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Abstract
We compare the degrees of enumerability and the closed Medvedev degrees and find
thatmany situations occur. There are nonzero closed degrees that do not bound nonzero
degrees of enumerability, there are nonzero degrees of enumerability that do not bound
nonzero closed degrees, and there are degrees that are nontrivially both degrees of enu-
merability and closed degrees.We also show that the compact degrees of enumerability
exactly correspond to the cototal enumeration degrees.
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1 Introduction

The purpose of this work is to explore the distribution of the so-called degrees of
enumerability with respect to the closed degrees within the Medvedev degrees. Both
the enumeration degrees and the Turing degrees embed into the Medvedev degrees.
The Medvedev degrees corresponding to enumeration degrees are called degrees of
enumerability, and the Medvedev degrees corresponding to Turing degrees are called
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degrees of solvability. The embedding of theTuring degrees into theMedvedev degrees
is particularly nice. The degrees of solvability are all closed (being the degrees of sin-
gleton sets), and the collection of all degrees of solvability is definable in theMedvedev
degrees. On the other hand, whether the degrees of enumerability are definable in the
Medvedev degrees is a longstanding open question of Rogers [15,16].

In light of Roger’s question and the nice definability and topological properties
of the degrees of solvability, we find it natural to investigate the behavior of the
degrees of enumerability with respect to the closed degrees. Together, our main results
show that the relation between the degrees of enumerability and the closed degrees is
considerably more nuanced than the relation between the degrees of solvability and
the closed degrees.

• There are nonzero closed degrees that do not bound nonzero degrees of enu-
merability. In fact, there are nonzero degrees that are closed, uncountable, and
meet-irreducible that do not bound nonzero degrees of enumerability (Proposi-
tion 6).

• There are nonzero closed (indeed, compact) degrees of enumerability that do
not bound nonzero degrees of solvability (Theorem 19). Moreover, the compact
degrees of enumerability exactly correspond to the cototal enumeration degrees
(Theorem 17).

• There are nonzero degrees of enumerability that do not bound nonzero closed
degrees (Theorem 22).

We work in Baire space and interpret an arbitrary set A ⊆ ωω as representing
an abstract mathematical problem, namely the problem of finding (or, computing) a
member of A. For this reason, we refer to subsets of Baire space as mass problems.
For setsA,B ⊆ ωω, we say thatAMedvedev (or strongly) reduces to B, and we write
A ≤s B, if there is a Turing functional � such that �(B) ⊆ A, meaning that �( f ) is
total and is inA for every f ∈ B. Under the interpretation of subsets of Baire space as
mathematical problems, A ≤s B means that problem B is at least as hard as problem
A in a computational sense because every solution to problem B can be converted into
a solution to problem A by a uniform computational procedure.

Medvedev reducibility induces an equivalence relation calledMedvedev (or strong)
equivalence in the usual way: A ≡s B if and only if A ≤s B and B ≤s A. The
≡s-equivalence class degs(A) = {B : B ≡s A} of a mass problem A is called
its Medvedev (or strong) degree, and the collection of all such equivalence classes,
ordered by Medvedev reducibility, is a structure called the Medvedev degrees. The
Medvedev degrees form a bounded distributive lattice (in fact, a Brouwer algebra),
with least element 0 = {A : A has a recursive member} and greatest element 1 = {∅}.
Joins and meets in the Medvedev degrees are computed as follows:

degs(A) ∨ degs(B) = degs(A ⊕ B)

degs(A) ∧ degs(B) = degs(0
�A ∪ 1�B).

For joins,A⊕B = { f ⊕ g : f ∈ A and g ∈ B}, where f ⊕ g is the usual Turing join
of f and g: ( f ⊕g)(2n) = f (n) and ( f ⊕g)(2n+1) = g(n). For meets, 0�A∪1�B
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is the set obtained by prepending 0 to every function in A, prepending 1 to every
function in B, and taking the union of the resulting sets.

Under the interpretation of mass problems as mathematical problems, problem
A⊕B corresponds to the problem of solving problemA and solving problem B, and
problem 0�A ∪ 1�B corresponds to the problem of solving problem A or solving
problem B. Medvedev introduced the structure that now bears his name in [11]. For an
introduction to the Medvedev degrees, including its origins and motivation, see [16,
Chapter 13.7]. For surveys on the Medvedev degrees and related topics, see [6,22].
For recursive aspects of the Medvedev degrees, see [5]. For algebraic aspects of the
Medvedev degrees and applications to intermediate logics, see for instance [8,18,21].

1.1 Notation

We use the following notation and terminology regarding strings and trees. Denote by
ω<ω the set of all finite strings of natural numbers, and denote by 2<ω the set of all
finite binary strings. For σ ∈ ω<ω, |σ | denotes the length of σ . We denote the empty
string by ∅. For σ, τ ∈ ω<ω, σ ⊆ τ means that σ is an initial segment of τ , and σ�τ

denotes the concatenation of σ and τ . Similarly, for σ ∈ ω<ω and f ∈ ωω, σ ⊂ f
means that σ is an initial segment of f , i.e., (∀n < |σ |)( f (n) = σ(n)), and σ� f
denotes the concatenation of σ and f :

(σ� f )(n) =
{

σ(n) if n < |σ |
f (n − |σ |) if n ≥ |σ |.

If σ ∈ ω<ω and f ∈ ωω, σ# f denotes the result of replacing the initial segment of f
of length |σ | by σ :

(σ# f )(n) =
{

σ(n) if n < |σ |
f (n) if n ≥ |σ |.

For σ ∈ ω<ω and A ⊆ ωω, we define σ�A = {σ� f : f ∈ A} and σ#A =
{σ# f : f ∈ A}. Finally, for σ ∈ ω<ω and n ≤ |σ |, σ �n denotes the initial segment
〈σ(0), . . . , σ (n−1)〉 of σ of length n. Similarly, for f ∈ ωω and n ∈ ω, f �n denotes
the initial segment 〈 f (0), . . . , f (n − 1)〉 of f of length n.

