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Abstract: In this paper we review the double covers method with constrained BV functions for solving the
classical Plateau’s problem. Next, we carefully analyze some interesting examples of soap �lms compatible
with covers of degree larger than two: in particular, the case of a soap�lmonly partiallywetting a space curve,
a soap �lm spanning a cubical frame but having a large tunnel, a soap �lm that retracts to its boundary, and
various soap �lms spanning an octahedral frame.

MSC: 49Q05 (minimal surfaces), 57M10 (covering spaces), 49Q15 (geometric measure and integration theory)

1 Introduction
In [6] K. Brakke introduced the covering space method for solving a rather large class of one-codimensional
Plateau type problems, including the classical case of an area-minimizing surface spanning a knot, a Steiner
minimal graph connecting a given number of points in the plane, and an area-minimizing surface spanning
a nonsmooth one-dimensional frame such as the one-skeleton of a polyhedron. Themethod does not impose
any topological restriction on the solutions; it relies on the theory of currents and takes into account also
unoriented objects. It consists essentially in the construction of a pair of covering spaces, and is based on the
minimization of what the author called the soap �lm mass.

Recenlty, a slightly di�erent approach has been proposed in [2]; it is based on the minimization of the
total variation for functions de�ned on a single covering space and satisfying a suitable constraint on the
�bers. Also this method does not impose any a priori topological restriction on the solutions. For a given
Plateau problem, di�erent coverings can be constructed, leading to distinct minimization problems. Chosing
the right de�nition of cover depends on the structure of the minimizing solution that is desired, like e.g. the
type of singularities that are allowed or orientability of the minimizing �lm. Moreover, it takes advantage of
the full machinery known on the space of BV functions de�ned on a locally Euclideanmanifold: for instance,
and remarkably, it allows approximating the considered class of Plateau type problems by Γ-convergence. In
the forthcoming paper [5] we shall deepen this Γ-convergence regularization for �ndingminimal networks in
the plane.

The interest in the covering space method is also illustrated in the recent paper [4], where is shown a
triple cover of R3 \ (S ∪ C), S a tetrahedral frame and C two disk boundaries, compatible with a soap �lm
spanning S and having higher topological type, more precisely with two tunnels (see Figure 1 in the case of
the regular tetrahedron).
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Figure 1: A slightly retouched version of [12, �g. 1.1.1], see also [13, �g. 11.3.2]. This soap �lm has two tunnels, one clearly visi-
ble in the picture. This �gure was done by Jean Taylor, following an idea due to Bob Hardt.

The cover described in [4] has the particular feature of being not normal; in addition, it is constructed
using the above mentioned disks. Similar disks were �rstly introduced in [6] in other examples, and called
invisible wires by the author. In the case of the tetrahedron, they play a crucial role. From one side, they are
necessary to complete the construction of the triple cover; from the other side, they act as an obstacle. In
addition, they allow one to distinguish tight loops around particular edges of the frame S from loops turning
far from the edges: this distinction turns out to be crucial for themodelization of a higher genus soap �lm. The
results of [4] strongly suggest that, for a tetrahedron su�ciently elongated in one direction, the higher-genus
surface has area strictly less than the conical con�guration.

In this paper, for convenience of the reader we recall (Section 2) the double covers method and BV func-
tions for treating the classical Plateau problem. In Section 3 we point out the main modi�cations of the con-
struction in the case of covers of degree larger than two. Next, in Section 4 we continue the analysis in the
spirit of [4], discussing various interesting examples. In Example 4.1 we discuss with some care a classical
example due to F.J. Almgren of a soap �lm only partially wetting an unknotted curve, see also [6]. In Example
4.2 we describe a cover ofR3 \S, where S is the one-skeleton of a cube, which is compatible with the soap �lm
depicted in Figure 3. This is obviously not the most common soap �lm one usually �nds in pictures, which
has no holes and has triple curves starting in the corners [17, Figure 6]. It is worthwhile to notice that such a
soap �lm has area larger than the area of the soap �lm in Figure 3. In Example 4.3 we show how to construct
a triple cover compatible with the soap �lm of Figure 5, which is a surface that retracts on its boundary, and
therefore for which we cannot apply the Reifenberg method. In Example 4.4 we discuss the case when S is
the one-skeleton of an octahedron.

