impact 
on their functioning, as it has recently emerged that uncoupling 
of granule movement from MTOC polarization during synapse 
assembly may lead to a dysfunctional non-polarized pattern of 
degranulation (7). This type of degranulation (also referred to as 
“non-directional” or “non-lytic”) has been described for NK cells 
as well (8, 9). As such, non-polarized degranulation may represent 
a means to finely tune the functioning of cytotoxic lymphocytes. 
Understanding molecular differences between polarized versus 
non-polarized CTL synapses in terms of synaptic signaling, cor-
responding properties of the target cells and the CTLs themselves 
could be highly instrumental for understanding the mechanisms 
regulating cytotoxic killing.
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Signaling initiated upon target recognition by the CTL 
is dictated by the TCR, which recognizes antigenic peptides 
presented by MHC class I molecules on the target and by 
costimulatory signals triggered through the engagement of CTL 
surface receptors by various ligands expressed on the target. 
Signaling studies on planar lipid bilayers coated with defined 
molecular ligands allowed to establish that essentially only two 
types of molecules may be triggered on a CTL to induce syn-
apse formation (10). These are the TCR and the integrin LFA-1 
that functions as an adhesion molecule stabilizing the contact 
between the two cells. However, when CTL interact with a 
cellular target, TCR/integrin signaling is further integrated by 
various costimulatory and inhibitory signals that contribute to 
CTL regulation.

An important notion that has emerged from the first 
molecular studies of CD4+ T  cell synapse formation is that 
the TCR and some of the costimulation/inhibitory molecules 
are spatially segregated during synapse assembly. This stands 
true also for the mature immune synapse of CTLs. Upon the 
initiation of CTL synapse assembly, the TCRs and proximal 
signaling molecules of the TCR pathway concentrate into the 
central area of the synapse [known as the central supramo-
lecular activation cluster (cSMAC)], while LFA-1 and other 
adhesion molecules segregate into a ring which surrounds 
the cSMAC [peripheral supramolecular activation cluster 
(pSMAC)] (10–12). The pSMAC is itself enclosed by a dense 
ring of filamentous actin (F-actin), which defines the distal 
SMAC (dSMAC) that forms the outer boundary of the 
immune synapse (13). The three concentric regions, which 
are formed upon CTL synapse maturation, carry out distinct 
functions. The cSMAC serves as a hub for proximal signaling 
and active secretion at the synapse (11), the pSMAC initiates 
and stabilizes the adhesion between CTLs and its target (10), 
while the actin cytoskeleton at the dSMAC exerts mechanical 
force across the synapse to potentiate and direct cytotoxic 
killing (14).

Interestingly, the formation of a mature immune synapse 
with signaling molecules arranged in the SMAC pattern does 
not constitute a pre-requisite for successful killing by CTL. It has 
been shown that as few as two to three peptide/MHC complexes 
on the surface of the target can trigger cytotoxicity (15, 16).  
In such setting, the polarization of the CTL lytic machinery 
toward the synapse can occur in the absence of the large-scale 
molecular rearrangements characteristic of the SMACs (16–18). 
Based on these findings, such CTL synapses have been proposed 
to be referred to as “lytic,” as opposed to the “stimulatory” 
mature SMAC-bearing synapses (17). Thus, the functional 
importance of SMAC formation for CTL cytotoxicity remains 
an open question.

In this review, we will summarize the current knowledge on 
the TCR and costimulatory signaling pathways in CTLs and 
discuss their contribution to the regulation of polarized synaptic 
secretion (Figure 1B). For the sake of simplicity, we will structure 
this review from the cSMAC, pSMAC, and dSMAC perspective, 
although it should be underscored that the distribution of signal-
ing molecules in T cell synapses is generally highly mobile, as is 
the SMAC architecture (19, 20).

THe CTL cSMAC iS THe AReA OF MTOC 
DOCKiNG AND DeGRANuLATiON

Proximal TCR signaling at the cSMAC is initiated by the two Src 
family kinases Lck and Fyn (21). Lck activity is required for fur-
ther propagation of signaling through ζ-chain-associated protein 
kinase of 70  kDa (ZAP-70) (22). Activation of proximal TCR 
signaling molecules is of crucial importance for the induction 
of CTL polarization, since the activity of Lck, Fyn, and ZAP-70 
are all essential for promoting MTOC polarization to the lytic 
synapse (22–25).

Activated ZAP-70 phosphorylates another important molecule 
of the TCR pathway, the linker for activation of T cells (LAT), 
which recruits numerous signaling effectors to form a multipro-
tein complex termed the LAT signalosome (26). The LAT signa-
losome includes several important signaling molecules, among 
which the SH2 domain-containing leukocyte protein of 76 kDa 
(SLP76), phospholipase Cγ1 (PLCγ1), interleukin-2-inducible 
T cell kinase (Itk), and the Rho family GTPase exchange factor 
Vav1. These signaling mediators couple TCR activation to intra-
cellular processes important for CTL functioning, such as MTOC 
polarization, Ca2+ signaling, and cytoskeletal reorganization (21).