A tree is a set T ⊆ ω<ω that is closed under initial segments: (∀σ, τ ∈ ω<ω)((σ ⊆
τ and τ ∈ T ) → σ ∈ T ). A node σ in a tree T is a leaf if there is no τ ⊃ σ with
τ ∈ T . A tree T is finitely branching if for every σ ∈ T there are at most finitely
many strings τ ∈ T with |τ | = |σ | + 1. A string σ ∈ ω<ω is bounded by an h ∈ ωω

(or h-bounded) if (∀n < |σ |)(σ (n) < h(n)). Likewise, a tree T is h-bounded if
(∀σ ∈ T )(σ is h-bounded). For b ∈ ω, b-bounded means bounded by the function
that is constantly b. An f ∈ ωω is an infinite path through a tree T if ∀n( f �n ∈ T ).
The subset of Baire space consisting of all infinite paths through a tree T is denoted by
[T ]. The closed subsets of Baire space are exactly those of the form [T ] for a tree T ,
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and the compact subsets of Baire space are exactly those of the form [T ] for a finitely
branching tree T .

Throughout, we refer to a standard listing (�e : e ∈ ω) of all Turing functionals
on Baire space. If � is a Turing functional and σ is a finite string of natural numbers,
then �(σ) denotes the longest string τ such that (∀m < |τ |)(τ (m) = �(σ)(m)↓)).
We also refer to a standard listing (�e : e ∈ ω) of all enumeration operators. If� is an
enumeration operator and φ is a partial function, then �(φ) stands for �(graph(φ)).
Recall that 〈·, ·〉 : ω2 → ω is the usual recursive Cantor pairing function and that
graph(φ) = {〈n, y〉 : n ∈ dom(φ) and φ(n) = y}.

For further background concerning recursion theory, trees, and the topology of
Baire space, we refer the reader to standard textbooks such as [14,16].

1.2 Degrees of solvability and degrees of enumerability

As discussed in the introduction, part of the interest in the Medvedev degrees comes
from the fact that the structure embeds both the Turing degrees and the enumeration
degrees. Singleton subsets of Baire space are called problems of solvability, and their
correspondingMedvedev degrees are called degrees of solvability. It is easy to see that
the assignment degT( f ) �→ degs({ f }) embeds the Turing degrees into the Medvedev
degrees, preserving joins and the least element, and that the range of this embedding
is exactly the degrees of solvability. Moreover, the degrees of solvability are definable
in the Medvedev degrees [5,11] (see also [16,22]).

To embed the enumeration degrees into the Medvedev degrees, given a nonempty
A ⊆ ω, let

EA = { f : ran( f ) = A}.
EA is called the problem of enumerability of A, and it represents the problem of
enumerating the set A. The corresponding Medvedev degree EA = degs(EA) is called
the degree of enumerability of A. For nonempty A, B ⊆ ω, it is easy to see that
A ≤e B if and only if EA ≤s EB . This gives rise to an embedding dege(A) �→ EA

of the enumeration degrees into the Medvedev degrees. The embedding preserves
joins and the least element, and the range of the embedding is exactly the degrees of
enumerability [11] (see also [16,22]). Again we mention that, contrary to definability
of the degrees of solvability, it is still an open question (see Rogers [15,16]) whether
the degrees of enumerability are definable, or at least invariant under automorphisms,
in the Medvedev degrees.

The following lemma (which we state and prove for later reference) is well-known.
It corresponds to the fact that the Turing degrees embed (again via an embedding that
preserves joins and the least element) into the enumeration degrees of total functions.

Lemma 1 If f : ω → ω is total, then Egraph( f ) ≡s { f }.
Proof Clearly Egraph( f ) ≤s { f } via the Turing functional�( f )(n) = 〈n, f (n)〉. To see
that { f } ≤s Egraph( f ), let� be theTuring functional such that, for every total g : ω → ω

and n ∈ ω, �(g)(n) searches for the least k such that g(k) = 〈n, y〉 for some y, and
outputs y. Then �(g) = f whenever ran(g) = graph( f ), so { f } ≤s Egraph( f ). ��
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In analogy with the common terminology used in the enumeration degrees, we
say that a problem of enumerability E is total if E ≡s { f } for some total f . That
is, a problem of enumerability is total if it is Medvedev-equivalent to a problem of
solvability. Likewise,we say that a degree of enumerability is total if it is theMedvedev
degree of a total problem of enumerability. Now recall that an A ⊆ ω is quasiminimal
if A is not r.e. and there is no nonrecursive total f with f ≤e A (meaning, as usual,
that there is no nonrecursive total f with graph( f ) ≤e A). We say that a problem
of enumerability E is quasiminimal if E ≡s EA for a quasiminimal A. Likewise, we
say that a degree of enumerability is quasiminimal if it is the Medvedev degree of a
quasiminimal problem of enumerability. Lemma 1 implies the following lemma.

Lemma 2 If EA is a quasiminimal problem of enumerability, then 0 <s EA and EA �≡s
{ f } for every total f (in fact { f } �s EA for every nonrecursive total f ).

Both the degrees of solvability and the degrees of enumerability enjoy the algebraic
property of meet-irreducibility. Recall that an element a of a lattice L is called meet-
reducible if it is the meet of a pair of strictly larger elements: (∃b, c ∈ L)(b >

a and c > a and a = b ∧ c). An element of a lattice is called meet-irreducible if
it is not meet-reducible. It is well-known that, in a distributive lattice L such as the
Medvedev degrees, an element a is meet-irreducible if and only if (∀b, c ∈ L)((a ≥
b ∧ c) → (a ≥ b or a ≥ c)) (see [2, Section III.2]).

