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Abstract

The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been
sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax
was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera
carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The
analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned
above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree
of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear
counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive
correlation between the A+T content of zero-fold degenerate sites (Porp), the ratio of nucleotide substitution frequency at
Porp sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and
amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T
content of four-fold degenerate sites (P4rp) and the ratio of nucleotide substitution frequency at P4¢p sites to all degenerate
sites; however, we found significant negative correlation between ASD and the A+T content of P4ep, and the ratio of
nucleotide substitution frequency at P4rp sites to all degenerate sites. A higher nucleotide substitution frequency at non-
synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect
mitogenome. A poly(T) stretch at the 5’ end of the CR followed by a [TA(A)],,-like stretch was also found. In addition, a highly
conserved G+A-rich sequence block was observed in front of the poly(T) stretch among the ten tephritid species and two
tandem repeats were present in the CR.
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Introduction description and illustration of the B. minax type specimens collected
in 1920 and assigned the species to the genus Bactrocera
(Polistomimetes). White and Wang [7] designated a lectotype of B.
minax and assigned the species to the Bactrocera (Tetradacus); in
addition, they indicated that Bactrocera citri Chen, collected from
China in 1940, should be placed in synonymy with B. minax.

A wide variety of questions about the biology and phylogeny of
B. minax have been addressed with the aid of molecular tools.
These studies could have used two main sources of genetic data;
namely, nuclear sequence data and, most frequently, mitochon-
drial sequence data. Insect mitochondrial DNA (mtDNA) usually
occurs as a double-stranded closed circular molecule, ranging in
i s size from 14-20 kb and generally encoding 13 protein-coding
eastern Himalayan region [5] but B. minax has been reported on genes (PCGs), two ribosomal RNAs (rRNAs) and 22 transfer RNA
th? kumquat Fortunella crassifolia [6] and the boxthorn  Lycium (t(RNAs), which is conserved across bilaterian metazoans with only
chinense [2]. a few exceptions (e.g. loss of a small number of genes in some

B. minax was first collected from India and Sikkim and derived groups) [8]. The molecule contains at least one sequence
designated B. munax Enderlein [1]. Drew [3] provided a detailed of variable length known as the A+T-rich region or control region

The family Tephritidae, generally known as “true” fruit flies,
includes 471 genera and 4257 species distributed throughout the
temperate and tropical areas of the world. Many species are of
critical importance to man either as pests of fruit and vegetable
crops or as beneficial species for the control of weeds [1]. The fruit
fly Bactrocera minax Enderlein (Diptera: Tephritidae), generally
known as the Chinese citrus fruit fly, has been a serious pest of
commercial citrus crops in China for more than half a century [2].
This species has been recorded in southern China, India (West
Bengal and Sikkim) and Bhutan [2,3] wild and cultivated citrus
species [4]. Some hosts are endemic to southern China and the
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Figure 1. Circular map of the mitogenome of B. minax. The genes located outside adjoined the bold line circle (J-strand) indicated that the
direction of transcription is opposite to the genes located inside adjoined the bold line circle (N-strand). B. minax complete mitogenome was jointed
using 21 (F1-F21) fragments shown as single lines within the bold line circle.

doi:10.1371/journal.pone.0100558.g001

(CR), which contains initiation sites for transcription and
replication [9] and ranges in size from tens to several thousands
of base pairs [10-13]. As the results of highly conservative gene
structures among phyla, maternal inheritance, high copy number
and relatively fast evolution rates compared to nuclear DNA [14],
mitochondrial genome (mitogenome) sequences have been re-
garded as useful molecular markers in studies focusing on
comparative and evolutionary genomics, molecular evolution,
phylogenetics, phylogeography and population genetics [15].
Many complete or nearly complete mitogenomes have been
sequenced and comparative analyses at the genus or species level
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have used multiple complete mitochondrial genes instead of one or
partial genes, including molecular systematics [16-20], population
genetics/phylogeography [16], diagnostics [21], molecular evolu-
tionary studies [13,22,23], the frequency and type of gene
rearrangements [24,25] and the evolution of genome size [26].
To date, more than 500 insect mitogenomes have been sequenced
from all orders, including 77 dipterans in 24 families, and are
available in Genbank. In this study, we sequenced the complete
sequence of the mitogenome of B. minax (Diptera: Tephritidae).
Genbank contains information for only ten Tephritidae species;
Bactrocera oleae, Bactrocera tryomi, Bactrocera philippinensis, Bactrocera
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carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta,
Bactrocera cucurbitae, Ceratitis capitata and B. minax. Nine of these
species belong to the genus Bactrocera, including four species of the
B. dorsalis species complex; the other species belongs to the genus
Ceratitzs. Within the nine Bactrocera species, B. philippinensis, B.
carambolae, B. papayae and B. dorsalis belong to the B. dorsalis species
complex, B. correcta, B. cucurbitae and B. tryon: belong to other
species-groups within the subgenus Bactrocera, and B. oleae and B.
minax belong to the subgenus Daculus and Tetradacus, respectively.
Although recent molecular evidence suggests B. papaya, B.
philippinensis and B. dorsalis likely represent one species [27-30],

PLOS ONE | www.plosone.org

Table 2. Summary of B. minax mitogenome.