SLP76 mediates the activation of PLCγ1, which exerts two 
major functions at the lytic synapse of CTLs, namely the induction 
of MTOC polarization and Ca2+ influx (21). At the cSMAC, PLCγ1 
catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate 
(PIP2) leading to the formation of the lipid second messengers 
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). The 
local DAG gradient promotes the synaptic recruitment of protein 
kinase C (PKC) isoforms, namely novel PKCs including PKCθ, 
PKCε, and PKCη, which participate in the proximal signaling 
inducing MTOC polarization (1, 27, 28). Also, the member of the 
atypical PKC family, PKCζ, participates in the signaling pathway 
driving polarization at the T cell synapse (29), thus suggesting that 
the cascade of signaling events transduced through PKC isoforms 
are crucial for the establishment and maintenance of T cell polar-
ity (30). Activity of these PKCs and the concomitant synaptic 
accumulation of dynein, the minus-end-directed microtubule 
motor, are essential to promote MTOC translocation toward the 
synapse, which occurs within minutes after the initiation of syn-
apse assembly (1). This delineates the TCR–PLCγ1–DAG–PKC 
axis as the signaling module responsible for MTOC polarization 
toward the CTL synapse. Interestingly, also the actin cytoskeleton 
contributes to MTOC polarization. Indeed, it has been reported 
that PKCs regulate the actin-based motor non-muscle myosin II, 
which acts in synergy with dynein to move the MTOC toward 
the synapse (31).

Once translocation to the subsynaptic area has occurred, 
the MTOC docks at the plasma membrane, which promotes 
the focused microtubule-directed transport and exocytosis 
of lytic granules directly into the synaptic cleft (11, 32). Two 
molecular motors appear to be involved in the process of granule 
polarization toward the MTOC, which is thought to occur in 
parallel with the MTOC translocation to the synapse. First, on 
their way toward the MTOC, granules are transported through 
a dynein-dependent mechanism in the direction of microtubule 
minus-ends (3, 33). Then, during the final phase of synapse 
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assembly, kinesin-1 and the small GTPase Rab27a mediate the 
plus end-directed movement of granules to bring them from the 
MTOC into close proximity of the CTL plasma membrane, thus 
allowing for granule fusion and secretion (34).

Interestingly, under certain experimental conditions MTOC 
polarization toward the synapse does not represent a require-
ment for polarized granule secretion and cytotoxicity. Granule 
movement and release toward the target (35), or even toward 
multiple targets recognized by the CTL simultaneously (18), may 
precede MTOC polarization. As the movement of granules and 
MTOC is uncoupled in these settings, this suggests that granules 
could reach the synapse through a plus end-directed movement. 
These results provide additional support to the ability of granules 
to move bidirectionally, raising the question as to which are the 
signaling pathways that drive granule mobilization in general and 
tune the directionality of their transport specifically.

The second major outcome of TCR-triggered PLCγ1 activity 
is the induction of Ca2+ influx into the CTL through the activ-
ity of PLCγ1-generated IP3 (36). IP3 binds to IP3 receptors in 
the endoplasmic reticulum (ER) membrane and activates Ca2+ 
release from the ER into the cytoplasm (37). The initial increase 
in the cytoplasmic Ca2+ triggers the store-operated entry of 
extracellular Ca2+ into the T  cell through the channels formed 
by a complex of the ER calcium sensors STIM1 and STIM2 and 
the Ca2+ release-activated calcium channel ORAI1 at the plasma 
membrane (38). Ca2+ mobilization from the extracellular space is 
an essential requirement for CTL degranulation as highlighted by 
a selective defect in lytic granule exocytosis upon pharmacological 
inhibition of store-operated Ca2+ entry in CTLs (36). Hence, the 
modulation of IP3 levels achieved through regulation of PLCγ1 
represents a means to control CTL functioning. Activity of Itk, a 
component of the LAT signalosome, is important for full activa-
tion of PLCγ1 (39). Consistently, a deficiency in Itk leads to a 
defect in CTL degranulation (40), thus confirming a fundamental 
role of the Itk-PLCγ1-IP3 axis in regulating Ca2+ signaling and 
lytic granule exocytosis in CTLs.