We now recall some helpful terminology and a lemma before proving that the
degrees of solvability and the degrees of enumerability are meet-irreducible. These
facts are known in the literature, but we include proofs for the sake of completeness.
For a mass problem A and a σ ∈ ω<ω, let Aσ = { f ∈ A : σ ⊂ f }. Call a mass
problem A uniform if Aσ ≤s A whenever σ ∈ ω<ω is such that σ ⊂ f for some
f ∈ A.

Lemma 3 [5, Corollary 2.8] Every uniform mass problem has meet-irreducible
Medvedev degree.

Proof Suppose thatA is a uniform mass problem and that B and C are arbitrary mass
problems such that 0�B ∪ 1�C ≤s A. We may assume that A �= ∅ as clearly 1 is
meet-irreducible. Let� be such that�(A) ⊆ 0�B∪1�C. Choose any f ∈ A, and let
σ ⊂ f be such that�(σ)(0)↓. Let b = �(σ)(0), and observe that b ∈ {0, 1}. Suppose
for the sake of argument that b = 0. Then, as every f ∈ Aσ begins with σ and is inA,
we have that �( f )(0) = 0 for every f ∈ Aσ , thus yielding B ≤s 0�B ≤s Aσ ≤s A.
Similarly, if b = 1, then C ≤s A. Thus either B ≤s A or C ≤s A. So A has meet-
irreducible degree. ��
Proposition 4 [11,20] In the Medvedev degrees, every degree of solvability is meet-
irreducible, and every degree of enumerability is meet-irreducible.

Proof It suffices to prove that the degrees of enumerability are meet-irreducible (see
[20, Theorem 4.5]) because every degree of solvability is also a degree of enumerabil-
ity. (It is also easy to simply observe that if 0�B ∪ 1�C ≤s { f }, then either B ≤s { f }
or C ≤s { f }.)
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Let EA be the degree of enumerability of A ⊆ ω. The proposition follows from
Lemma 3, as it is easy to see thatA = EA is uniform: if σ ⊂ f for some f ∈ EA, just
consider the reduction Aσ ≤s A given by �( f ) = σ� f . ��

In a similar spirit, Dyment proved that if B is a countable (or finite) mass problem,
if EA is the problem of enumerability of A ⊆ ω, and if B ≤s EA, then there is a g ∈ B
such that g ≤e A [5, Theorem3.4]. Call aMedvedev degree countable if it is the degree
of a countable (or finite) mass problem, and call it uncountable otherwise. Dyment’s
result implies that if E is a nontotal degree of enumerability, then E is uncountable [5,
Corollary 3.14].

2 Comparing degrees of enumerability and closed degrees

A Medvedev degree is called closed if it is of the form degs(C) for a closed C ⊆ ωω.
Every degree of solvability is closed because singletons are closed. Thus there are
closed degrees of enumerability because every degree of solvability is also a degree
of enumerability. It is, however, easy to produce examples of closed degrees that are
not degrees of enumerability. Let f , g ∈ ωω be such that f |T g. Then degs({ f , g})
is closed, but it is not a degree of enumerability because it is meet-reducible (as
degs({ f , g}) = degs({ f }) ∧ degs({g})), whereas all degrees of enumerability are
meet-irreducible by Proposition 4. In fact, by the discussion following Proposition 4,
we know that a degree of enumerability must be meet-irreducible and either total (i.e.,
a degree of solvability) or uncountable. This begs the question of whether there are
Medvedev degrees that are closed, meet-irreducible, and uncountable, yet not degrees
of enumerability. We show that the Medvedev degree of the {0, 1}-valued diagonally
nonrecursive functions is such a degree.

Recall that f ∈ ωω is diagonally nonrecursive (DNR for short) if ∀e(�e(e)↓ →
f (e) �= �e(e)). Let DNR2 = { f ∈ 2ω : f is DNR}.
Lemma 5 Let T ⊆ ω<ω be an infinite h-bounded tree for some h ∈ ωω. If A ⊆ ω is
such that EA ≤s [T ], then A is r.e. in T ⊕ h.

Proof Let � be such that �([T ]) ⊆ EA. Using T ⊕ h as an oracle, enumerate the set

B = {n : ∃k(∀ h-bounded σ with |σ | = k)(σ ∈ T → n ∈ ran(�(σ)))}.

We show that B = A, thus showing that A is r.e. in T ⊕ h.
Suppose that n ∈ B. Let k be such that n ∈ ran(�(σ)) whenever σ ∈ T has length

k. Let f ∈ [T ]. Then f � k ∈ T , so n ∈ ran(�( f � k)). However, ran(�( f )) = A
because �( f ) ∈ EA, so it must be that n ∈ A. Hence B ⊆ A.

Now suppose that n /∈ B. Then for every k there is an h-bounded σ of length k
with σ ∈ T but n /∈ ran(�(σ)). So the subtree S ⊆ T given by S = {σ ∈ T : n /∈
ran(�(σ))} is infinite. By König’s lemma, there is a path f ∈ [S] ⊆ [T ]. However,
n /∈ ran(�( f )) = A, giving n /∈ A as desired. ��

In the next proposition, our proof that degs(DNR2) is uncountable relies on the
following fact. IfA ⊆ 2ω is a nonempty 	0

1 class with no recursive member and B is
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a countable mass problem with no recursive member, then B �s A. This fact follows
immediately from [7, Theorem 2.5], which essentially states that such an A must in
fact have continuum-many members that are all pairwise Turing incomparable and
also all Turing incomparable with all members of B. So in fact B �w A, where ≤w
is Muchnik reducibility: X ≤w Y if (∀g ∈ Y)(∃ f ∈ X )( f ≤T g). That B �s A can
also be deduced from the well-known fact that the image of a recursively bounded
	0

1 class under a Turing functional is another recursively bounded 	0
1 class (see

[17, Theorem 4.7]), which is easier to prove than [7, Theorem 2.5]. Suppose for a
contradiction that B ≤s A via the Turing functional �. Then B0 = �(A) ⊆ B is a
countable recursively bounded 	0

1 class and therefore must have a recursive member,
contradicting that B has no recursive member. This argument can also be used to show
that B �w A because if B ≤w A, then (see [17, Lemma 6.9]) there is a nonempty 	0

1
class A0 ⊆ A such that B ≤s A0, and then the argument can be repeated with A0 in
place of A.