Gene Direction Location Size IGS Anticodon Start code Stop code
trnl F 1-65 65 0 GAT

trnQ R 66-134 69 10 TG

trnM F 145-213 69 -1 CAT

nad2 F 213-1235 1023 8 ATT TAG
trnW F 1244-1311 68 -8 TCA

trnC R 1304-1365 62 42 GCA

trny R 1408-1475 68 -2 GTA

cox1 F 1474-3009 1536 -1 TCG TAT
trnL VP F 3009-3072 65 5 TAA

cox2 F 3078-3764 687 6 ATG TAA
trnk F 3771-3841 71 -1 (an)

trnD F 3841-3908 68 0 GTC

atp8 F 3909-4070 162 -7 ATT TAA
atpé F 4064-4741 678 -1 ATG TAG
cox3 F 4741-5532 792 6 ATG TAA
trnG F 5539-5604 66 0 TCC

nad3 F 5605-5956 352 0 GTC T
trnA F 5957-6021 65 5 TGC

trnR F 6027-6090 64 28 TCG

trnN F 6119-6183 65 GTT

trnsAN F 6184-6251 68 2 GCT

trnE F 6254-6319 66 18 TTC

trnF R 6338-6403 66 -1 GAA

nads R 6403-8122 1720 14 ATT T
trnH R 8137-8201 65 4 GTG

nad4 R 8206-9546 1341 —-17 ATG TAA
nad4l R 9530-9826 297 2 ATG TAA
trnT F 9829-9893 65 0 TGT

trnP R 9894-9959 66 2 TGG

nadé F 9962-10483 522 -1 ATG TAA
cob F 10483-11619 1137 -2 ATG TAG
trns@N F 11618-11684 67 16 TGA

nad1 R 11701-12640 940 10 ATA T
trnL (N R 12651-12716 66 0 TAG

rrnl R 12717-14049 1333 -1

trnv R 14049-14120 72 0 TAC

rrnS R 14121-14902 782 0

CR 14903-16043 1141 0

doi:10.1371/journal.pone.0100558.t002

with anticipation of the analysis of the B. minax mitogenome, we
compare the sequence and mitogenome origins to the tephritid
species B. oleae, B. dorsalis, B. philippinensis, B. carambolae, B. papayae,
B. correcta, B. cucurbitae B. tryoni and C. capitata.

Materials and Methods

1. Insect and mtDNA extraction, protein-coding genes

and sequencing
We collected B. minax adults from a citrus garden on private
land at Xianli Zeng covering an area of 20 hectares in Wulong
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(Chongqing Province, China). We confirm that Mr Zeng, the
owner of this land, allowed us to conduct the study on this site. No
specific permission was required for this location and our activity.
We confirm the field studies did not involve endangered or
protected species. B. minax adults were stored at 25°Ci in 99% (v/v)
ethanol. Morphological identification was done according to
White and Wang [7]. Total DNA was isolated from three adult
specimens using the DNeasy Blood & Tissue kit (QIAGEN)
according to the manufacturer’s instructions. The whole B. minax
mitogenome sequence was assembled from a single individual
(three repeats). Purified total DNA was used as a template for
amplification of the entire B. minax mitogenome in 21 overlapping
pieces, ranging in size from 388 bp to 1762 bp. PCR primers were
designed as described [31] and by comparison to the available
sequences of B. oleae, B. dorsalis, B. philippinensis, B. carambolae, B.
papayae, B. correcta, B. cucurbitae B. tryoni and C. capitata (Table 1).
Amplification was done in a thermocycler (Eppendorf Mastercy-
cler 5333) in 50 pl reactions containing 5 pl of 25 mM MgCl,,
5ul of 10xPCR Buffer (Mg** free), 8 ul of a dNTP mixture
(2.5 mM each), 3 ul of 10 uM each primer, 0.5 pl of 5 U/ul Tag
polymerase (T'akara Biomedical, Japan) and 2 pl of a 1/10 dilution
of the DNA extract. Amplification conditions were: 5" of pre-PCR
denaturation at 94°C: followed by 34 cycles of 30 s at 94°C, 1 min
at 40-58°C (depending on the primer pair) and 2 min at 72°C.
The F21 fragment (Fig. 1) was amplified using LA 7Tag (Takara
Biomedical, Japan) and a cycle consisting of a pre-PCR
denaturation at 96°C for 2 min followed by 30 cycles of 10 s at
98°C and 2 min at 58°C with a final elongation step of 10 min at
72°C. PCR products were separated by electrophoresis and
purified using a QIAquick Gel Extraction Kit (QJIAGEN). PCR
products were sequenced directly on both strands using amplifi-
cation and additional ad hoc primers as needed. Individual
sequences were combined in a consensus contig using DNAStar
package software (DNAStar Inc.).