Besides modulating the production of IP3, Itk appears to gen-
erate some additional signals important for CTL degranulation 
since the Ca2+ ionophore-induced Ca2+ influx is not sufficient 
to correct Itk deficiency (40). The components of this signaling 
pathway are as yet unknown. Another layer of complexity in the 
picture of Ca2+-dependent molecular events that occur during 
synapse assembly is the fact that neither is IP3 the only second 
messenger regulating Ca2+ signaling, nor is the ER the only Ca2+ 
store in CTLs. Nicotinic acid adenine dinucleotide phosphate 
(NAADP), the most potent Ca2+-releasing second messenger 
known, is also produced following TCR stimulation and cru-
cially contributes to the signaling pathway operating during CTL 
degranulation (41). NAADP mobilizes Ca2+ selectively from 
acidic stores, such as the lytic granules themselves, and, when 
added to cultured CTLs in vitro, is able to trigger their degranula-
tion (41). Thus, Ca2+ signaling in CTLs is mediated synergistically 
by IP3 and NAADP. However, the whole spectrum of signaling 
molecules contributing to this branch of CTL signaling has yet 
to be fully defined.

It is noteworthy that Ca2+ signaling in CTLs impacts only on 
the process of lytic granule exocytosis, without influencing either 

MTOC or lytic granule polarization (36, 40), which demonstrates 
a clear diversification of the signaling pathways orchestrating 
CTL cytotoxicity. Surprisingly little is known about the signaling 
pathways that trigger granule trafficking along the microtubules 
and determine the directionality of their transport, although few 
signaling parameters have emerged as important regulatory fac-
tors. One is the strength of TCR stimulation, as TCR triggering 
with low affinity ligands leads to an impairment in lytic granule 
polarization toward the MTOC, which has been associated with 
defective Lck activation (24). The kinetics of intracellular Ca2+ 
flux has also been implicated in the regulation of lytic granule 
polarization. Indeed, a second major class of cytotoxic T  cells, 
CD4+ CTLs, show slower granule polarization at the synapse 
and slower degranulation when compared to conventional CD8+ 
CTLs (12). This peculiar phenotype has been associated with 
diminished Ca2+ influx in CD4+ CTLs compared to CD8+ CTLs.

Finally, our laboratory recently demonstrated that the assem-
bly of a functional CTL synapse strictly depends on properties of 
the target. For instance, we showed that primary human B cells 
can instruct CTLs to degranulate non-directionally (7). Early 
signaling TCR events (e.g., ZAP-70 phosphorylation), intracel-
lular Ca2+ influx, and MTOC polarization in such non-polarized 
synapses were normal, while the activation of LAT was selectively 
impaired. LAT has been previously implicated in CTL cytotoxic-
ity (42). However, a complete loss of LAT in CTLs was shown to 
affect multiple steps of synapse formation, including its stability, 
and led to an impairment of both MTOC and granule polariza-
tion. Therefore, it is still not clear whether LAT acts as a global 
regulator of CTLs functioning or might be implicated in the fine 
regulation of CTL polarity, as direct evidence for LAT function in 
lytic granule trafficking is still missing.

Thus, we still lack information about the TCR signaling origi-
nating at the cSMAC that determines the directionality of granule 
trafficking, although rapid Ca2+ kinetics and the activation of LAT 
may serve as indicators of the successful granule polarization at 
the CTL synapse.

THe pSMAC SuPPORTS CTL ADHeSiON 
AND COSTiMuLATiON

Adhesion molecules at the CTL synapse play a dual role: they 
physically stabilize the nascent contact between CTL and a tar-
get and trigger important signaling pathways in the CTLs that 
contribute to synapse maturation. Several adhesion molecules 
promoting cytotoxic killing have been identified, including 
LFA-1 (also known as CD11a/CD18 or αL/β2 integrin) (10), CD2 
(also known as LFA-2) (43), and CD103 (also known as αEβ7 
integrin) (44). The ligands for those integrins on the target cells 
are the intracellular adhesion molecule 1 (ICAM-1), lymphocyte 
function-associated antigen 3 [LFA-3 or CD58; CD48 in mice 
(45)], and epithelial cadherin-1 (E-cadherin), respectively. 
Interestingly, the properties of target cells, i.e., which integrin 
ligands they express, define the signaling requirements for cyto-
toxic killing. For instance, killing of cells of hematopoietic origin 
requires the interaction of LFA-1 with ICAM-1 (46) and of CD2 
with CD58 (47), while cytotoxic lysis of epithelial cells requires 
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CD103/E-cadherin interaction (44, 48, 49). Of note, among these 
molecules, only LFA-1 was described as clearly segregating to the 
pSMAC upon synapse formation (10, 43). This property has never 
been investigated for CD103, while CD2 behaves differently when 
studied in different experimental systems. In studies on Jurkat 
T cells interacting with stimulatory lipid bilayers, CD2 is closely 
associated with the TCR at early time points of the immune 
synapse formation, but eventually segregates to the pSMAC sur-
rounding the TCR-containing cSMAC (43). At variance, when 
studied on murine T  cells activated by cellular targets, CD2 
remains in close association with the cSMAC structure, diffusing 
toward the synapse periphery only minimally (50).