Proposition 6 The Medvedev degree degs(DNR2) is closed, meet-irreducible, and
uncountable, yet also not a degree of enumerability (in fact, it does not bound any
nonzero degree of enumerability).

Proof It is well-known that DNR2 is a	0
1 class because DNR2 = [T ] for the recursive

tree

T = {σ ∈ 2<ω : (∀e < |σ |)(�e(e) halts within |σ | steps → σ(e) �= �e(e))}.

By the above discussion, if B is a countable mass problem with no recursive member,
then B �s DNR2. Hence degs(DNR2) is uncountable. That degs(DNR2) is meet-
irreducible follows from Lemma 3, as it is easy to see that A = DNR2 is uniform.
If σ ⊂ f for an f in DNR2, consider the reduction procedure Aσ ≤s A given by
�( f ) = σ# f .

That degs(DNR2) is not a degree of enumerability follows from Lemma 5. We
know that DNR2 = [T ] for a recursive tree T ⊆ 2<ω. Thus if EA ≤s DNR2 for some
A ⊆ ω, then A would have to be r.e. by Lemma 5. However, if A is r.e., then EA would
have a recursive member, in which case DNR2 �s EA. Thus there is no A such that
DNR2 ≡s EA. In fact DNR2 does not bound any nonzero degree of enumerability. ��

If EA �= 0 and EA is not quasiminimal, then there are nonrecursive functions f
such that { f } ≤s EA, so EA bounds some nonzero closed degree. As observed in [9],
there are also quasiminimal degrees of enumerability EA that bound nonzero closed
degrees. Given an infinite set A, consider the mass problem

CA = { f : f is one-to-one and ran( f ) ⊆ A}.

As observed in [3], CA is closed, degs(CA) ≤s EA, and, if A is immune (meaning
that A has no infinite r.e. subset), then degs(CA) �= 0. So, if A is immune and of
quasiminimal e-degree (which is the case, for instance, if A is a 1-generic set, see [4]),
then we have a quasiminimal degree of enumerability which bounds a nonzero closed
degree. On the other hand, if A contains an infinite set B such that A �e B, then
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EA �s degs(CA) because in this case CA ≤s EB (as CB ⊆ CA) but EA �s EB . This
gives examples of sets A, even of total e-degree, for which 0 <s degs(CA) <s EA.

Proposition 7 There is a total f : ω → ω such that degs (Cgraph( f )) �= 0 and
Cgraph( f ) <s Egraph( f ).
Proof By the above remarks and by Lemma 1, consider two biimmune sets A, B
with A |T B, and let f = χA ⊕ χB (where χZ denotes the characteristic function
of Z ). Then graph( f ) is immune, and it contains an infinite subset (for instance
{〈2x, f (2x)〉 : x ∈ ω}) to which it does not Turing-reduce, and hence, by totality, to
which it does not e-reduce. ��

However, if f is total, then Cgraph( f ) ≡s Egraph( f ) is almost true, as argued in the
following proposition.

Proposition 8 If f : ω → ω is total, then there is a set B ≡e graph ( f ) such that
CB ≡s Egraph( f ).
Proof Given f total, let B = {σ ∈ ω<ω : σ ⊂ f }. It is easy to see that f ≡e B, so
Egraph( f ) ≡s EB . To see that EB ≤s CB , let � be a Turing functional such that, for
every g and n, �(g)(n) searches for an m such that g(m) is a string σ with |σ | ≥ n
and then outputs σ � n. Then ran(g) is an infinite subset of B whenever g ∈ CB , in
which case ran(�(g)) = B. Hence � witnesses that EB ≤s CB . ��

While it is true that every total degree of enumerability bounds (and in fact is equiv-
alent to) a closed mass problem, if we move away from totality, then all possibilities
may occur. That is, there are nontotal (in fact quasiminimal) degrees of enumerability
that are closed (in fact compact, see Theorem 19 below), and there are nonzero degrees
of enumerability that do not bound nonzero closed degrees (see Theorem 22 below).

2.1 Compactness and cototality

We make use of uniformly e-pointed trees. This notion was originally introduced by
Montalbán [13] in the context of computable structure theory (see also [12]), and it
has since been studied by McCarthy in the context of the enumeration degrees [10].
Montalbán’s uniformly e-pointed trees are subtrees of 2<ω, which we refer to as uni-
formly e-pointed trees w.r.t. sets. We find it convenient to work with finitely branching
subtrees of ω<ω instead, so we define uniformly e-pointed trees w.r.t. functions1.

Definition 9 For a function g ∈ 2ω, let g+ = {n : g(n) = 1} denote the set of which
g is the characteristic function.

Definition 10 • A uniformly e-pointed tree with respect to sets is a tree T ⊆ 2<ω

with no leaves for which there is an enumeration operator � such that (∀g ∈
[T ])(�(g+) = T ).

1 The authors are thankful to Alexandra A. Soskova and Mariya I. Soskova for bringing to their attention,
after a first draft of this paper was completed, the notion of uniformly e-pointed tree w.r.t. sets, called simply
uniformly e-pointed by Montalbán and McCarthy.
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• A uniformly e-pointed tree with respect to functions is a finitely branching tree
T ⊆ ω<ω with no leaves for which there is an enumeration operator � such that
(∀g ∈ [T ])(�(g) = T ). (Recall that, as � is an enumeration operator, �(g)
means �(graph(g)).)

We show that the twonotions of uniforme-pointedness coincide up to e-equivalence.

Proposition 11 Every uniformly e-pointed tree w.r.t. sets is a uniformly e-pointed tree
w.r.t. functions.

