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Abstract: This article focuses on the use of Terrestrial Laser Scanning (TLS) for change detection
analysis of multitemporal point clouds datasets. Two topographic surveys were carried out during
the years 2016 and 2017 in an underground marble quarry of the Apuan Alps (Italy) combining TLS
with Global Navigation Satellite System (GNSS) and Total Station (TS) studies. Multitemporal 3D
point clouds were processed and compared with the aim of identifying areas subjected to significant
material extraction. Point clouds representing changed areas were converted into triangular meshes
in order to compute the volume of extracted material over one year of quarrying activities. General
purpose of this work is to show a valid method to examine the morphological changes due to raw
material extraction with the focus of highlighting benefits, accuracies and drawbacks. The purpose of
the executed survey was that of supporting the planning of quarrying activities in respect of regional
rules, safety and commercial reasons.

Keywords: Terrestrial Laser Scanning; 3D point cloud; multitemporal change detection; volume
computation; marble quarrying

1. Introduction

The use of Terrestrial Laser Scanning (TLS) data for the determination of morphological variations
is gaining increasing interest in geological surveying and monitoring. TLS is widely used, among
the others, in rock slope studies [1–3], river science [4–6] and coastal cliff monitoring [7,8]. In recent
years, several authors have experimented with the use of TLS both in underground and in open pit
quarrying activities [9–14]. TLS is based on the acquisition of a high-density point cloud in a very
short period of time basically using different techniques: pulse-based (time-of-flight) or phase-based.
In the first method, the scanner measures the time a laser pulse takes to travel from a source to
a reflective surface and back again (round trip); from the knowledge of the time, given that the
velocity is equal to the speed of light, the distance between the source and the target can be computed.
The working principle of the second type is based on the modulation in amplitude of the emitted
(incoherent) light; the scattered reflection from a surface is collected and the system measures the
phase difference between the sent and received waveforms, hence the delay time. Typical phase-based
scanners modulate their signal using sinusoidal modulation, amplitude-based (AM) or frequency-
based (FM) modulation, and pseudo-noise or polarization modulation [15,16]. In this study, the TLS
survey was carried out using a pulse-based static device which measures the range between source
and target through an infrared light. After scanning, with the goal of generating realistic virtual reality
3D models and orthophotos, photographs may also be collected by using a digital external camera.
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The repeated application of TLS to the same area (i.e., multitemporality) allows the comparison between
corresponding 3D models. Conventional techniques for topographic change detection, even from TLS
data, rely on the comparison of Digital Elevation Models (DEMs) to produce a new DEM called “DEM
of Differences” (DoD) [17,18]. The DoD technique, unfortunately, cannot operate properly on complex
3D environments since the DEMs, needing a plane of reference (typically on the XY coordinates plane),
can describe with difficulties vertical and rough surfaces. DEMs are interpolated and uncertainties
may be introduced on the grid elevation when the point clouds represent either vertical or protruding
fronts [19,20]. New algorithms allow for direct comparison between 3D point clouds without gridding
or meshing the point clouds and several experiences have been testified in recent manuscripts dealing
with multitemporal comparison [21–29]. Multi scale Model to Model Comparison (M3C2) plugin
operates in 3D so that it alleviates a key limitation of the DoD technique [30]. For this study M3C2
method was used to compute distances between the point clouds and to conduct change detection
analysis. Then, Poisson Surface Reconstruction algorithm proposed by Kazhdan et al. [31] was used to
create high detail triangular meshes from point clouds representing the excavated areas. Volume of
single extraction area was calculated and computation error estimated in a precautionary approach
basing on multitemporal point clouds misalignments and meshing uncertainties.