The best-studied integrin for T cells is LFA-1. Its engagement 
on CTLs has been shown to facilitate CTL killing by enhancing 
CTL adhesion to the target and stabilizing the nascent syn-
apse (10, 51, 52). Shortly after the onset of synapse assembly, 
LFA-1 establishes high-affinity interactions with ICAM-1 on 
the target cell, as the result of a conformational change in its 
extracellular domain triggered by the “inside-out” signaling 
of engaged TCRs (53), and translocates toward the pSMAC 
(10). Inside-out signaling operates through the small GTPase 
Rap1, the scaffold protein RIAM, the cytoskeletal protein talin, 
and local membrane PIP2, which promote the recruitment of 
LFA-1 to the immune synapse and help it to acquire a stable 
high-affinity conformation [reviewed in Ref. (53)]. In turn, the 
outside-in costimulatory signaling of engaged LFA-1 involves 
its association with the activated kinases Lck and ZAP-70 and 
signal spreading through Vav1 and SLP76 (54). Interestingly, 
both talin and Vav1, which actively participate in integrin 
signaling, are also implicated in the rearrangement of the actin 
cytoskeleton (discussed below), thus functionally linking the 
pSMAC to the adjacent dSMAC, the main mechanosupportive 
structure of the CTL synapse.

Along with LFA-1, CTL costimulation through CD2 appears 
to be highly important for CTL functioning (47, 55). Of note, 
the TCR and CD2 pathways are significantly interdependent as 
CD2 signaling proceeds through the cytoplasmic domain of the 
TCR-CD3ζ subunit, at least as shown in Jurkat T cells (56, 57). 
CD2 is also capable of transducing the signal via the Fc epsilon 
RI gamma subunit (58), thus explaining why also cells lacking 
surface TCR, such as double-negative thymocytes and NK cells, 
can be activated via CD2 stimulation (59). Similar to LFA-1, TCR 
activation leads to an increase in the avidity of CD2 interaction 
with CD58 (60), suggesting that inside-out signaling of the TCR 
also plays a role in CD2 activation. Both Fyn activation (61) and 
the adaptors LAT (43, 62) and the Wiskott–Aldrich syndrome 
protein (WASP) (63) have been implicated in outside-in signaling 
by CD2, at least in CD4 T cells. Fyn activation by CD2 has been 
linked to the activation of the signaling axis composed of PLCγ1, 
Vav1, PKC theta, docking protein (Dok), focal adhesion kinase 
(FAK), and protein tyrosine kinase 2 (Pyk2) (61). Interestingly, 
FAK and Pyk2 participate in the maintenance of focal adhesions, 
which are multimolecular complexes linking surface integrins to 
the actin cytoskeleton [reviewed in Ref. (64)], while WASP is a key 
molecule participating in the reorganization of actin cytoskeleton 
in T cells (65). Their activation is also triggered following TCR 
engagement, thus CD2 signaling could strengthen the activation 

of the actin-remodeling signaling branch, functionally connect-
ing the pSMAC with the dSMAC.

Finally, CD103 appears to be directly implicated in the 
regulation of CTL polarity. CD103 engagement by E-cadherin on 
epithelial cells promotes polarization of lytic granules at the CTL 
synapse through PLCγ1 activity (44, 48, 49), albeit the precise 
signaling pathway mediating this process has not been character-
ized yet.

Hence, the pSMAC of CTL synapse represents an impor-
tant structure with adhesive and costimulatory function that 
critically contributes to the reorganization of CTL cytoskeleton. 
Interestingly, while signaling at the pSMAC is not able to autono-
mously promote CTL polarization, totally depending in this on 
the TCR engagement, in NK cells LFA-1 signaling is per se suffi-
cient to promote MTOC and granule polarization at the immune 
synapse (8, 66). In these cells, the signaling axis of LFA-1 signaling 
is centered on an integrin-linked kinase (ILK)–Pyk2–paxillin 
core and the ILK-controlled cdc42-Par6 pathway, which regulates 
polarity in other cell types (67). Thus, an in-depth analysis of 
adhesion receptor signaling in CTLs has the potential to broaden 
our understanding of the signals orchestrating the directionality 
of granule trafficking.