Proof Let T ⊆ 2<ω be a uniformly e-pointed tree w.r.t. sets. Let � be an enumeration
operator such that (∀g ∈ [T ])(�(g+) = T ). Fix an enumeration operator � such that
(∀A ⊆ ω)(�(χA) = A). By composing � and �, we get an enumeration operator �

such that (∀g ∈ [T ])(�(g) = T ). Thus T is a uniformly e-pointed treew.r.t. functions.
��

Proposition 12 Let T ⊆ ω<ω be a uniformly e-pointed tree w.r.t. functions. Then there
is a uniformly e-pointed tree S ⊆ 2<ω w.r.t. sets such that S ≡e T . (In fact we may
choose S so that [S] consists of exactly the characteristic functions of the graphs of
elements of [T ].)
Proof Let T ⊆ ω<ω be a uniformly e-pointed tree w.r.t. functions. Say that γ ∈ 2<ω

is consistent with T if there is a σ ∈ T such that

(∀〈i, n〉 < |γ |)(i < |σ | and (γ (〈i, n〉) = 1 ↔ σ(i) = n)).

Notice that if η ⊆ γ ∈ 2<ω and γ is consistent with T , then η is also consistent with
T . Let

S = {γ ∈ 2<ω : γ is consistent with T }.

Then S is a tree, S has no leaves because T has no leaves, and it is immediate to check
that S ≤e T . To see that T ≤e S, observe that

T = {σ ∈ ω<ω : (∃γ ∈ S)(∀i < |σ |)(〈i, σ (i)〉 ∈ dom(γ ) and γ (〈i, σ (i)〉) = 1)}.

Furthermore, [S] = {χgraph( f ) : f ∈ [T ]}. If f ∈ [T ], then χgraph( f ) �n is consistent
with T for every n (as witnessed by f � n), thus χgraph( f ) � n ∈ S for every n, thus
χgraph( f ) ∈ [S]. Conversely, suppose that f /∈ [T ]. Then there is an n such that
f �n /∈ T . We want to find an m such that χgraph( f ) �m /∈ S in order to conclude that
χgraph( f ) /∈ [S]. By the fact that T is finitely branching, let k be large enough so that
(∀i < |σ |)(σ (i) < k) whenever σ ∈ T has length ≤ n. Let m > 〈n, k〉. Suppose for
a contradiction that χgraph( f ) �m is consistent with T , and let σ witness this. Then it
must be that |σ | ≥ n and (∀i < n)(σ (i) = f (i)). Thus σ ⊇ f �n, contradicting that
f �n /∈ T . Thus χgraph( f ) �m is not consistent with T , so χgraph( f ) �m /∈ S.
To finish,we need to find an enumeration operator� such that (∀g ∈ [S])(�(g+) =

S). So let � be an enumeration operator such that (∀ f ∈ [T ])(�( f ) = T ), and let
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� be an enumeration operator witnessing that S ≤e T . By composing � and �, we
get an enumeration operator � such that (∀ f ∈ [T ])(�( f ) = S). However, this is
exactly what we want because we have shown that if g ∈ [S], then g = χgraph( f ) for
some f ∈ [T ] and therefore that if g ∈ [S] then g+ = graph( f ) for some f ∈ [T ].
Thus (∀g ∈ [S])(�(g+) = S), as desired (recall that �( f ) = �(graph( f ))). ��

A set A is called cototal if A ≤e A, and an e-degree is called cototal if it contains a
cototal set [1]. Every uniformly e-pointed treew.r.t. sets is cototal by [10, Theorem4.7],
and, by [10, Corollary 4.9.1], an e-degree is cototal if and only if it contains a uniformly
e-pointed tree w.r.t. sets.

Proposition 13 An enumeration degree is cototal if and only if it contains a uniformly
e-pointed tree w.r.t. functions.

Proof An e-degree is cototal if and only if it it contains a uniformly e-pointed tree
w.r.t. sets by [10, Theorem 4.7] if and only if it contains a uniformly e-pointed tree
w.r.t. functions by Propositions 11 and 12.

We also find it interesting to give a more direct proof that every uniformly e-pointed
tree w.r.t. functions has cototal enumeration degree. This can be accomplished via the
easy characterization of the cototal enumeration degrees in terms of the skip operator
from [1].

Recall that (�e : e ∈ ω) is a standard list of all enumeration operators, and recall
the following definitions.

• For an A ⊆ ω, KA = {〈e, x〉 : x ∈ �e(A)}.
• For an A ⊆ ω, A� = KA is called the skip of A.

By [1, Proposition 1.1], a set A ⊆ ω has cototal enumeration degree if and only if
A ≤e A�.

Let T be a uniformly e-pointed tree w.r.t. functions. We show that T ≤e T � and
therefore that T has cototal enumeration degree. Let � be an enumeration operator
such that (∀ f ∈ [T ])(�( f ) = T ). For each n ∈ ω, let T n = {σ ∈ T : |σ | = n} denote
level n of T . For b, n ∈ ω, let bn = {σ ∈ ω<ω : |σ | = n and (∀i < |σ |)(σ (i) < b)}
denote the set of all b-bounded strings of length n. Let B = {〈n, b〉 : T n � bn �= ∅}.
That is, B is the set of all pairs 〈n, b〉 where b is not big enough to bound every entry
of every string in T n . We have B ≤e T , thus B ≤1 KT , and therefore B ≤e T �.
The point is that if 〈n, b〉 ∈ B, then T n ⊆ bn , which allows us enumerate T from an
enumeration of T ⊕ B. Indeed,

T = {σ : (∃〈n, b〉 ∈ B)(∃L ⊆ bn ∩ T )(∀τ ∈ bn � L)(σ ∈ �(τ))}.