We conclude this introduction by mentioning that calibrations, applied to the covering space method,
have been considered in [6], [7] and, more recently, in [8] in connection with the BV approach in dimension
two.

2 Double covers of Ω \ S
In this section we describe the cut and paste method for constructing a double cover of the base space M :=
Ω \ S where, for simplicity, S is a smooth compact embedded two-codimensional manifold without boundary
and Ω is a su�ciently large ball of Rn containing S, n ≥ 2. Just to �x ideas, one can consider n = 3 and S
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a tame knot or link¹. Next, to model the area minimization problem with S as boundary datum, we de�ne a
minimum problem on a class of BV functions de�ned on the cover and satisfying a suitable constraint. The
projection over the base space of the jump set of a minimizer will be our de�nition of solution to the Plateau
problem; this is a simpli�ed version of the construction described in [2], to which we refer for all details.
Before starting the discussion, it is worth to recall that, in more general cases (such as those in Section 4),
the cut and paste procedure needs not be the most convenient method to work with. Indeed, the cover can
be equivalently described in two other ways. In the �rst one it is su�cient to declare an orientation of the
cut, and a family of permutations of the strata along the cut; this family must be consistent, a condition that
is obtained from the local triviality of the cover. The second method is based on an abstract construction,
by taking the quotient of the universal cover of M with respect to a subgroup of the fundamental group of
M; at the end of the section we recall this construction, while in Section 4 we shall use both these two latter
methods.

In what follows we shall always assume that the cover is trivial in a neighbourhood of ∂Ω. Hence, in that
neighbourhood we can speak without ambiguities of sheet one and sheet two, up to automorphisms of the
cover.

2.1 Cut and paste construction of the double cover

We start by de�ning a cut (also called a cutting surface when n = 3), which is a (n − 1)-dimensional compact
embedded smooth oriented submanifold Σ ⊂ Ω with ∂Σ = S. Next we glue two copies (the sheets, or strata)
of M := Ω \ S along Σ by exchanging the sheets. Equivalently, we associate the permutation (1 2) to Σ.²

To �gure out the construction, it is convenient to “double” Σ, namely to slightly separate two copies of
Σ having boundary S and meeting only at S; we call these two copies Σ and Σ′, and we denote by Σ the pair
(Σ, Σ′), that we call pair of cuts. The orientability of Σ gives a unit normal vector �eld on Σ \ S—hence, in
particular, a direction to follow in order to “enlarge” the cut, separating its two “faces”. Let us denote by
O ⊂ Ω (resp. I ⊂ Ω) the open region exterior (resp. interior) to Σ ∪ Σ′. We can explicitly describe the gluing
procedure as follows:

we let
D := Ω \ Σ, D′ := Ω \ Σ′,

and consider³
X := (D, 1) ∪ (D, 2) ∪ (D′, 3) ∪ (D′, 4);

we endow X with the following equivalence relation: given x, x′ ∈ M and j ∈ {1, 2}, j′ ∈ {3, 4},
(x, j), (x′, j′) ∈ X, we say that (x, j) is equivalent to (x′, j′) if and only if x = x′, and one of the follow-
ing conditions hold: {

x ∈ O, {j, j′} ∈
{
{1, 3}, {2, 4}

}
,

x ∈ I, {j, j′} ∈
{
{1, 4}, {2, 3}

}
.

(2.1)

We call YΣ the quotient space of X by this equivalence relation (endowed with the quotient topology) and
π̃ : X→ YΣ the projection. The double cover of M is then

πΣ,M : YΣ → M (2.2)

1 No invisible wires will be taken into account in this section.
2 Note that, being this permutation of order two, �xing an orientation of Σ is not necessary and Σ could even be nonorientable.
For covers of degree larger than two and other type of permutations (see Sections 3 and 4) orientability of Σ is necessary.
3 In order to be consistent with the permutation (1 2) mentioned above, it is su�cient to rename (D′ , 3) and (D′ , 4) as (D′ , 1) and
(D′ , 2).
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where πΣ,M(π̃(x, j)) := x for any (x, j) ∈ X, which is well de�ned, since if (x, j) ∼ (x′, j′), then πΣ,M(π̃(x, j)) =
πΣ,M(π̃(x′, j′)). If we set π : (x, j) ∈ X 7→ x ∈ M, we have the following commutative diagram:

X
π̃ //

π   

YΣ
πΣ,M
��
M

(2.3)

The quotient YΣ admits a natural structure of di�erentiable manifold, with four local parametrizations given
by Ψ1, Ψ2, Ψ3, Ψ4, where

Ψj : D → π̃
(

(D, j)
)
, Ψj := π̃ ◦ π −1

|(D,j)
, j = 1, 2,

Ψj′ : D′ → π̃
(

(D′, j′)
)
, Ψj′ := π̃ ◦ π −1

|(D′ ,j′)
, j′ = 3, 4.

(2.4)

It is important here that the transition maps are the identity:

Ψ−1
j′ ◦ Ψj = id = Ψ−1

j ◦ Ψj′ , j ∈ {1, 2}, j′ ∈ {3, 4},

the equalities being valid where all members of the equation are de�ned. Notice that Ψ1(D) ∪ Ψ2(D) = YΣ \
π −1
Σ,M(Σ \ S), and Ψ3(D′) ∪ Ψ4(D′) = YΣ \ π −1

Σ,M(Σ′ \ S).
The local parametrizations allow to read a function u : YΣ → R in charts: for j = 1, 2 and j′ = 3, 4 we let

vj(u) : D → R, vj′ (u) : D′ → R be

vj(u) := u ◦ Ψj , vj′ (u) := u ◦ Ψj′ . (2.5)

Recalling (2.1), we have

v1(u) = v3(u), v2(u) = v4(u) a.e. in O,
v1(u) = v4(u), v2(u) = v3(u) a.e. in I.

(2.6)

2.2 Total variation on the double cover

The set YΣ is endowed with the push-forward µ of the n-dimensional LebesguemeasureLn inM via the local
parametrizations. We set L1(YΣ) := L1

µ(YΣ).
We say that u is in BV(YΣ) if its distributional gradient Du : ϕ ∈ C1

c (YΣ) 7→ −
∫
YΣ uDϕ dµ ∈ Rn is a

bounded vector – valued Radon measure on YΣ. We denote by |Du| the total variationmeasure of Du.
Let u ∈ BV(YΣ) and E ⊆ YΣ be a Borel set; E can be written as the union of the following four disjoint

Borel sets:
E ∩ π̃((D, 1)), E ∩ π̃((D, 2)), E ∩ π̃((Σ \ S, 3)), E ∩ π̃((Σ \ S, 4)), (2.7)

and we have

|Du|(E) =
∑
j=1,2
|Dvj(u)|

(
πΣ,M

(
E ∩ π̃((D, j))

))
+
∑
j′=3,4

|Dvj′ (u)|
(
πΣ,M

(
E ∩ π̃((Σ \ S, j′))

))
. (2.8)

Notice that Σ′ does not appear in (2.7). Choosing D′ in place of D amounts in considering Σ′ in place of Σ and
does not change the subsequent discussion.

Example 2.1. Suppose the simplest case n = 2, and S two distinct points q1, q2. Let u ∈ BV(YΣ) be such that
v1(u) is equal to a ∈ R inside a disk B of radius r > 0 contained in I (or in O) and b ∈ R outside, and v2(u) is
equal to c ∈ R in B and d ∈ R outside. Then, owing to (2.6),

|Du|(YΣ) =|Dv1(u)|(B ∩ D) + |Dv2(u)|(B ∩ D) + |Dv3(u)|(Σ \ {q1, q2}) + |Dv4(u)|(Σ \ {q1, q2})
=(|b − a| + |d − c|) 2πr + 2H1(Σ)|d − b|.