2. Study Area and Geological Setting

The investigated underground marble quarry, known as “Piastreta”, is located in the area of the
Sella Mount, in the Apuan Alps (Province of Massa-Carrara, Italy) at 1580 m a.s.l. The Apuan Alps
metamorphic complex (Figure 1) is composed of two main units, the Massa Unit and the Apuan Unit.
Deep levels of the inner Northern Apennines are here exposed [32–34] since it represents the largest
tectonic window of the belt. The metamorphic complex tectonically holds up the unmetamorphic
formations of the Tuscan Nappe which is in turn overthrusted by the Liguride Units.
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The litho-stratigraphic sequence includes a Paleozoic basement covered unconformably by an
Upper Triassic-Oligocene meta-sedimentary sequence (Figure 2). The Mesozoic cover is represented by
thin Triassic continental to shallow water Verrucano-like deposits, overlain by Upper Triassic-Liassic
carbonate platform meta-sediments that include dolomites (“Grezzoni”), dolomitic marbles and marbles
(worldwide known as “Carrara marbles”). These, in turn, are superimposed by Upper Liassic-Lower
Createceous cherty meta-limestones, cherts and calcschists, and by Lower Cretaceous-Lower
Oligocene sericitic phyllites and calcschists, with marble interlayers, which are related to deep
water sedimentation during drowning of the former carbonate platform. Oligocene sedimentation of
turbiditic sandstones (“Pseudomacigno”) finalizes the sedimentary history of the domain [35].
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Figure 2. Geological map of the Piastreta underground quarry and surrounding areas. Geological
Formation acronyms: FAF: “Filladi Inferiori” (phyllites); GRE: “Grezzoni” (dolomites); MDL: dolomitic
marble; AUN: Marble; CLF: Cherty metalimestones; MDT: Metaradiolarites; ENT: Entrochi cherty
metalimestones; SSR: Sericitic schists; SSR2: “Cipollini Marbles” (calcschists). Traces of the six
geological cross-sections utilized to build the 3D model of Figure 4 are shown.

Figures 3 and 4 show a geological cross-section of the Piastreta quarry area and a perspective
view of the created 3D geological model, respectively.

The Apuan Alps geological setting results from two main tectono-metamorphic events: a ductile
compressional event D1 (Lower Miocene), due to the continental collision between Sardinia-Corsica
block and Adria plate; a subsequent extensional D2 event (Upper Miocene) leading to an isostatic
rebalance [36].
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The marble extraction of the Piastreta quarry is executed in tunnel within a D1 geological structure
known as the “Monte Tambura” antiform. The quarry is located in the inverted limb of the antiform,
an E-NE vergent fold located in the central area of the Apuan Alps, with an amplitude of about
15 km and a general N-S strike (Figure 1). The marketable marble varieties of the Piastreta quarry
are represented by the “Bianco Piastreta”, belonging to the group of white marbles, the “Arabescato
Piastreta” and “Calacatta Piastreta” referable to the breccia marbles group. “Bianco Piastreta” is a
white marble characterized by a middle/fine size grain. “Arabescato Piastreta” is a clast supported
meta-breccia with various sizes marble elements in matrix that is variable in color from grey to dark
green. In some areas of the quarry the clasts of meta-breccia are typically white in color; this type
of marble is marketed under the name “Brouillè” for its particular similarity with the “Arabescato
Brouillè” extracted in the near Carrara basin.

“Calacatta Piastreta” is a breccia marble containing centimetric to decimetric elements in a matrix
that is variable in color from yellow to grey-green with opaque minerals and sub-millimetric pyrite.

 

2 
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Figure 3. Geological cross-section n. 3 of Figure 2 passing nearby the Piastreta quarry and surrounding
area; the section shows also some marketable marble varieties (i.e., BI: “Bianco Piastreta”; AR:
“Arabescato Piastreta” and “Brouillè”; NC: undetermined/unextracted marble).
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Figure 4. Perspective view of the 3D geological model. Colors of the geological formations coincide with
those used for the geological map of Figure 3. Given the low thickness and the purposes of the present
research, the model does not include the “Filladi Inferiori” (phyllites) Formation outcropping at the
nucleus of the “Monte Tambura” antiform and exposed on the western side of the Sella Mount. Yellow
volume of the eastern side refers to the ensemble of the following Formations: Cherty meta-limestone,
Metaradiolarites, Entrochi cherty metalimestones, and Sericitic schists.