That is, we know that σ ∈ T when we see a bound T n ⊆ bn and a set of strings
L ⊆ bn that are not in T such that the remaining τ ∈ bn � L all satisfy σ ∈ �(τ).
Thus T ≤e T ⊕ B ≤e T �, so T has cototal enumeration degree. ��

We extend the cototal terminology to the degrees of enumerability by saying that
EA is cototal if A has cototal enumeration degree. To conclude this section, we show
that cototality and compactness are equivalent properties of a degree of enumerability.
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Lemma 14 Let A ⊆ ω be nonempty, and let C ⊆ ωω be closed such that C ≤s EA. Then
there is a tree T ⊆ ω<ω with no leaves such that T ≤e A and [T ] ⊆ C. Furthermore,
if C is compact, then T is finitely branching.

Proof Let � be a Turing functional such that �(EA) ⊆ C, with C closed. Let

T = {σ : ∃α(ran(α) ⊆ A and σ ⊆ �(α))}.

Then T is a tree and T ≤e A. To see that T has no leaves, let σ ∈ T , and let α be such
that ran(α) ⊆ A and σ ⊆ �(α). Let f : ω → ω be such that α ⊂ f and ran( f ) = A.
Let β be such that α ⊆ β ⊂ f and �(β)(|σ |)↓. Then σ � �(β) ∈ T , so σ is not a
leaf. To see that [T ] ⊆ C, we consider a g ∈ [T ] and show that g is in the closure of
C. To this end, let n ∈ ω, let α be such that ran(α) ⊆ A and g � n ⊆ �(α), and let
f : ω → ω be such thatα ⊂ f and ran( f ) = A. Then�( f ) ∈ C and�( f )�n = g �n.
Hence g is in the closure of C, so g ∈ C.

Lastly, if C is compact, then [T ] is compact because [T ] ⊆ C. This means that T
must be finitely branching because T has no leaves. ��
Lemma 15 Let A ⊆ ω be nonempty. Then EA is compact if and only if there is a
uniformly e-pointed tree T ⊆ ω<ω w.r.t. functions such that T ≡e A.

Proof Suppose that EA ≡s C, where C is compact. Let � be a Turing functional
such that �(C) ⊆ EA. C is compact, so its image D = �(C) is also compact by the
continuity of the Turing functional �. By Lemma 14, there is a finitely branching
tree T ⊆ ω<ω with no leaves such that T ≤e A and [T ] ⊆ D ⊆ EA. Furthermore,
A = ⋃

σ∈T ran(σ ) because [T ] ⊆ EA, which implies that A ≤e T . Hence T ≡e A.
Also, if g ∈ [T ], then ran(g) = A, thus there is a uniform procedure enumerating A
and hence T from any enumeration of g, which shows that T is uniformly e-pointed
w.r.t. functions.

Conversely, suppose that there is a uniformly e-pointed tree T ⊆ ω<ω w.r.t. func-
tions such that T ≡e A. Then EA ≤s [T ], as one can uniformly transform any function
g ∈ [T ] into a function that enumerates A because T ≤e g uniformly and A ≤e T .
To see that [T ] ≤s EA, consider the Turing functional � which, on an f ∈ EA, uses
ran( f ) to simultaneously enumerate T (via the reduction T ≤e A) and a path through
T (which is possible because T has no leaves). Thus EA ≡s [T ], and [T ] is compact
because T is finitely branching. ��

Observe that the proof of Lemma 15 also proves the following fact, whichwe record
for posterity.

Proposition 16 Let A ⊆ ω be nonempty. If T ⊆ ω<ω is a finitely branching tree with
no leaves such that T ≤e A and [T ] ⊆ EA, then T ≡e A, [T ] ≡s EA, and T is
uniformly e-pointed w.r.t. functions.

Theorem 17 EA is a compact degree of enumerability if and only if A has cototal
enumeration degree. Hence a degree of enumerability is compact if and only if it is
cototal.
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Proof The degree of enumerability EA is compact if and only if A ≡e T for some
uniformly e-pointed tree T ⊆ ω<ω w.r.t. functions by Lemma 15, which is the case if
and only if A has cototal enumeration degree by Proposition 13. ��

2.2 A quasiminimal degree of enumerability that is compact

The existence of quasiminimal problems of enumerability that are equivalent to com-
pact mass problems is a consequence of Theorem 17 and the fact that there are cototal
quasiminimal e-degrees [1]. We think, however, that it is instructive to directly con-
struct a quasiminimal uniformly e-pointed tree w.r.t. functions. The corresponding
degree of enumerability is then quasiminimal by definition and compact by Lemma 15.

Recall that 〈·, ·〉 : ω2 → ω is the recursive pairing function. Let π0, π1 : ω → ω

denote the projection functions π0(〈m, n〉) = m and π1(〈m, n〉) = n.

Lemma 18 There is a finitely branching tree A ⊆ ω<ω such that

• A has no leaves,
• A is quasiminimal, and
• ran(π1 ◦ f ) = A for every f ∈ [A].

Notice that such a tree is uniformly e-pointed w.r.t. functions.

Proof For the purposes of this proof, we make the following definitions for finite trees
T , S ⊆ ω<ω:

• leaves(T ) = {σ ∈ T : σ is a leaf of T }.
• S leaf-extends T if T ⊆ S and (∀τ ∈ S � T )(∃σ ∈ leaves(T ))(σ ⊆ τ);
• S properly leaf-extends T if S leaf-extends T and (∀σ ∈ T )(∃τ ∈ S)(σ � τ).

We build a sequence of finite trees A0 ⊆ A1 ⊆ A2 ⊆ . . . , where As+1 properly
leaf-extends As for each s ∈ ω. This way, A = ⋃

s∈ω As has no leaves and is finitely
branching. Furthermore, we build the sequence so that

(∀s ∈ ω)(∀σ ∈ leaves(As+1))(As ⊆ ran(π1 ◦ σ) ⊆ As+1).

This ensures that ran(π1 ◦ f ) = A for every f ∈ [A]. To help ensure that A >e ∅,
we also maintain a sequence of finite sets of strings O0 ⊆ O1 ⊆ O2 ⊆ . . . such that
∀s(As ∩ Os = ∅).