(2.9)
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On the other hand, if B is centered at a point of Σ, and B ∩ Σ′ = ∅, then

|Du|(YΣ) =|Dv1(u)|(B ∩ D) + |Dv2(u)|(B ∩ D) + |Dv3(u)|(Σ \ {q1, q2}) + |Dv4(u)|(Σ \ {q1, q2})

= (|b − a| + |d − c|) 2πr + 2|c − a|H1(Σ ∩ B) + 2|d − b|
(
H1(Σ) −H1(Σ ∩ B)

)
.

(2.10)

If in particular a = 1, b = 0, c = 0, d = 1, we have that (2.9) and (2.10) become

|Du|(YΣ) = 2
(

2πr + H1(Σ)
)
.

2.3 The constrained minimum problem on the double cover

We let
BV(YΣ; {0, 1}) :=

{
u ∈ BV(YΣ) : u(y) ∈ {0, 1} for µ a.e. y ∈ YΣ

}
.

The domain of F is de�ned by

DΣ(F) :=
{
u ∈ BV(YΣ; {0, 1}) :

∑
πΣ,M(y)=x

u(y) = 1 for a.e. x in M
}
.

Unless otherwise speci�ed, we drop the dependence on Σ in the notation of the domain of F, thus denoting
DΣ(F) by

D(F).

The functional F is then de�ned by

F(u) := |Du|(YΣ), u ∈ D(F).

Therefore the values of u ∈ D(F) on the two points of a �ber are 0 and 1: this is what we call the constraint
on the �bers. Hence, for any u ∈ D(F) we have

v1(u) = 1 − v2(u) a.e. in D, v3(u) = 1 − v4(u) a.e. in D′. (2.11)

For this reason, in formulas (2.12) and (2.15) below the functions v2(u) and v4(u) are not present. Moreover,
the following splitting formula holds:

πΣ,M(Ju) =
(
Jv1(u) \ (Σ \ S)

)
∪
(
Jv3(u) ∩ (Σ \ S)

)
. (2.12)

Indeed, as in (2.7), let us split Ju as the union of the following four disjoint sets:

Ju ∩ π̃((D, 1)), Ju ∩ π̃((D, 2)), Ju ∩ π̃((Σ \ S, 3)), Ju ∩ π̃((Σ \ S, 4)). (2.13)

By the constraint on the �bers, to each point in the �rst set of (2.13) there corresponds a unique point in the
second set, belonging to the same �ber, and vice versa. A similar correspondence holds between the third
and the fourth set. Hence

πΣ,M(Ju) = πΣ,M
(
Ju ∩ π̃((D, 1))

)
∪ πΣ,M

(
Ju ∩ π̃((Σ \ S, 3))

)
.

By the de�nitions of Ju, Jv1(u) and Jv3(u), using also the local parametrizationsΨ1,Ψ3, it follows that πΣ,M
(
Ju∩

π̃((D, 1))
)

= Jv1(u) \ (Σ \ S), and πΣ,M
(
Ju ∩ π̃((Σ \ S, 3))

)
= Jv3(u) ∩ (Σ \ S), and (2.12) follows.

De�nition 2.2 (Constrained lifting). Let v ∈ BV(D; {0, 1}). Then the function

u :=
{
v in Ψ1(D),
1 − v in Ψ2(D),

(2.14)

is in D(F), and v1(u) = v. We call u the constrained lifting of v.
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In particular, when v is identically equal to 1 (or 0), we have

πΣ,M(Ju) = Σ \ S.

The next result clari�es which is the notion of area we intend to minimize.

Proposition 2.3. Let u ∈ D(F). Then

|Du|(YΣ) =2
(
Hn−1(Jv1(u) \ Σ) + Hn−1(Jv3(u) ∩ Σ)

)
=2Hn−1(πΣ,M(Ju)).

(2.15)

Proof. Recall the splitting in (2.8), with the choice E := YΣ. By (2.11), we have

|Dv1(u)|(D) = |Dv2(u)|(D), |Dv3(u)|(Σ) = |Dv4(u)|(Σ). (2.16)

By the properties of BV functions we have

|Dv1(u)|(D) = Hn−1(Jv1(u) \ Σ), |Dv3(u)|(Σ) = Hn−1(Jv3(u) ∩ Σ). (2.17)

Substituting (2.17) into (2.8), and recalling (2.16), we get the �rst equality in (2.15). The second equality is now
a consequence of (2.12).