Sensors 2019, 19, 450 5 of 14

3. Materials and Methods

3.1. Data Acquisition and Processing

The Piastreta quarry was object of TLS activities on June 2016 and June 2017. The device used
for this study is a TX 8 instrument (TrimbleTM, Sunnyvale, CA, USA) characterized by an operating
wavelength of 1500 nm and a range of 120 to 340 m, depending on target reflectivity. The system
produces 1 million pts/sec, with a range noise lower than 2 mm from 2 m to 120 m distances. It has a
360◦ horizontal field of view, 310◦ in vertical, and it must be firmly mounted on a tripod. The whole
underground quarry was observed from different viewpoints in order to eliminate any possible
shadow zone. A great number of acquisition points were necessary: namely 24 stations in the first
measurement campaign, necessary to cover the entire site, and 17 in the second one; the lower number
of scan stations was because particular attention was reserved only in changed areas over one year of
excavation activities. A point spacing of 11.3 mm at a distance of 30 m was selected with a maximum
range of 120 m. These scan parameters were chosen in consideration of the device characteristics,
distance between sensor and targets, beam divergence, shape and reflectivity of the marble walls,
and, finally, environmental conditions. Taking into account that the width of the quarry tunnels is on
average 10 m, TLS was generally placed at the center of the quarry tunnels in such a way that targets
were acquired at a distance of about 5 m, resulting in a point spacing of about 1.8 mm. Adding to
that the great number of TLS stations, the obtained point cloud density resulted to be appropriate for
the purposes of the study. After each scanning, the device was replaced by a D7100 digital camera
(NikonTM, Melville, NY, USA) to provide RGB colored photos with the goal of acquiring co-axial
images for point cloud texturing.

Moreover, in order to define a permanent World Geodetic System (WGS) for future multitemporal
acquisitions and other possible purposes, five supports for High Definition Surveying (HDS) targets
were permanently placed on the rock walls in sites not involved in present and future excavations.
Absolute positions of these targets were measured by a Total Station (TS) survey associated with
static GNSS survey; the latter was executed out of the quarry entrance and it included the absolute
coordinates measurement of two points: a first point was used as origin of the topographic survey,
while the second as 0-Azimuth direction for TS orientation. In order to correctly georeference the
entire TLS dataset, a series of black and white flat targets was placed on the scene (Figure 5). These
targets were included in the TLS survey and measured by the TS. In lab., individual scans of the same
epoch were registered together using the Iterative Closest Point (ICP) algorithm [37,38] of TrimbleTM

Realworks software with the aim of providing a global 3D point cloud. Multitemporal TLS datasets
were georeferenced using the topographic info coming from GNSS and TS surveys, then coregistered in
order to minimize their relative distances; this last step was necessary in order to properly perform the
change detection analysis and it was done by using the “cloud-based registration” tool of TrimbleTM

Realworks. A data cleaning was also necessary for removing machines, workers and tools present in
the scene at the moment of data acquisition. The 2016-point cloud was used as reference, while the
2017-point cloud was matched onto stable areas of the reference point cloud using the ICP algorithm.
Stable areas are represented by walls and fronts not subject to excavation activities during the analyzed
time span (one year).
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3.2. Multitemporal Point Clouds Comparison and Volume of Extracted Material Computation

Coregistered point clouds referred to the years 2016 and 2017 were processed using the M3C2
plugin of CloudCompare open source software [39]. The selected approach consists in performing
a direct comparison of 3D point clouds without meshing or gridding. The distance between point
clouds along their normal surface direction is calculated allowing to assess morphological 3D changes
in surface orientation. The software calculates for each distance measurement a confidence interval
depending on point cloud roughness and coregistration error [7]. In the coregistration error field,
the mutual misalignment between multitemporal point clouds was selected as input data.