We satisfy the requirements

Qe : A �= We

Re : if �e(A) is the graph of a total function f , then f is recursive.

Stage 0: set A0 = {∅}, and set O0 = ∅.
Stage s + 1 = 2e + 1: We satisfy Qe. If We is finite, then set Os+1 = Os . If We is
infinite, then choose any σ ∈ We � As , and set Os+1 = Os ∪ {σ }. To extend As to
As+1, first choose n greater than (the code of) every element in Os+1. Then choose any
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enumeration (αi )i<k of As . Then let β be the string 〈〈n, α0〉, 〈n, α1〉, . . . , 〈n, αk−1〉〉.
Now let As+1 be the tree obtained by extending each leaf of As by β:

As+1 = {σ : (∃τ ∈ leaves(As))(σ ⊆ τ�β)}.

Having chosen n big enough, we have guaranteed that As+1 is disjoint from Os+1.
Stage s+1 = 2e+2:We satisfyRe. Set Os+1 = Os . For finite trees T , S ⊆ ω<ω, call
S a good extension of T if S leaf-extends T , S∩Os+1 = ∅, and (∀σ ∈ S)(ran(π1◦σ) ⊆
S). Ask if there is a good extension R of As such that

(∃m, n, o)(n �= o and 〈m, n〉 ∈ �e(R) and 〈m, o〉 ∈ �e(R)).

If there is such an R, let Âs = R. Otherwise, let Âs = As . Now extend Âs to
As+1 the same way that we extend As to As+1 during the odd stages. The fact that
(∀σ ∈ Âs)(ran(π1 ◦ σ) ⊆ Âs) ensures that (∀σ ∈ As+1)(ran(π1 ◦ σ) ⊆ As+1). This
completes the construction.

Let A = ⋃
s∈ω As . We show that all requirements are satisfied.

For requirement Qe, consider stage s + 1 = 2e + 1. If We is finite, then A �= We

because A is infinite. If We is infinite, then at stage s + 1 we chose a σ ∈ We � As

and put σ in Os+1. Thus ∀t(σ /∈ At ), so σ /∈ A. Hence A �= We.
For requirement Re, suppose that �e(A) is the graph of a total function f , and

consider stage s + 1 = 2e + 2. We show that graph( f ) is r.e., which implies that f is
recursive. Let

X = {〈m, n〉 : there is a good extension B of As with 〈m, n〉 ∈ �e(B)}

(where here ‘good’ means with respect to the Os+1 at stage s + 1). Clearly X is r.e.
We show that X = graph( f ). For graph( f ) ⊆ X , suppose that 〈m, n〉 ∈ graph( f ) =
�e(A). Let t ≥ s + 1 be such that 〈m, n〉 ∈ �e(At ). Then At is a good extension of
As with 〈m, n〉 ∈ �e(At ), so 〈m, n〉 ∈ X . Conversely, suppose that 〈m, n〉 ∈ X , and
let B be a good extension of As with 〈m, n〉 ∈ �e(B). If 〈m, n〉 /∈ graph( f ), then
〈m, o〉 ∈ graph( f ) = �e(A), where o = f (m) �= n. Let t ≥ s + 1 be such that
〈m, o〉 ∈ �e(At ). Then At is a good extension of As , and, moreover, At ∪ B is also
a good extension of As . Thus there is a good extension R = At ∪ B of As such that
n �= o and 〈m, n〉 ∈ �e(R) and 〈m, o〉 ∈ �e(R), for some m, n, o ∈ ω. Therefore, at
stage s + 1, we extended As to an As+1 such that

(∃m, n, o)(n �= o and 〈m, n〉 ∈ �e(As+1) and 〈m, o〉 ∈ �e(As+1)).

This contradicts that �e(A) is the graph of a function.
All together, we have that A has no leaves, that ran(π1 ◦ f ) = A for every f ∈ [A]

by construction, and that A is quasiminimal by the Qe requirements and the Re

requirements. ��
Theorem 19 There is a degree of enumerability EA that is both quasiminimal and
compact. Hence EA is closed, nonzero, and does not bound any nonzero degree of
solvability.
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Proof Let A be the tree from Lemma 18. Then A has quasiminimal e-degree, so EA

is quasiminimal by definition. Furthermore, A is uniformly e-pointed w.r.t. functions,
so EA is compact by Lemma 15. ��
Remark 20 In Lemma 18, one can make the tree A be not cototal by a small modifi-
cation to the proof. Thus although every uniformly e-pointed tree w.r.t. functions has
cototal e-degree by Proposition 13, it is not the case that every such tree is cototal as
a set.

To modify the proof, replace each old Qe requirement A �= We with the new
requirement A �= �e(A). (Notice that a set A satisfying all of the newQe requirements
is still not r.e., which is required in order for a set A to be quasiminimal.) To satisfy
the new Qe, modify stage s + 1 = 2e + 1 as follows. If there are a finite set D ⊆ As

and a string σ ∈ As with σ ∈ �e(D), then choose such a D and σ , and set Os+1 =
Os ∪ D ∪ {σ }. Otherwise simply set Os+1 = Os . Then choose n greater than (the
code of) every element in Os+1, and extend As to As+1 as before. To verify that Qe

is satisfied, suppose for a contradiction that �e(A) = A. As A is infinite and As is
finite, fix some σ ∈ A \ As . Let D ⊆ A ⊆ As be a finite set such that σ ∈ �e(D).
Then, at stage s + 1, we were able to choose a D and σ , ensuring that �e(A) �= A.
This is a contradiction.

2.3 A degree of enumerability that does not bound any nonzero closed degree

Finally, we show that there are examples of nonzero degrees of enumerability that do
not bound nonzero closed degrees. Such examples are of course quasiminimal, and
indeed the property of being nonzero but not above any nonzero closed degree can
be viewed as an interesting generalization of quasiminimality. Theorem 22 below can
also be phrased by saying that there are nonzero degrees of enumerability that do not
lie in the filter generated by the nonzero closed degrees, which coincides with the
collection of all Medvedev degrees bounding nonzero closed degrees (see [19]).