Remark 2.4. The factor 2 in (2.15) is obtained bymultiplying the absolute value of the di�erence of the values
of u (which gives a factor 1), with the number of the sheets (which gives a factor 2).

A particular case of a result proven in [2] is the following.

Theorem 2.5 (Existence of minimizers). We have

inf
{
|Du|

(
YΣ
)

: u ∈ D(F)
}

= min
{
|Du|

(
YΣ
)

: u ∈ D(F)
}
> 0. (2.18)

Positivity follows from (2.20) below, with the choice A := Ω. We denote by umin aminimizer of problem (2.18).

Lemma 2.6. Let A ⊆ Ω be a nonempty open set such that π −1
Σ,M(A \ S) is connected. Then for any u ∈ D(F),

Hn−1(A ∩ πΣ,M(Ju)
)
> 0. (2.19)

Moreover, if A is bounded with Lipschitz boundary, then

inf
{
Hn−1(A ∩ πΣ,M(Ju)

)
: u ∈ D(F)

}
> 0. (2.20)

Proof. By contradiction, suppose that

Hn−1(A ∩ πΣ,M(Ju)
)

= 0. (2.21)

Applying (2.12) to (2.21), we get

0 = Hn−1(A ∩ (Jv1(u) \ Σ)) + Hn−1(A ∩ Jv3(u) ∩ Σ). (2.22)

Now, set AS := A \ S. Applying (2.8) with the choice E := π−1
Σ,M(AS), we get

|Du|(π −1
Σ,M(AS)) =2|Dv1(u)|

(
πΣ,M(π −1

Σ,M(AS) ∩ π̃((D, 1)))
)

+ 2|Dv3(u)|
(
πΣ,M(π −1

Σ,M(AS) ∩ π̃(Σ \ S, 3)))
)

=2
(
|Dv1(u)|

(
AS \ Σ

)
+ |Dv3(u)|

(
AS ∩ Σ

) )
=2
(
Hn−1(A ∩ (Jv1(u) \ Σ)) + Hn−1(A ∩ Jv3(u) ∩ Σ)

)
,

(2.23)
which, coupled with (2.22), implies |Du|(π −1

Σ,M(AS)) = 0. Then u is constant on π −1
Σ,M(AS), which contradicts

the validity of the constraint on the �bers. This proves (2.19).
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Now, let us suppose, still by contradiction, that there exists a sequence (uk)k ⊂ D(F) such that
limk→+∞Hn−1(A ∩ πΣ,M(Juk )

)
= 0. Thanks to the assumption on A, π −1

Σ,M(AS) is a double nontrivial cover
of AS. In particular, for each k ∈ N, the restriction ûk := uk|π −1

Σ,M (AS )
is in BV(π −1

Σ,M(AS); {0, 1}) and satis�es

the constraint on the �bers, and reasoning as above, |Dûk|(π −1
Σ,M(AS)) = 2Hn−1(A ∩ πΣ,M(Juk )). By compact-

ness, up to a not relabelled subsequence, there exists û ∈ BVconstr(π −1
Σ,M(AS); {0, 1}) such that ûk → u in

L1(π −1
Σ,M(AS)), and by lower semicontinuity,

|Dû|(π −1
Σ,M(AS)) ≤ lim inf

k→+∞
|Dûk|(π −1

Σ,M(AS)) = 2 lim
k→+∞

Hn−1(A ∩ πΣ,M(Juk )
)

= 0.

Hence û is constant on π −1
Σ,M(AS), contradicting the constraint on the �bers.

Lemma 2.6 shows, in particular, that the nontrivial topology of the cover coupled with the constraint on the
�bers forces u to jump in suitable open sets. As a further consequence of Lemma 2.6, the boundary datum S
is attained by any constrained function on the cover, in the following sense.