2. Sequence analysis and gene annotation

Genes encoded on the B. minax mitogenome were located
initially by comparison to homologous full-length insect mito-
chondrial sequences using DNAStar. Nucleotide sequences of
PCGs were translated using the invertebrate mtDNA genetic code.
tRNA genes were identified initially using tRNAscan-SE Search
Server version 1.21 (available online at http://lowelab.ucsc.edu/
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Table 3. Length and base composition of different genomic regions in 10 tephritid species, B. oleae, B. tryoni, B. philippinensis, B.
carambolae, B. papaya, B. dorsalis, C. capitata, B. minax, B. correcta and B. curcubitae.
Accession No. and speices Whole mtDNA PCGs tRNAs rRNAs CR

Size (A+T)% Size (A+T)% Size  (A+T)% Size  (A+T)% Size  (A+T)%
AY210702 B. oleae 15815 726 11188 70.1 1484 751 2116 77.1 949 86.9
HQ130030 B. tryoni 15925 725 11186 69.6 1467 750 2115 777 951 87.0
DQ995281 B. philippinensis 15915 73.6 11192 711 1466 753 2114 777 949 88.2
EF014414 B. carambolae 15915 736 11190 71.2 1466  75.1 2113 776 950 87.9
DQ917578 B. papayae 15915 735 11190 71.0 1465  75.1 2114 777 950 88.2
DQ 845759 B. dorsalis 15915 73.6 11185 712 1467 752 2123 778 949 88.1
AJ242872 C. capitata 15980 77.5 11272 75.5 1472 768 2123 802 1004 911
HM776033 B. minax 16043 67.3 11187 64.3 1466 722 2115 737 1141 77.6
JX456552 B. correcta 15936 732 11192 71.2 1470 753 2117 779 949 78.6
IN635562 B. curcubitae 15825 72.8 11190 70.7 1467 751 2110 77.8 946 823
doi:10.1371/journal.pone.0100558.t003

tRNAscan-SE/) [32] and refined using tRNAscan-SE and
RNAshapes [33]. The presence and secondary structures of tRNA
genes that could not be located by tRNAscan-SE owing to variant
morphology were annotated manually by comparison to the
sequences of other insect tRNAs [34-37]. Codon usage analysis
and relative synonymous codon usage (RSCU) in PCGs were
calculated using CodonW version 1.4.2 (John Peden, available at
http://codonw.sourceforge.net/index.html) [38]. Potential sec-
ondary structure folds of non-coding sequences and sequences in
the CR were calculated with the DNA mfold web server using
default settings (http://mfold.bioinfo.rpi.edu/cgi-bin/dna-forml.
cgl) [39]. The presence of tandem repeats in the CR was
investigated using the Tandem Repeats Finder available online
(http://tandem.bu.edu/trf/trf.html) [40]. The A+T content and
nucleotide substitution frequency at synonymous sites and non-
synonymous sites (the number of synonymous substitutions per site
and the number of non-synonymous substitutions per site) were
calculated on the basis of the data using MEGA 4.0 [41]. The
correlation analysis was done by the bivariate method using SPSS
version 13 (SPSS Inc., Chicago, IL). The overall average amino
acid distance among each of the PCGs from ten tephritid species
(B. minax, B. oleae, B. tryoni B. dorsalis B. philippinensis, B. carambolae, B.
papayae, B. correcta, B. cucurbitae and C. capitata) were calculated by
the method of Poisson distances by MEGA 4.0 [41]. The complete
B. minax mtDNA sequence was deposited in Genbank under
accession no. HM776033.

Results and Discussion

1. Genome organization

The mitochondrial genome of B. minax is a closed circular
molecule of 16043 bp; hence, it is longer than the other nine
tephritid mitogenomes available (range 15,815 bp in B. oleae to
15,980 bp in C. capitata) but is still well within the range of other
insect mitogenomes (14,503 bp in Rhopalomyia pomum [42] to
19517 bp in Drosophila melanogaster [11]). The gene content is
typical of metazoan mitogenomes, with 13 PCGs (cox1-3, cob, nadi-
6, nad4l, atp6 and atp8), 22 tRNAs and two genes for ribosomal
RNA subunits (7S and rml). A long uninterrupted non-coding
region of 1141 bp, likely homologous to the insect A+T-rich
region, is present between S and #ml, corresponding to position
14,903 to 16,043 in the annotated sequence. The gene order in the
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Figure 2. The AT content percentage of 0-fold degenerate sites, 2-fold degenerate sites and 4-fold degenerate sites in each protein-
coding gene of mitochondrial genomes of 10 tephritid species, B. oleae, B. tryoni, B. philippinensis, B. carambolae, B. papaya, B. dorsalis,
C. capitata, B. minax, B. correcta and B. curcubitae. The black line with short line on the top of each bar represents the standard deviation value

(SD).
doi:10.1371/journal.pone.0100558.g002

B. minax mitogenome corresponds to the typical and plesiomorphic
state hypothesized for the Pancrustacea, and is shared with all
tephritids analyzed to date (Fig. 1).