Important parameters to be defined for computing distances between multitemporal point
clouds are:

- The normal scale (D), the projection scale (d), and the cylinder depth. “D” corresponds to
the diameter of a disk centered in a given core point “i”. The disk comprises neighbor points,
utilized to automatically fit a plane, from which a normal vector is defined [7]. A uniform
normal scale, or a range of normal scales, can be iteratively applied to the considered point
cloud. The orientation of the normal (i.e., vertical or horizontal) can be also selected. “d” is
the diameter of a cylinder which intersects the clouds under comparison and, going through a
given point “i”, it has the major axis oriented along the normal vector. The cylinder separates
two subsets from the clouds, whose mean distribution gives their average positions, i1 and i2.
In this method, the local distance between the point clouds corresponds to the length of the
major axis segment between i1 and i2. The length standard deviation estimates the point cloud
roughness along the normal direction. The max cylinder depth corresponds to the magnitude
of difference between the compared point clouds.

- The core points to be utilized for measuring the distances. The main idea is that while TLS
clouds are generally very dense, it is not necessary to measure the distance at such a high density
and a sub-sampled version of the entire cloud can be used to speed up the computation [39,40].

- The coregistration error (coreg) which is related to the accuracy of multitemporal point
clouds alignment.

As already mentioned, in this work the 2016-point cloud was set as reference and the 2017 as
compared cloud. In order to speed up the computation, the core points refer to a sub-sampled version
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of the input cloud at a resolution of 0.1 m. After several tests, a fixed normal scale of 0.80 m, a projection
scale of 0.80 m and a maximum depth of 5 m were chosen. Moreover, it was verified if the chosen “D”
and “d” scales respected the suggestions of Lague et al. [7]; precisely, it was verified whether the D
scale was 20–25 times the estimated roughness for the two point clouds, and if the “d” scale, given the
point cloud density, was big enough to have at least 4 points included.

The cloud-based registration tool of TrimbleTM Realworks gives the percentage of coincident
points and the “overall cloud-to-cloud error”; the latter was used as coregistration error in the M3C2
plugin. As output, M3C2 computes a new cloud comprising the following information associated to
each point: distance to the closest corresponding point, distance uncertainty and significant change.
The distance uncertainty corresponds to the confidence interval, also referred as Level of Detection at
95% (LOD95%), and it is calculated by the following equation (e.g., [41]):

LOD95% = ±1.96

√
σ1(d)

2

n1
+

σ2(d)
2

n2
+ coreg

 (1)

where: d is the projection scale, σ1(d)
2 and σ2(d)

2 are the local roughness of the point clouds n1 and
n2. In this way, the spatially variable confidence interval is calculated and the statistically significant
change is provided: a distance is considered statistically significant when is greater than the LOD95%.
This relation was verified for each point of the two compared point clouds. The distance computation
with M3C2 plugin was performed for the whole extent of the point clouds, while the plugin efficiency
was assessed in unchanged zones of the area.

For the computation of extracted material volumes, meshes were generated by Poisson Surface
Reconstruction plugin proposed by Kazhdan et al. [31] in areas of evident change detection.
The CloudCompare software (version 2.9.1) was used for this step of the analysis. In order to correctly
use this plugin, normals of the point clouds were computed and cleaned (i.e., the orientation of all
normals must be correct/consistent and not too noisy). By default, the algorithm must be applied
on closed 3D shapes. In order to perform this task, multitemporal point clouds corresponding to
excavated areas were segmented. The 2017-point cloud at the top and 2016-point cloud at the bottom
were merged in order to obtain closed 3D shapes. The volume computation of the 3D mesh objects
was performed within CloudCompare software in order to quantify the extracted material over one
year of quarrying activity.

4. Results

The registration and georeferencing errors of multitemporal TLS datasets, plus the coregistration
error between the 2016- and 2017-point clouds, are provided in Table 1. TLS point clouds have an
accuracy of a few millimeters with a mutual misalignment of 3.5 cm. The obtained coregistration error
was included in the computation of the multitemporal distance confidence.