Corollary 2.7. Let u ∈ D(F). Then
πΣ,M(Ju) \ πΣ,M(Ju) ⊇ S. (2.24)

Proof. The relation S∩πΣ,M(Ju) = ∅ is trivial, recall also (2.12). Now, suppose by contradiction that there exists
a point p ∈ S \ πΣ,M(Ju). Take an open ball B centered at p, with B ⊂ Ω \ πΣ,M(Ju), and apply Lemma 2.6 with
the choice A := B. Then, since A ∩ πΣ,M(Ju) = ∅, we end up with a contradiction with (2.19).

If 2 ≤ n ≤ 7 and u is a minimizer, it is possible to show that equality holds in (2.24) (see [2, Theorem 4.3] for
the details).

The de�nition of solution to the Plateau problem in the sense of double covers⁴ is as follows.

De�nition 2.8 (Constrained double – cover solutions). We call

πΣ,M(Jumin )

a constrained double – cover solution (in Ω) to Plateau’s problem with boundary S.

We say that a portion P of S is wetted if πΣ,M(Jumin ) ⊇ P, see also Section 4.

2.4 Independence of the pair of cuts

In this section we show that constrained double – cover solutions are independent of admissible cuts. A dif-
ferent proof of such an independence is given in Proposition 2.13.

Let us de�ne the notion of unoriented linking number, see for instance [10, Chapter 5, Section 2] for
related concepts.

De�nition 2.9. Let ρ ∈ C1(S1;Rn \ S) be transverse to Σ. The unoriented linking number between ρ and S is
de�ned as

link2(ρ; S) :=
{

0 if #(ρ−1(Σ)) is even,
1 if #(ρ−1(Σ)) is odd.

(2.25)

The right hand side of (2.25) turns out to be independent of the cut Σ. When ρ is just continuous, the unori-
ented linking number is de�ned using a C1 loop homotopic to ρ and not intersecting S [10].

Note that paths that are not trasverse to Σ can be slightly perturbed to become trasversal. Although we
expect the resulting unoriented linking number to be independent on the perturbation, we do not investigate

4 An analogous de�nition can be given for covers of degree larger than two.
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such fact here. For n = 2 or n = 3 other de�nitions are available that do not involve Σ, e.g. for n = 3 the linking
number between two closed curves as de�ned in knot theory. We believe such de�nitions to be essentially
equivalent to the one given here.

Theorem 2.10. Let Σ = (Σ, Σ′), Γ = (Γ , Γ′) be two pairs of cuts. Let u ∈ BV(YΣ; {0, 1}) satisfy the constraint
on the �bers. Then there exists u′ ∈ BV(YΓ ; {0, 1}) satisfying the constraint on the �bers such that, up to a
Hn−1 –negligible set,

πΣ,M(Ju) = πΓ,M(Ju′ ). (2.26)

Proof. Before giving the proof, we explain in a rough way the idea. First we �x a “base point” x0 ∈ M \ (Σ ∪
Σ′ ∪ Γ ∪ Γ′) (we can think of x0 as the position of an observer and take it “far away” from all the objects
involved, i.e. outside a sphere containing Σ ∪ Σ′ ∪ Γ ∪ Γ′); the actual positioning of x0 is however inessential)
and count the parity of intersections of a path starting at x0 and ending at a generic point x, with the cuts
(see (2.27)), a number that turns out to be independent of the path itself. Next, we construct the function u′

so that u′ coincides with u when calculated at (x, j) for j = 1, 2, provided that the parity of the number of
intersections with Σ coincides with the parity of the number of intersections with Γ, while u′ coincides with
1−uwhen calculated at (x, j) for j = 1, 2, provided that the parity of the number of intersectionswith Σ di�ers
with the parity of the number of intersections with Γ. Similarly, u′ coincides with u when calculated at (x, j′)
for j′ = 3, 4, provided that the parity of the number of intersections with Σ′ coincides with the parity of the
number of intersections with Γ′, while u′ coincides with 1− u when calculated at (x, j′) for j′ = 3, 4, provided
that the parity of the number of intersections with Σ′ di�ers with the parity of the number of intersections
with Γ′.