Genes in the B. minax mitogenome overlap by a total of 43 bp,
distributed in 12 segments from 1 to 17 bp long and are separated
by a total of 178 bp dispersed in 16 intergenic spacers from 2 to
42 bp (without taking the tRNA-like sequence into account;
Table 2). Despite its relatively large size, the B. minax mitogenome
has more overlapping sequences between genes compared to those
of other tephritids; genes overlap by a total of 35 bp at 11
boundaries in B. oleae, 29 bp in seven locations in B. tryont, 27 bp in
five locations in B. dorsalis, 34 bp in ten locations in B. philippinenss,
32 bp in nine locations in B. carambolae, 34 bp in ten locations in B.
papayae, 35 bp in 11 locations in B. correcta, 32 bp in nine locations
in B. cucurbitae and only 3 bp at three boundaries in C. capitata.

2. Nucleotide composition

The overall base composition of B. minax is 38.0% A, 11.2% G,
29.3% T and 21.5% C. Similar to other insect sequences, the B.
minax mitogenome nucleotide composition is biased toward
adenine and thymine (67.3% A+T), which is the lowest value
among the tephritid mitogenomes available. Analyzed separately,

)

2038 -
20.7 1
2 0.6 -

all PCGs (64.3%), tRNAs (72.2%), sRNAs (73.7%) and CR
(77.6%) have the lowest A+T content compared to the other
known tephritid mitogenomes (Table 3).

Considering the two strands separately, the PCGs on the
Majority strand (J-strand, nine PCGs are located on this strand)
(61.5%) have a lower A+T content compared to the Minority
strand (N-strand, the other four PCGs are located on this strand)
(68.9%). Furthermore, PCGs encoded on the J-strand have a
comparable content of A (31.0%) and T (30.5%), whereas PCGs
on the N-strand show a strong bias for T content (46.3%)
compared to A content (22.6% A). The above situation has been
observed in the other tephritid mitogenomes available (data not
shown) and in other insects [34-37,43-50]. However, tRNAs on
the two opposite strands have nearly equal A+T contents, which
has been found in the other nine tephritid species. For three PCG
codon positions, the third codon positions have significantly higher
A+T content than the first and second codon positions owing to
genetic code degeneracies. In particular, T' in each codon position
of PCGs on the N-strand is over-represented. With exception of
the second codon position over-representing T, however, the first
and third codon positions of PCGs show a preponderance of A on

m0-fold degenerate sites
m2-fold degenerate sites
m4-fold degenerate sites

nod2 coxl cox2 atp8 atpé cox3 nod3 nadé cob nodl naddl nadd nad5
Protein-coding genes

Figure 3. The nucleotide substitution frequency at 0-fold degenerate sites, 2-fold degenerate sites and 4-fold degenerate sites in
each protein-coding gene of mitochondrial genomes of 10 tephritid species, B. oleae, B. tryoni, B. philippinensis, B. carambolae, B.
papaya, B. dorsalis, C. capitata, B. minax, B. correcta and B. curcubitae.

doi:10.1371/journal.pone.0100558.g003
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the J-strand and T on the N-strand, which is similar to many insect
mitogenomes [34-37,43-50] (Table 3).

The base compositional bias for A+T in PCGs is reflected in the
relative synonymous codon usage statistics of the B. mnax
mitogenome (Table 4). With the exception of amino acid His,
codons with A or T in the third codon position are generally
strongly over-represented compared to codons terminating with
either G or C. The ratio of G+C-rich (Pro, Ala, Arg and Gly)
codons to A+T-rich codons (Phe, Ile, Met, Tyr, Asn and Lys) in B.
minax PCGs was 0.44, which is higher compared to the other nine
tephritids B. dorsalis (0.29), B. philippinensis (0.29), B. carambolae
(0.30), B. papayae (0.29), B. correcta (0.30), B. cucurbitae (0.32), B. oleae
(0.31), B. tryonz (0.32) and C. capitata (0.23). This demonstrates the
amino acid composition is affected by the lower A+T mutational
bias in B. minax (67.3%) and the stronger A+1 mutational bias in
B. dorsalis (73.6%), B. philippinensis (73.6%), B. carambolae (73.6%), B.
papayae (73.5%), B. correcta (73.2%), B. cucurbitae (72.8%), B. oleae
(72.6%), B. tryoni (712.4%) and C. capitata (77.5%).