Table 1. Characteristics of the TLS datasets used for multitemporal marble extraction assessment.

TLS Dataset N◦ Points Registration Error (m) Georeferencing Error (m) Coregistration Error (m)

Piastreta 2016 7,141,309 0.005 0.004
0.035

Piastreta 2017 4,107,555 0.009 0.003

The map of significant changes (Figure 6) shows the morphological variations between the years
2016 and 2017; non-significant changes correspond to stable zones (blue areas in Figure 6). Figure 7
shows the distance between the two point clouds, while the distance uncertainty map is displayed
in Figure 8.
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Figure 6. Map of significant changes. Red values, equal to 1, indicate areas of significant variations
contrary to blue values, equal to 0, that represent no-change.
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Figure 7. Map of computed distance to the closest corresponding point (the measurement unit of the
color bar is meter).



Sensors 2019, 19, 450 9 of 14

 

5 

 

 

Figure 8 
Figure 8. Map of distance uncertainty between corresponding points (the measurement unit of the
color bar is meter).

Changed areas, representing the material extracted during the analyzed time span, were
segmented and merged in order to obtain closed 3D shapes. Meshes were made from segmented 3D
point clouds (Figure 9a). Figure 9b shows the 3D textured model obtained by associating the mesh of a
rocky block with the photos provided by the digital camera. The volume of single extraction areas over
one year of quarrying activity was calculated and results are shown in Table 2; the total amount of
extracted material resulted equal to 4707.5 m3 ± 4%. The estimation of errors in volume computation
of the extracted material was calculated for each mining zone by multiplying the surface area of each
extraction site by the coregistration error between the TLS datasets. The volume computation errors
for some extraction site (i.e., V1, V2, Vn) are provided in Table 2.
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Table 2. Example of extracted material estimation in the analyzed time span.

V1 V2 V3 V4 V5 V6 V7

Volume (m3) 550 633 81.5 159 65 3123 96

Surface area (m2) 772 720 133 288 146 2934 150

Error estimation (%) 5.05 4.09 5.87 6.52 8.08 3.38 5.62

Finally, in order to display a visual summary of the extracted material, a digital multitemporal 3D
map was created in PDF format (Figure 10) by using 3D Systems Geomagic Studio software. In this
file the sites of marble extraction within the Piastreta quarry are represented by individual 3D models
with associated relative volumes in cubic meter (m3).
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Figure 10. Overall Piastreta 3D model with highlighted the single representations of extracted marble
blocks (individual volumes are expressed in m3).