THe dSMAC: AN AReA OF eXTeNSive 
ACTiN CYTOSKeLeTON ReMODeLiNG  
AT THe CTL SYNAPSe

To support granule secretion toward the target, CTLs rely on 
a robust remodeling of their cytoskeleton. The dynamics of 
F-actin, which ultimately accumulates at the dSMAC forming 
an F-actin ring, plays a central role in synapse maintenance and 
regulation of granule secretion. Notably, F-actin remodeling in 
CTLs has two major outcomes. First, it controls the direction 
and timing of lytic granule release, acting as a dynamic physi-
cal barrier for secretion (2, 68). Second, it exerts a strong force 
across the synapse, enhancing perforin activity at the plasma 
membrane of the target cells and thus potentiating cytotoxicity 
(69). The importance of the actin cytoskeleton for CTL function-
ing is confirmed by the fact that F-actin disruption or impaired 
functioning of cytoskeleton regulators such as Vav1 and WASP 
affect CTL killing (13, 70–72).

Initially, an extensive actin polymerization at the synapse 
leads to the formation of a dense cortical actin layer, aiding CTL 
spreading over the surface of the target. By 1 min after contact, 
cortical F-actin starts a retrograde movement toward the periph-
ery of the synapse that concludes with the formation of an F-actin 
ring delineating the future dSMAC (2). The continuous cen-
trifugal movement of actin within the dSMAC has been shown 
to strengthen the adhesive forces mediated by integrins/adhesion 
molecules at the pSMAC (73). Finally, F-actin retrograde flow 
leads to a depletion of cortical actin from the center of the synapse 
generating an actin hypodense region that will control the access 
of lytic granules to the plasma membrane (2). Subsequently, 
the cortical cytoskeleton barrier recovers across the synapse as 
granule secretion is completed, with the full cycle of events being 
completed within approximately 30 min (68).
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T cell receptor signaling is the main trigger responsible for 
actin cytoskeleton remodeling at the lytic synapse. The LAT-
SLP76 complex plays a central role in this process by activating 
second messenger pathways and by directly recruiting actin 
regulators (13, 74, 75). To achieve this, phosphorylated SLP76 
physically associates with two important signaling molecules, 
the phosphoinositide 3-kinase (PI3K) (76) and Vav1 (75, 77). 
PI3K is responsible for the production of phosphatidylinositol 
(3,4-5)-phosphate (PIP3) from PIP2, which has been identi-
fied as a key event promoting the spatial segregation of 
F-actin to the dSMAC ring (13). Local PIP3 further promotes 
the recruitment of the guanine nucleotide exchange factors 
Dock2-Elmo1 that associate with the Rho family GTPase Rac1 
(78). Phosphorylated Vav1, instead, associates with another 
Rho family GTPase, namely Cdc42 (75). Rac1 and Cdc42 are 
responsible for the activation of two major actin nucleation-
promoting factors: the WASP family verprolin-homologous 
protein (WAVE) and WASP itself, respectively (79, 80). Thus, 
the LAT-SLP76 complex appears to be the initiating point and 
the central signaling hub orchestrating the process of actin reor-
ganization at the synapse. Interestingly, loss-of-function studies 
have demonstrated that even though the PI3K-PIP3-Dock2 axis 
is crucial for the efficiency of CTL killing, it does not regulate 
the intracellular trafficking of lytic granules (13). Instead, PI3K-
PIP3-Dock2 activity is related to the generation of mechanical 
force exerted by the T cell across the synapse, which translates 
into a significant mechanopotentiation and improved perforin 
pore formation (69).

Activated by Cdc42 and Rac1, WASP and WAVE control 
F-actin assembly by promoting the nucleation of actin filaments 
(65, 80). In support of the importance of F-actin and WASP in the 
maintenance of an effective immune synapse, it has been reported 
that T cells from Wiskott–Aldrich syndrome patients, who are 
WASP-deficient, as well as those from WASP knockout mice, 
form unstable synapses due to cytoskeletal defects (72, 81–83). 
Also, WASP deficiency in human CTLs has been associated with a 
reduced cytotoxicity against tumor B cell lines specifically caused 
by incomplete lytic granule polarization toward the target (84). 
In line with this, studies on NK cells have further confirmed that 
WASP and WASP-interacting protein regulate the polarization of 
granules toward the synapse (85–87). These findings support the 
notion that WASP may be involved in the signaling pathway that 
regulates granule trafficking in CTLs.

Notably, even though actin dynamics are also important for 
the formation of the NK immune synapse, a crucial difference 
exists between the synapses of NK cells and CTLs in the cortical 
cytoskeleton distribution. At variance with CTLs, in NK  cells, 
lytic granule secretion occurs through a dense F-actin meshwork 
containing granule-sized clearances (88, 89). Also, NK  cell 
granules are constitutively associated with the motor myosin IIA 
that promotes their interaction with the F-actin-rich cell cortex 
at the synaptic membrane and assists their final transit toward 
the synaptic cleft (90). Thus, considering both similarities and 
differences between CTLs and NK cells, a deeper investigation on 
the actin organization and function in relation to the granule traf-
ficking process could prove to be very important in establishing 
the whole spectrum of factors regulating cytotoxicity.