Let us now come to the proof. Without loss of generality, we can suppose that Σ ≠ Γ. Fix x0 ∈ M \ (Σ ∪
Σ′ ∪ Γ ∪ Γ′). Let x ∈ M \ (Σ ∪ Σ′ ∪ Γ ∪ Γ′), and let γx ∈ C1([0, 1];M) be such that γx(0) = x0, γx(1) = x, and γx
is transverse both to Σ and to Γ; such a γx will be called an admissible path from x0 to x. We set

h(γx; Σ, Γ) := #(γ−1
x (Σ)) + #(γ−1

x (Γ)). (2.27)

If we consider another admissible path λx from x0 to x, we have that h(γx; Σ, Γ) and h(λx; Σ, Γ) have the same
parity. Indeed, let ρ be the closed curve going from x0 to x following γx, and then backward from x to x0 along
λx. Recalling that link2(ρ; Σ) = link2(ρ; Γ), it follows that h(γx; Σ, Γ) + h(λx; Σ, Γ) = #(ρ−1(Σ)) + #(ρ−1(Γ)) is
even. We are then allowed to set

h(x; Σ, Γ) :=
{

0 if h(γx; Σ, Γ) is even,
1 if h(γx; Σ, Γ) is odd,

(2.28)

for any admissible γx from x0 to x⁵.
Set Q := {x ∈ M \ (Σ ∪ Γ) : h(x; Σ, Γ) = 0}, which is an open set, with ∂Q ⊆ Σ ∪ Γ; moreover Q has �nite

perimeter in Ω by [3, Proposition 3.62]. De�ne

v′1 :=
{
v1(u) in Q,
1 − v1(u) in Ω \ Q.

From [3, Theorem 3.84] it follows that v′1 ∈ BV(Ω; {0, 1}). It also follows⁶ that

Jv′1 \ (Σ ∪ Γ) = Jv1(u) \ (Σ ∪ Γ). (2.29)

5 Once x0 is �xed, the function h allows to de�ne an “exterior” and an “interior” of Σ ∪ Γ, even when Σ and Γ intersect on a set
of positiveHn−1 –measure.
6 Indeed, let x ∈ Jv′1 \ (Σ ∪ Γ) and let γx be an admissible path from x0 to x. Let B(x) be an open ball centered at x and disjoint
from Σ ∪ Γ; in particular, every z ∈ B(x) can be reached by a path obtained attaching to γx the segment between x and z; notice
that such a path γz is admissible from x0 to z, and h(γz; Σ, Γ) = h(γx; Σ, Γ). Therefore, either v′1 = v1(u) in B(x) or v′1 = 1 − v1(u)
in B(x), which implies x ∈ Jv1(u). Hence Jv′1 \ (Σ ∪ Γ) ⊆ Jv1(u) \ (Σ ∪ Γ). Similarly, also the converse inclusion holds, and (2.29)
follows.
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We de�ne u′ ∈ BVconstr(YΓ ; {0, 1}) as the constrained lifting of v′1 when D is replaced by Ω \ Γ.
Recalling also (2.6), set

v′3 :=
{
v′1 in the exterior region to Γ ∪ Γ′,
1 − v′1 in the interior region to Γ ∪ Γ′.

Notice that v′3 ∈ BV(Ω; {0, 1}). By construction, we have

v′1 = v1(u′), v′3 = v3(u′).

We claim that u′ satis�es (2.26). From (2.12) we have

πΓ,M(Ju′ ) =
(
Jv′1 \ (Γ \ S)

)
∪
(
Jv′3 ∩ (Γ \ S)

)
,

and our proof is concluded provided we show that, up to aHn−1 –negligible set,(
Jv′1 \ Γ

)
∪
(
Jv′3 ∩ Γ

)
=
(
Jv1(u) \ Σ) ∪

(
Jv3(u) ∩ Σ

)
. (2.30)

Let us split the left hand side of (2.30) as follows:

Jv′1 \ Γ =
(

(Jv′1 ∩ Σ) \ Γ
)
∪
(
Jv′1 \ (Σ ∪ Γ)

)
,

Jv′3 ∩ Γ =
(
Jv′3 ∩ Σ ∩ Γ

)
∪
(

(Jv′3 ∩ Γ) \ Σ
)
.