5. Discussion

The change detection analysis of the Piastreta quarry allowed to obtain an understanding of
geomorphic change detection during one-year time span of marble excavation. The experience carried
out has confirmed as TLS technology can be used for this kind of application with rapid times of
execution (one-day survey) and accuracy (mm). In fact, the main advantages in comparison with
the traditional topographic surveying are the size and completeness of the area surveyed in a very
short time, and the very high-level of detail, without having to choose a very limited set of points
to be measured. Nevertheless, the achieved accuracy in volume computation of extracted marble
blocks depends on several factors. The user experience and the foresight in executing the field survey
and data processing play an important role. Among the others, the accuracies of registration and
coregistration steps are related to the care of point cloud cleaning. Multitemporal point clouds must
be properly coregistered in order to minimize the distance between corresponding surface features.
Incompleteness of removal from the point cloud of working tools and machines, as well as wire
in the walls, water on the floor, working dust, etc. leaves noise and compromises the subsequent
analyses. Moreover, additional factors, such as the attention in filtering procedures and the quality of
segmentation and 3D model creation, are important. Lastly, also the geometrical characteristics and
shapes of the investigated surfaces and the material properties may influence the quality of outcomes;
marble translucency and heterogeneous structure must be taken in account because walls surfaces may
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produce significant bias and increased noise in the geometric measurements [42]. The combination
of all these factors may have had a role in this work: considering that the achieved registration and
georeferencing errors are at millimeter level, and that the coregistration between 2016- and 2017-point
clouds was performed on stable areas of the quarry, the reasons given above may have determined a
coregistration error of one order of magnitude higher than the previous ones. However, the achieved
coregistration accuracy can be considered sufficient for the study aim of computing the volume of
extracted material over one year of quarrying activities. The M3C2 plugin of CloudCompare open
source software allowed to obtain a satisfying change detection result starting from the two point
clouds. Its use has shown a series of advantages compared to more diffuse techniques (e.g., DoD).
The algorithm does not require gridding or meshing of the point cloud, hence uncertainties in grid
elevation can be avoided. The M3C2 algorithm works in 3D and, in case of missing data, it does not
compute false distances along the normal direction to avoid errors. The estimation of the spatially
variable confidence interval is a great further advantage because it allows to estimate the accuracy of
local distance measurements. Lague et al. [7] define the confidence interval as the minimum detectable
change at 95% confidence level (i.e., LOD95%) and it can be used to assess if a detected change is
statistically significant or not. The M3C2 algorithm verifies such relation automatically for each point,
and assesses if the distances fall beneath the confidence interval boundary (“non-significant change” in
Figure 6) or above (“significant change”). In our case study, among the 1,634,948 points that constitute
the M3C2-derived cloud with project core points on 2017-point cloud, 1,369,897 were automatically
classified as not relevant for change detection. The obtained average distance uncertainty, equal to
0.04 m with a standard deviation of 0.06 m, can be considered suitable given the TLS technique used
in this study, the spatial resolution of acquisition, and the presence of noisy features in the scenes
(e.g., water, working dust, manpower and machines in movement during data acquisition).

The digital multitemporal map of the quarry, shown in Figure 10, is an example of a 3D digital
cartographic product which can be obtained from change detection analysis like that described in
this study. This deliverable summarizes changes of the active underground extent through time
representing a fundamental tool to support the mining activity planning and control. In order to
produce it, changed areas were segmented and 3D models were created from the point clouds.

6. Conclusions

Underground marble quarries of the Apuan Alps are nowadays dynamic environments
characterized by rapid and large morphological changes thanks to mechanical-technological advances.
For this reason, monitoring of quarrying activities and geomorphic changes through time plays a
fundamental role for work planning in respect of safety and productivity.

Traditional surveying with total station can be labor intensive and time consuming (thus also
expensive). TLS constitutes an ideal technique for modelling the excavation surfaces generating dense
3D point clouds, rapidly providing accurate and detailed geometric info. Surveying and assessment of
morphological changes in underground marble quarries is successfully possible by the terrestrial laser
scanning method as supported by this case study. Moreover, point clouds can be treated using open
source software. 3D change detection analysis can be performed on point clouds related to different
time periods. Surfaces can be created from point clouds and closed 3D shapes volume calculated.
Furthermore, TLS allows quarrymen to gain information about the geomorphic differences of extracted
material and possible unstable zones.

Finally, it is necessary to underline the importance of validating the obtained results for studies
aimed to the volumetric estimation of the extracted material, like the one presented in this paper;
a careful ground truthing of excavated volumes is always necessary for scientists and technicians
engaged in multitemporal change detection analysis. For example, “Structure from Motion” (SfM)
photogrammetry is nowadays considered an alternative and reliable method for collecting data and
to derive dense 3D point clouds [3,24,28,30]. Fast data acquisition, point density and high accuracy
are common big advantages of both, TLS and photogrammetry, if compared to classical survey
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measurements. Multitemporal 3D point clouds obtained from these methodologies may be analyzed
and volume calculations derived. In this case study, volumetric results were validated by traditional
topographic surveys carried out by the technicians of the Piastreta marble quarry, and by functionaries
of Massa Municipality, whose production records were kindly available for comparison but not
for publication.
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