With the exception of first codon positions, G is under-
represented compared to C in coding genes on the J-strand (PCGs,
tRNAs, CR and intergenic nucleotides), while the G content is
higher compared to C in coding genes on the N-strand (PCGs,
tRNAs and rRNAs). This base compositional bias is in line with
the general trend in the mitogenome toward a lower G content
[51].

Base compositional heterogeneity and among-site rate variation
(ASRYV) are known to affect phylogenetic inference, resulting in
the identification of incorrect phylogenetic relationships [52]. The
easiest solution is simply to avoid non-stationary genes [53] but
most earlier studies used relatively intuitive mitogenome data
partitioning schemes, including by gene type (PCG, rRNA and
tRNA), by gene, by codon position, by codon and gene, or by the

PLOS ONE | www.plosone.org

Table 5. A+T content percentage and nucleotide substitution frequency at 0-fold degenerate sites (Porp), 2-fold degenerate sites
(P2ep) and 4-fold degenerate sites (P4ep) (the number of substitutions per Poep, P2pp and Puep site)in each PCG of mtgenome of 10
tephritid species, B. oleae, B. tryoni, B. philippinensis, B. carambolae, B. papaya, B. dorsalis, C. capitata, B. minax, B. correcta and B.
curcubitae.
Protein-coding genes Porp P2rp Parp
nucleotide nucleotide nucleotide

A+T percentage substitution A+T percentage substitution A+T percentage substitution

(%) frequency (%) frequency (%) frequency
nad2 70.96+1.41 0.198 74.61+8.66 0.811 74.33+10.99 1.689
cox1 56.53+0.21 0.025 73.31£8.55 0.743 84.93£7.82 1.409
cox2 59.71+0.74 0.074 76.92+7.67 0.624 82.47+8.64 1.306
atp8 68.92+0.81 0.235 81.54£8.66 0.577 83.33£11.86 1.400
atp6 68.762.92 0.459 63.36.22.91 0.227 62.466.84 0.590
cox3 57.46+0.36 0.034 75.10£5.61 0.655 87.344.95 1.266
nad3 68.38+1.05 0.192 76.61:10.74 0.831 82.12*8.50 1.485
nadé 72.59+1.44 0.265 80.12+8.60 0.655 87.68+4.11 1.326
cob 61.62+0.42 0.057 68.66+9.26 0.741 81.14*6.72 1417
nad1 65.54+0.53 0.094 88.33+2.51 0.381 73.72£1.09 1.090
nad4l 71.44+1.44 0.107 87.94+4.12 0.397 83.46+8.32 1.154
nad4 76.42+3.72 0.783 77.49%1.86 0.172 41.72£0.73 0.004
nad5 66.33+£1.23 0.172 85.77+4.83 0.313 85.18£5.45 1.234
Correlation coefficient (r) 0.735 —0.217 0.864
Confidence probability (P) 0.004<0.01 0.477>0.05 0.000<0.01
Note: the correlation analysis used Pearson coefficient under two-tailed test of significance.
doi:10.1371/journal.pone.0100558.t005

strand on which the coding gene is located [15]. Inevitably,
different intuitive partitioning schemes can each result in strong
conflicting topologies, especially at deeper phylogenetic levels
[25,54,55]. Therefore, selection of stationary, reversible composi-
tional homogeneous is vital for reliable phylogenetic inference
[62,56].

Many earlier studies were focused on the A+T content of
different genes or regions to investigate the base compositional
heterogeneity and among-site rate variation ASRV [57]. For
mitogenomes, composition bias of A+T content was verified in
most earlier studies; e.g. A+'T content was usually over-represented
in non-coding regions [58] and the third codon position generally
had stronger A+1 composition bias compared to the other two
codon positions [59] etc.. We asked how variability between PCGs
is related to underlying A+T content and its distribution across
synonymous and non-synonymous sites.

In this study, the A+T content of zero-fold sites (Pypp), two-fold
(Porp) and four-fold degenerate sites (Pyrp) was determined for
each of the PCGs from ten tephritid species (B. minax, B. oleae, B.
tryont B. dorsalis B. philippinensis, B. carambolae, B. papayae, B. correcta,
B. cucurbitae and C. capitata) (Fig. 2). Nucleotide substitution
frequency was calculated in Poyp, Popp and Pypp for each of the
PCGs among five tephritid species (Fig. 3). After analyzing the
correlation between A+T content and nucleotide substitution
frequency for each of the PCGs, we found a significant positive
correlation between A+T content percentage of zero-fold degen-
erate sites (ATor) and nucleotide substitution frequency at Porp
(r=0.735, P=0.004) as well as between A+T content percentage
of four-fold degenerate sites (AT4r) and nucleotide substitution
frequency at Pyrp (r=0.864, P=0.000) (Table 5). Correlation
analysis indicated there is a significant positive correlation between
ATor and ASD (r=0.752, P=0.003), ASD and the nucleotide
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Figure 4. Predicated secondary clover-leaf structures for the 22 tRNA genes of B. minax. The tRNAs are labled with abbreviation of their
corresponding amino acids below each tRNA gene structure. Arms of tRNAs (clockwise from top) are the amino acid acceptor arm, T¥C arm, the
anticodon arm, and dihydrouridine (DHU) arm. (A) J-strand coding tRNAs. (B) N-strand coding tRNAs.