The key role of F-actin in the formation of lytic immune 
synapses has been also studied in the context of cancer evasion 
from immune surveillance. In particular, it has been reported that 
CTLs from patients with B  cell chronic lymphocytic leukemia 
establish defective synapses characterized by an impaired polari-
zation of F-actin (91). Moreover, we have shown that non-lytic 
synapses between non-directionally degranulating CTLs and 
B cells are characterized by a decreased polymerization of F-actin 
at the interface between the two cells (7). These results suggest 
an important role for F-actin in late polarization events at the 
synapse between CTLs and target cells.

Taken together, actin dynamics at the immune synapse may 
clearly impact the process of granule polarization. Interestingly, 
the key F-actin regulator WASP also participates in CD2 signaling 
(see “pSMAC” section). Thus, WASP could be recruited to the 
synapse by two mechanisms: through LAT-SLP76 signaling (92) 
and through its association with the actin adapter PSTPIP that 
interacts with CD2 both directly and through the CD2AP adapter 
(63). Taking into account the major role of adhesive and costimu-
latory molecules for CTL cytotoxicity (44, 46, 47), it would be of 
great interest to study the involvement of CD2 signaling, LAT 
signalosome assembly, and WASP activity in F-actin dynamics in 
both lytic and non-lytic synapses.

COSTiMuLATORY SiGNALiNG 
LYMPHOCYTe ACTivATiON MOLeCuLe 
(SLAM) ReCePTORS AT THe CTL 
SYNAPSe

The SLAM family members have been extensively studied in 
CTL functioning due to their involvement in the X-linked 
lymphoproliferative (XLP) syndrome (93, 94). XLP disease is a 
rare genetic disorder characterized by abnormal responses to the 
Epstein–Barr virus infection due to a deficiency in the SLAM-
associated protein adaptor SAP, which modulates signaling 
downstream of SLAM receptors in CTLs (95–97). The SLAM 
receptors have pleotropic functions in the immune system (98), 
with SLAM, 2B4, NTB-A, Ly108, and CRACC receptors playing 
an important role in CTL and NK cell cytotoxicity (93, 99–104). 
With the exception of 2B4, which interacts with CD48, all SLAM 
receptors establish homotypic interactions, being expressed both 
on CTLs and their targets.

Although SLAM receptors are important for CTL-mediated 
cytotoxicity (103, 104), there are only few studies focused on 
SLAM receptor signaling at the lytic synapse and its impact on 
CTL polarization events. Among these, two reports have deep-
ened our understanding of the role of SLAM receptors in the 
context of CTL and B cell target encounter. These studies clearly 
highlighted that coupling of SAP with activated 2B4 and Ly108 
is essential to trigger positive signals enhancing TCR signal-
ing and to promote cytoskeleton reorganization and correct 
CTL polarization (93, 105), while preventing the recruitment 
of the inhibitory phosphatase SHP-1 at the synapse (105). In 
NK cells, SAP couples activated 2B4 to the kinase Fyn, which in 
turn activates Vav1, while blocking the inhibitory phosphatase 
SHIP-1 from binding to 2B4 (106). Another signaling adaptor 
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of SLAM receptors, EAT-2, controls instead MTOC and granule 
polarization to the NK  cell synapse by linking SLAM family 
receptors to phospholipase Cγ, calcium mobilization, and Erk 
kinase (107).

Interestingly, studies on human and murine NK  cells have 
demonstrated that LAT is constitutively associated with 2B4 in 
glycolipid-enriched membrane microdomains and has a critical 
role in SLAM-mediated cytotoxicity (108–110). Considering 
that the activation of the LAT signalosome has a key role in actin 
polymerization at the dSMAC (74, 75) and may be involved in 
the signaling controlling granule polarization toward B cell tar-
gets (7), it would be important to further our knowledge on the  
connection between SLAM receptors and polarization signaling 
in CTLs.

CONSiDeRATiONS ON THe 
eXPeRiMeNTAL SeTuPS FOR  
STuDYiNG POLARiZeD GRANuLe 
TRAFFiCKiNG iN CTLs