Lemma 21 There is a set A >e ∅ such that, for all T ≤e A, if T is a subtree of ω<ω

with no leaves, then T has an r.e. subtree with no leaves.

Proof For the purposes of this proof, we assume that if � is an enumeration operator,
X ⊆ ω, and�(X) enumerates someσ ∈ ω<ω (i.e.,σ ∈ �(X)), then it also enumerates
all τ ⊆ σ . In fact, from any enumeration operator �, one can effectively produce an
enumeration operator � such that, for all X ,

• �(X) is a tree, and
• if �(X) is a tree, then �(X) = �(X).

To accomplish this, just take� = {〈τ, D〉 : (∃σ)(τ ⊆ σ and 〈σ, D〉 ∈ �)}. Therefore,
we can define an effective list (�e : e ∈ ω) of enumeration operators such that

• �e(X) is a tree for every e and X , and
• if T ≤e X for a tree T and set a X , then there is an e such that �e(X) = T .

Also, recall the notation g+ = {n : g(n) = 1} from Definition 9. We extend this
notation to strings α ∈ 2<ω by defining α+ = {i < |α| : α(i) = 1}. Additionally, if
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A ⊆ ω andα ∈ 2<ω, wewrite A ⊆+ α+ tomean that (∀n < |α|)(n ∈ A → α(n) = 1)
(i.e., {n ∈ A : n < |α|} ⊆ α+).

We satisfy the requirements

Qe : A �= We

Re : either �e(A) contains a leaf or there is an r.e. T ⊆ �e(A) with no leaves.

We build a sequence of binary strings α0 ⊆ α1 ⊆ α2 ⊆ . . . along with sequences
of recursive sets I0 ⊇ I1 ⊇ I2 ⊇ . . . and J0 ⊆ J1 ⊆ J2 ⊆ . . . such that, for every
s ∈ ω, Is � Js is infinite and Js ⊆+ α+

s ⊆ Is . In the end, we let A = ⋃
s∈ω α+

s , and
we have

⋃
s∈ω Js ⊆ A ⊆ ⋂

s∈ω Is .
Stage 0: Set α0 = ∅, set I0 = ω, and set J0 = ∅.
Stage s + 1 = 2e + 1: We satisfy Qe. Let n ∈ Is � Js be least such that n > |αs |.
If n ∈ We, set Is+1 = Is � {n}, set Js+1 = Js , and extend αs to an αs+1 with
Js ⊆+ α+

s+1 ⊆ Is and αs+1(n) = 0. If n /∈ We, set Is+1 = Is , set Js+1 = Js , and
extend αs to an αs+1 with Js ⊆+ α+

s+1 ⊆ Is and αs+1(n) = 1.
Stage s + 1 = 2e + 2: We satisfy Re. Ask if there is a β ⊇ αs and a recursive set R
such that

• Js ⊆+ β+ ⊆ R ⊆ Is ,
• R � Js is infinite, and
• there is a σ ∈ �e(β

+) that is a leaf in �e(R).

If there are such β and R, set αs+1 = β, set Is+1 = R, and set Js+1 = Js . If there are
no such β and R, then set αs+1 = αs , set Is+1 = Is , and choose any recursive Js+1
whose characteristic function extends αs+1, Js ⊆ Js+1 ⊆ Is+1, and Js+1 � Js and
Is+1 � Js+1 are both infinite. This completes the construction.

Let A = ⋃
s α+

s . TheQe requirements are clearly satisfied, and together they ensure
that A is not r.e. Hence A >e ∅.

Now suppose that T ≤e A is a tree with no leaves, and let �e be such that T =
�e(A). At stage s + 1 = 2e + 2, there must not have been a β and an R because
if there were, then we would have β = αs+1 and β+ ⊆ A ⊆ R = Is+1, so there
would be a leaf σ ∈ �e(A) = T . It must therefore be that �e(Js+1) is a tree with
no leaves. To see this, suppose instead that �e(Js+1) has a leaf σ . Let β be such that
αs+1 ⊆ β, β+ ⊆ Js+1, and σ ∈ �e(β

+). Then at stage s + 1, we could have taken β

and R = Js+1, which is a contradiction. This finishes the proof because�e(Js+1) ⊆ T
since Js+1 ⊆ A, and �e(Js+1) is r.e. since Js+1 is recursive. ��
Theorem 22 There is a nonzero degree of enumerability that does not bound a nonzero
closed degree.

Proof Let A be as in Lemma 21. Consider a closed C ≤s EA. By Lemma 14, there is
a tree T ≤e A with no leaves such that [T ] ⊆ C. By Lemma 21, T has an r.e. subtree
S with no leaves. Thus [S] ⊆ [T ] ⊆ C. However, being a tree with no leaf, S has a
recursive path, so C has a recursive member, so degs(C) = 0. ��
Acknowledgements We thank Douglas Cenzer, Antonio Montalbán, Alexandra A. Soskova, and Mariya
I. Soskova for helpful comments and discussions.

123



P. Shafer, A. Sorbi

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Andrews, U., Ganchev, H., Kuyper, R., Steffen, L., Miller, J.S., Soskova, A.A., Soskova, M.I.: On
cototality and the skip operator in the enumeration degrees. Preprint

2. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)
3. Bianchini, C., Sorbi, A.: A note on closed degrees of difficulty of the Medvedev lattice. Math. Log. Q.

42(1), 127–133 (1996)
4. Copestake, K.: 1-genericity in the enumeration degrees. J. Symb. Log. 53(3), 878–887 (1988)
5. Dyment, E.Z.: On some properties of the Medvedev lattice. Math. USSR. Sb. 101(143)(3), 360–379

(1976). 455
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