doi:10.1371/journal.pone.0100558.g004

substitution number of zero-fold degenerate sites/the nucleotide
substitution number of all degenerate sites (Rop ) (r=0.983,
P=0.000), ATor and Rgpsan (r=0.760, P=0.003) (Table 6).
Interestingly, the significant positive correlation was observed
between AT,y and the nucleotide substitution number of four-fold
degenerate sites/the nucleotide substitution number of all degen-
erate sites (Ryp/an) (r=0.809, P=0.001); however, there was
significant negative correlation between AT,y and ASD (r=—
0.828, P=0.000), between Rup,,; and ASD (r=-0.970,
P=0.000) (Table 6). On the basis of the above results, we can
hypothesize divergence at the amino acid level of less well
conserved PCGs is due to higher A+T at Pyrp in those genes and/
or lower A+T at Pyyp. On the basis of this result, when we choose
which PCGs are used to analyze phylogenic relationships for
different evolutionary time scales, the A+T content of Pyrp and/or
Pyrp of PCGs could be useful to judge the homogenesis of PCGs.

Nucleotide substitution is considered to be a reflection of
evolution at the molecular level. Many earlier studies indicated the
substitution was directional bias across different genes in the
mitogenome [15]. Some researchers have proposed variation of
A+T% among taxa is associated with directional mutation
pressure and has a phylogenetic component [57,60,61]. In this
study, with the exception of nad4, all PCGs had significantly lower
variation of A+T content among the ten tephritid species at Porp
compared to both Pypp and Pypp sites. We observed that, with the
exception of nad4, Poyp sites had lower nucleotide substitution
frequency compared to both Popp and Pypp sites (Fig. 3). The Porp
of nad4 had a higher nucleotide substitution frequency (0.783)
compared to both Popp (0.172) and Pyrp (0.004), and the Rop/an
was 0.936. As a result of functional constraints, the number of
nucleotide substitution per non-synonymous site is usually lower
than that per synonymous site [62]. In this study, a higher
nucleotide substitution frequency at Popp of nad4 indicates the
non-synonymous nucleotide substitution frequency was higher
compared to the synonymous sites for this gene. Higher number of
nucleotide substitution per non-synonymous site has been
observed at the variable-region genes of immunoglobulins [63]

and some genes of the histocompatibility complex [64] but this is
the first reported occurrence in the mitogenome.

3. Protein-coding genes

With the exception of cox/ and nad3, all protein coding genes
start with an ATN codon, with ATG used in cox2, atp6, cox3, nad4,
nad4l, nad6 and cob, ATT in nad2, atp8 and nad5 and ATA in nadl.
Genes for cox! and nad3 used TCG and GTC as initiation codons,
respectively. The initiation codon for cox! was TCG(S) in B. minax,
which was observed in other Diptera species [54]. GTC being the
initiation codon for nad3 was a new observation in tephritids, but it
1s common in other insects [65].

With the exception of nad5, nad5 and nadl, all PCGs are
terminated by complete stop codons: TAG is used for nad?, atp6
and cob, TAA is used for cox2, atp8, cox3, nad4, nad4! and nad6 and
TA is used for coxI. The remaining genes, nad3, nad5 and nadl, are
terminated by incomplete stop codons ““I".

4, Transfer RNA genes, ribosomal RNA genes and tRNA-
like structure

All of 22 tRNA genes typical of metazoan mitogenomes were
identified in the B. minax mitogenome, and the predicted structures
are shown in Fig. 4. All tRNAs display a typical clover-leaf
secondary structure, except for mS““Y, where the DHU arm
appears to be replaced by seven unpaired nucleotides, a feature
typical of other animal mitochondria [66]. Nuclear magnetic
resonance analysis of the tertiary structure of nematode rnS““Y
suggested such aberrant tRINA can fit the ribosome by adjusting its
structural conformation and function in a way similar to that of
usual tRNAs in the ribosome [67].