use of In Vitro expanded CTLs versus 
Freshly isolated CTLs
Lytic synapse assembly is typically studied using CTLs expanded 
in vitro after their isolation from human or mouse donors. CTL 
expansion in this case is usually required due to a relatively 
low percentage of effector cytolytic cells among the total pool 
of CD8+ T  cells [in healthy human donors 10–15% (7)]. An 
in vitro expansion of the heterogeneous CD8+ T cell population 
is also convenient because it allows for the enrichment of highly 
cytolytic CTLs with unique antigen specificity. A caveat of this 
experimental setup is that the expansion of primary T cells typi-
cally requires their maintenance in medium supplemented with 
high quantities of mitogenic cytokines, e.g., interleukin-2 (IL-2). 
It has become evident that culturing CTLs in IL-2-supplemented 
medium may alter signaling requirements for CTL killing when 
compared to freshly isolated effector CTLs. In particular, this 
knowledge emerged from studies on CTLs from patients and 
mice with genetic mutations that affect CTL functioning. For 
instance, function-disrupting mutations in Munc18-4, which 
regulates lytic granule fusion with the plasma membrane, abolish 
cytotoxicity in freshly isolated CTLs due to a loss of their ability to 
degranulate (111). However, culturing these dysfunctional CTLs 
for 9 days with IL-2 leads to a compensation of the genetic defect 
(111). Likewise, a defective functioning of CTLs from mice with 
Itk deficiency is restored upon 6–7-day exposure to IL-2 (40). 
A similar functional recovery has been observed for CTLs with 
mutated dysfunctional syntaxin 11 (112), WASP (84, 113), or 
LYST (114). An effect of IL-2 culturing on killing properties has 
also been observed in NK cells. IL-2 pulsed NK cells from healthy 
donors are able to lyse ICAM-1-expressing targets, whereas the 
sole LFA-1 triggering is not sufficient to trigger cytotoxic killing 
by freshly isolated NK cells (8). IL-2 culturing also rescues cyto-
toxicity in otherwise dysfunctional NK cells from patients with 
familial hemophagocytic lymphohistiocytosis (112, 115). Hence, 
in  vitro expansion of primary cytotoxic lymphocytes appears 
to have a profound effect on their properties, likely by altering 

expression levels of proteins implicated in CTL synapse assembly, 
as suggested (111).

We observed that an in vitro expansion influences the ability 
of human CTLs to polarize lytic granules at the synapse (7). As 
discussed earlier, primary human B  cells can instruct freshly 
isolated CTLs to degranulate in a non-polarized dysfunctional 
fashion. However, CTL blasts expanded in vitro from their freshly 
isolated counterparts are able to polarize lytic granules toward 
B cell targets, which correlates with the restoration of their killing 
potential (7). This observation suggests that freshly isolated CTLs 
and CTL blasts have different signaling requirements for granule 
polarization. Therefore, studies on polarized trafficking in CTLs 
may potentially benefit from including freshly isolated CTLs in 
the experimental setup. The use of freshly isolated CTLs could 
also be relevant for high-throughput screenings and high-content 
studies that until now have been largely performed on in vitro 
expanded cells (116, 117).

experimental Setups to Study Cytotoxic 
Function of Freshly isolated CTLs
Human CTLs endowed with high cytotoxic potential could be 
defined as CD8+ CD57+ CD27− CD28− perforin/granzyme-rich 
population in the peripheral blood of donors (118–120). These 
cells represent a polyclonal population with mixed TCR specifici-
ties expanded in vivo by natural stimuli. Such CTLs can be isolated 
from the total CD8+ T cell pool using flow cytometry sorting [e.g., 
to purify CD45RA−/CD45RA+ CCR7− CD28− CD27− effector-
type populations (121)] or using two alternative magnetic bead-
based enrichment protocols: (i) depletion of CD27+ cells (7, 118) 
or (ii) magnetic bead-based depletion of CD28+ CD45RO+ cells 
(119). Effector CTLs isolated using either of these methods would 
be, however, of mixed specificities, with T cell clones responding 
to individual antigenic peptides present at too low frequency 
for an efficient experimental setup. To overcome this limitation, 
historically two systems of polyclonal CTL stimulation, aimed 
at promoting synapse formation with target cells, have been 
developed.

The first system relies on the use of bacterial superantigens 
(SAgs) that are able to cross-link the MHC class II molecules on 
target cells and the TCRs on CTLs (bearing a particular TCR V 
β chain, specific for every type of SAg) (122). In this setting, SAg 
may bind to multiple individual TCRs, thus ensuring an elevated 
number of CTLs that can respond to SAg stimulation (even higher 
when a combination of SAg is used). Although SAg is recognized 
in the context of MHC class II molecules, they are potent inducers 
of CTL cytotoxicity through an MHC class I/CD8-independent 
mechanism (123). The peculiarity of SAg system consists in the 
induction of a non-canonical TCR signaling that depends on the 
activation of heterotrimeric GTP-binding protein Gα11 and PLCβ, 
instead of Lck and PLCγ1, at least as shown for CD4+ T  cells  
(124, 125). Nevertheless, SAg stimulation induces the formation 
of a “classical” immune synapse between MHC class II-bearing 
targets and CTLs, either freshly isolated or expanded in vitro, and 
is therefore widely used (7, 35, 52).

The second system of polyclonal stimulation commonly 
employed to work with human CTLs involves the use of Fc 
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receptor-bearing target cells (e.g., P815 murine mastocytoma 
cells) loaded with CD3-specific monoclonal antibody. Antibody-
coated targets are recognized by the CTLs through direct binding 
of the TCR to the antibody, thus promoting cytotoxic killing in 
the so-called “redirected” assay (3, 119). Of note, TCR cross-
linking by CD3-specific antibody also induces the activation of 
Gα proteins, which draws parallels between CTL activation in the 
SAg-dependent system and in the CD3-based redirected assay 
(124, 126).

Although both systems appear to work well with freshly 
isolated CTLs, the use of MHC class I-peptide system is obvi-
ously more physiologically relevant as it may allow to assess the 
functioning of CTLs with natural ligands of different affinity 
and specificity. The solution to overcome the limitation of rare 
individual clones in the total CTL population came with the 
development of systems to clone and express recombinant TCR 
receptors, derived from naturally occurring CTL clones, in poly-
clonal freshly isolated CTLs (127). For instance, the TCRα and 
TCRβ chains of the TCR complex can be transfected into CTLs 
in combination, or cloned as a single multicistronic construct 
separated by a cleavable peptide (T2A, P2A, etc.) (128, 129), thus 
allowing for the simultaneous expression of the two proteins 
that form a functional TCR complex (130, 131). Recombinant 
TCR constructs can be introduced into primary T cells using a 
retrovirus/lentivirus-based gene transfer, or using mRNA elec-
troporation, which is becoming a widespread technique due to a 
high efficiency and relative simplicity of the protocol compared 
to virus-based systems (127, 132, 133). Another important aspect 
to be taken into consideration is that the virus-based systems 
frequently require T  cell activation prior to viral transduction, 
while mRNA electroporation can be performed with high 
efficiency even on resting T cells. Thus, mRNA electroporation 
with recombinant TCR constructs may represent a convenient 
tool to study immune synapse formation in freshly isolated CTLs 
stimulated with natural peptide ligands.

CONCLuSiON

Directionality of lytic granule transport along microtubules 
represent fine means to regulate immune synapse assembly in 
CTLs and NK cells, thus representing a basic factor in immune 
regulation. However, the mechanisms defining granule ability to 
travel bidirectionally along microtubules and, most importantly, 
the signaling pathways regulating this process are largely elusive. 
To address this question of outstanding scientific importance, 
we believe that future research on CTLs should focus on some 
specific issues. First, it would be of high relevance to identify 
surface receptors that trigger the signaling pathways driving 
granule translocation toward the MTOC. So far, it emerges that 
TCR triggering alone could not be sufficient to induce granule 

polarization, at least in freshly isolated human CTLs (7), suggest-
ing that full CTL polarization is likely achieved through specific 
costimulation. Identification of surface receptors responsible for 
such costimulation would be central to dissecting the mechanisms 
regulating cytotoxic killing. Among possible candidates, CD103 
could be one of such costimulatory receptors since its engagement 
can induce granule polarization (48). However, CD103 expression 
is restricted only to a minor subset of CTLs (44), suggesting that 
other CTL surface receptors are likely involved in this process.

Second, lysosomes have emerged as important signaling hubs  
implicated in the regulation of multiple cellular processes includ-
ing metabolic signaling and autophagy (134). Along these lines, it 
would be highly interesting to determine the whole set of signal-
ing molecules, e.g., kinases and adaptors, that associate with lytic 
granules. So far, only PKCδ was found to colocalize with lytic 
granules and appears to regulate their polarization and exocytosis 
in a kinase-dependent manner (135, 136), albeit its substrates and 
precise molecular mechanism of action have as yet not been clari-
fied. Other interesting molecules associated with lytic granules 
could be identified possibly through the highly sensitive proteom-
ics approach, which has never been performed on freshly isolated 
CTLs but has been done for the granules of in vitro expanded CTL 
blasts (4, 137). We anticipate that this approach would be highly 
instrumental for the dissection of granule biology, in particular, 
and of lysosomal biology in T cells in general.

Finally, it is becoming widely accepted that stimulation with 
cytokines is capable of reorganizing the molecular and signal-
ing network of granule trafficking and secretion in cytotoxic 
lymphocytes (113). However, the effect of CTL exposure to 
immune stimuli that may influence their functioning has not 
been addressed in a systematic and broad manner, for example, 
through genomics or transcriptomics studies. Not only cytokines 
may be considered in this context but also chemokines which 
have a well-known function of T cell costimulation through trig-
gering of the respective chemokine receptors (138). Thus, the field 
of study of lysosomal (granule) trafficking in CTLs is open wide 
to new contributions.
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