Like most insect tRNAs, all B. minax tRNAs have a length of
7 bp for the anticodon loop, 7 bp for the acceptor stem and 5 bp
for anticodon stem. Most of the size variability in the B. minax
tRNA genes originated from length variation in the DHU arms
(loop size 4-9 bp, stem size 3—4 bp) and the TWC arms (loop size
2-9 bp, stem size 3-5 bp); in addition, #md and #mH contained U-
U mismatches. tnSTY encodes an A-C mismatch, tmH encodes
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Table 7. Locations, length and sequences of four shorter intergenic spacers in 10 tephritid species, B. oleae, B. tryoni, B.
philippinensis, B. carambolae, B. papaya, B. dorsalis, C. capitata, B. minax, B. correcta and B. curcubitae.
Species tRNAS"- tRNA" ND5 - tRNA™, tRNA* M- NDT NDT -tRNA-“
Sequence Size (bp) Sequence Size (bp) Sequence Size (bp) Sequence Size (bp)
B. minax ACTAATTACAATTCACTA 18 TGATATATATTTCA 14 TACTAAATATAATTAC 16 AAAAAACAAG 10
B. oleae ACTAAAATAAATACACTA 18 TGATAAATACTTCAC 15 TACTAAATAAAATTA 15 AAAAAACAAG 10
B. tryoni ACTAAATGGAATACACTA 18 TGACAAATATTTCAC 15 TACTAAATTTTATTA 15 AAAAAACAAG 10
B. dorsalis ACTAAATATAATACACTA 18 TGATAAATATTTCAC 15 TACTAAATTCTATTA 15 AAAAAACAAG 10
B. philippinensis ACTAAATATAATGCACTA 18 TGATAAATATTTCAC 15 TACTAAATTTTATTA 15 AAAAAACAAG 10
B. carambolae  ACTAAATATAATACACTA 18 TGATAAATATTTCAC 15 TACTAAATTTTATTA 15 AAAAAACAAG 10
B. papayae ACTAAATATAATACACTA 18 TGATAAATATTTCAC 15 TACTAAATTTTATTA 15 AAAAAACAAG 10
B. correcta ACTAAATTTTATACACTA 18 TGATAAATATTTCAC 15 TACTAAATTATATTA 15 AAAAAACAAG 10
B. curcubitae ~ ACTAAATATAATTCACTA 18 TGATAAATATTTCAC 15 TACTAATTTTTATTA 15 AAAAAACAAG 10
C. capitata ACTAAAAATAATTAACTA 18 TGATAAATAATTTTTCAC 18 TACTAAAATTAATTAA 16 TAAAAACAAG 10
doi:10.1371/journal.pone.0100558.t007
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Figure 5. Alignment of the poly-thymidine stretch at the 5’ end of the control region described by Zhang et al. (1997) among 10
tephritid species, B. oleae, B. tryoni, B. philippinensis, B. carambolae, B. papaya, B. dorsalis, C. capitata, B. minax, B. correcta and B.
curcubitae. The poly-T stretch runs from nucleotide positions from 15974 to 15997 with respect to the B. minax mitogenome in the direction of 5’-3'.

doi:10.1371/journal.pone.0100558.9g005

an A-G mismatch and ¢mRémR has a U-C mismatch in the
acceptor stem. Additionally, #nV contains a U-U mismatch in the
TYC stem.

Anticodon sequences were the same as in B. dorsalis, B. oleae, B.
tryoni and C. capitata, which are considered common for other
insects, including Gryllotalpa orientalis [68], Philaenus spumarius [35],
Phthonandria atrilineata [50] and Artogeia melete [36].

On the basis of the sequence similarity of B. dorsalis, the two
genes coding for the small and the large ribosomal subunits were
located in the B. minax mitogenome between LY and tmV and
between #m} and the CR region. The length of B. minax mnmS and
rmL was 782 bp and 1333 bp, respectively, similar to B. dorsalis, B.
oleae and C. capitata.

5. Intergenic spacers

In B. minax, the two longest intergenic spacers were 42 bp
between tm( and #n) and 28 bp between #mR and tmN. In B.
dorsalis, the second longest intergenic spacer was 45 bp between
trnC and trn). In B. tryoni, the second longest intergenic spacer was
33 bp between #mR and tmN and the third longest intergenic
spacer was 30 bp between tmC and #mY. In B. oleae, the longest
intergenic spacer was 28 bp between tmR and tmN. In B. minax,
however, only a 10 bp intergenic spacer was observed between
trnQ and tmM, which is shorter compared to 66 bp in B. dorsalis,
71 bp in B. tryoni and 47 bp in C. capitata at the same location. Yu
et al. [48] reported the 45 bp intergenic spacer located between
trnC and tmY in B. dorsalis had a clear counterpart in the CR with
the first 33 of 45 bp matching. These counterparts were predicted
to form a small internal stem and a long stem structure pairing
with the partially complementary sequence in the CR. A similar
phenomenon was observed in the B. #ryom: mitogenome, where
both the second longest (33 bp between #mR and #mN) and the
third longest intergenic spacer (30 bp between tn( and #m]) have
clear counterparts (32 out of 33 bases and 25 out of 30 bases,
respectively) on the N-strand of the CR. These two intergenic
spacers have highly significant similarity and their counterparts
were located in the same position of the CR. We asked whether
the 42 bp intergenic spacer located between #nC and tm) in B.
minax had these features. The first 15/42 bp of the spacer have a
clear counterpart in the CR at positions 15,670-15,684. The
42 bp of intergenic spacer was predicted to form two stem-loop
secondary structures with 4 bp loops and one with a 3 bp stem
and the other with a 4 bp stem. The first 15 of the 42 bp formed
one of the two structures; a 4 bp stem with a 4 bp loop and a 3 bp
flanking sequence. The counterpart in the CR also formed a long
stem structure with the neighboring sequence. Yu et al. [48]
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compared the 33 bp counterpart in the CR from B. dorsalis with
the B. oleae CR and found 25 of the 33 bp were identical.
Surprisingly, of the original 33 bases present in the B. minax CR,
23 were identical. Therefore, the results obtained in this study
support the hypothesis that the secondary structures of the
counterparts in both the intergenic spacer and the CR might
have a major role in recombination [48,69].

The four intergenic spacers in B. minax, ISS-1 (18 bp between
tmE and tmF), 1SS-2 (14 bp between nad5 and (RNA™), 1SS-3
(16 bp between mSV“Y and nad!) and 1SS-4 (10 bp between nad!
and imL“™), were observed to be of similar size in the tephritids
B. dorsalis, B. plalippinensis, B. carambolae, B. papayae, B. correcta, B.
cucurbitae, B. oleae and B. tryon: (18 bp, 15 bp, 15 bp and 10 bp) and
C. capitata (18 bp, 18 bp, 16 bp and 10 bp) at the same locations.
All intergenic spacers were found at the same locations and have
highly significant similarity in percentage identity (71.4-100%;
Table 7).

Additionally, all four intergenic spacers have clear counterparts
in the CR of the ten tephritid species (data not shown) but these
intergenic spacers cannot form the secondary structures (even
though some can be predicted to form stem-loop structures with
2-3 bp stems). Some earlier studies focused on longer intergenic
spacers with potential secondary structure and tried to find
original sequences and structures in the CR [48]. Even among the
close tephritid species, however, these longer intergenic spacers
had significantly different features, including sequence, length and
location. Cameron et al. [70] suggested the possibility that stem-
loop structures instead of tRNAs in the 3’ end of PCGs enhance
the rearrangement. Two of four small intergenic spaces locate the
3" end of PCGs without forming stem-loop structures. These
results might explain why no rearrangement was found in tephritid
species. This is the first report of shorter intergenic spacers with
highly conserved sequences and locations among four tephritid
species, which should attract more attention to the shorter
intergenic spacers, even though the functions of these are not clear.

6. CR

The CR has a high A+T content among the mitochondrial
genes of both vertebrates and invertebrates, and the initiation of
replication is one of the most interesting features of this region [8].
Zhang and Hewitt [71] proposed conserved structural features on
the basis of comparison of the CRs of one dipteran and two
orthopteran species. These features include: (1) a poly(T) stretch at
the 5" end of the CR; (2) a [TA(A)],-like stretch after the poly(T)
stretch; (3) a highly conserved stem-loop structure; (4) a stem-loop
structure with a highly conserved flanking sequence of a TATA
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consensus at the 5" end and a G(A), T consensus at the 3’ end; and
(5) a G+A-rich sequence downstream of the secondary structure.
The B. minax CR was found to have three of the five features
proposed by Zhang and Hewitt [71].

The CR from four tephritid species, including B. mnax,
presented a conspicuous poly(T) stretch at the 5" end. This
sequence stretch has been found to be conserved within
hymenoptera [49]. Further, the poly(T) stretch has been observed
to be followed by a [TA(A)],-like stretch (Fig. 5). Our results
suggest that this poly(T) region might be involved in the control of
transcription and/or replication, or have some other unknown
functions [10]. Additionally, a highly conserved G+A-rich
sequence block was found in front of the poly(T) stretch among
the four tephritid species and these sequences can be predicted to
form secondary structures with a stem-loop. The highly conserved
G+A-rich sequence with a poly(T) stretch nearby has been found
in other dipteran and orthopteran species [71].

In the B. minax CR, more than ten sequences have the potential
to form stem-loop structures with perfect matches and loops of
variable size. In addition, several other stem-loop structures with
some mismatch in the stems can be predicted. However, obvious
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stem-loop structures with conserved flanking sequences were not
found in the CR of these ten tephritid species. In addition, The B.
minax CR does not contain any tRNA-like sequence, but contains
two tandem repeats ranging in size from 33 to 45 bp. The
sequence TATTAATTTTATTAAA occurred twice and the
sequence CCTTTTAAATTTTCC occurred three times. The
two repeats were located at positions from 15,325 to 15,357 and
from 15,858 to 15,903, respectively. For other tephritid species, we
found one tandem repeat in the CR of B. doraslis, B. correcta, B.
curcubitae and C. capitata, two in B. philippinensis and B. carambolae,
three in B. oleae and B. papaya but none in B. tryont.
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