(2.31)

Let us show that, up to aHn−1 –negligible set,

(Jv′1 ∩ Σ) \ Γ = (Jv3(u) ∩ Σ) \ Γ . (2.32)

Let x ∈ (Jv′1 ∩ Σ) \ Γ. Up to aHn−1 –negligible set⁷, we can assume that the approximate tangent spaces to Jv′1
and Σ at x coincide. Let B(x) be an open ball centered at x, not intersecting Γ, and such that B(x) \ Σ consists
of two connected components. The same argument used in the proof of (2.29) shows that on one component
v′1 = v1(u), while on the other v′1 = 1 − v1(u). Since x ∈ Jv′1 , we have

x ∈ ̸ Jv1(u).

On the other hand, by (2.6), in one component we have v1(u) = v3(u), while in the other component v3(u) =
v2(u) = 1 − v1(u) (where in the last equality we used (2.11)). Thus, x ∈ Jv3(u). So, up to aHn−1 –negligible set,
(Jv′1 ∩ Σ) \ Γ ⊆ (Jv3(u) ∩ Σ) \ Γ. Arguing similarly for the other inclusion, we get (2.32).

The same argument applies also to prove that, up to aHn−1 –negligible set,

Jv′3 ∩ Σ ∩ Γ = Jv3(u) ∩ Σ ∩ Γ , (2.33)

and
(Jv′3 ∩ Γ) \ Σ = (Jv1(u) ∩ Γ) \ Σ. (2.34)

From (2.29) – (2.34), we �nally get (2.30).

Corollary 2.11 (Independence). The minimal value in (2.18) is independent of the pair Σ of cuts.

Proof. Let Σ, Γ be two pairs of cuts. Let us denote A(Σ) (resp. A(Γ)) the minimal value of F attained among
all competitors in DΣ(F) (resp. in DΓ(F)). Let umin ∈ DΣ(F) be a function realizing the minimal value, i.e.,
F(umin) = A(Σ). Let u′ ∈ BV(YΓ ; {0, 1}) be the function satisfying the constraint on the �bers given by
Theorem 2.10 applied with u = umin. Then, by (2.15) and (2.26), we have

A(Γ) ≤ 2Hn−1(πΓ,M(Ju′ )) = 2Hn−1(πΣ,M(Jumin )) = A(Σ).

Arguing similarly for the converse inequality, we getA(Γ) = A(Σ).

7 Here we use again [3, Theorem 3.84].
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In view of Corollary 2.11, we often skip the symbol Σ in the notation of the cover, and on the minimal value of
the area. Moreover, we often set

p := πΣ,M .

The relations between a constrained double-cover solution and other notions of solution to the Plateau
problem can be found in [2].

2.5 Abstract construction of the double cover

The construction of the abstract cover is standard [9]: �x x0 ∈ M, and set Cx0 ([0, 1];M) := {γ ∈ C
(

[0, 1];M
)

:
γ(0) = x0}. For γ ∈ Cx0 ([0, 1];M), let [γ] be the class of paths in Cx0 ([0, 1];M) which are homotopic to γ
with �xed endpoints. We recall that the universal cover of M is the pair (M̃, p), where M̃ :=

{
[γ] : γ ∈

Cx0 ([0, 1];M)
}
and p : [γ] ∈ M̃ 7→ p([γ]) := γ(1) ∈ M. The topology of M̃ is de�ned as follows: consider the

family U := {B ⊆ M : B open ball}, which is a basis of open sets of M. For B ∈ U, and for [γ] ∈ M̃ such that
γ(1) ∈ B, de�ne

U[γ],B :=
{

[γλ] : λ ∈ C([0, 1]; B), λ(0) = γ(1)
}
.

Then a basis for the topology of M̃ is given by Ũ := {U[γ],B : B ∈ U, [γ] ∈ M̃, γ(1) ∈ B}.
Let π1(M, x0) be the fundamental group of M with base point x0, and let

H := {[ρ] ∈ π1(M, x0) : link2(ρ; S) = 0},

which is a normal subgroup of π1(M, x0) of index two.
For γ ∈ Cx0 ([0, 1];M), set γ̄(t) := γ(1−t) for all t ∈ [0, 1]. AssociatedwithH, we can consider the following

equivalence relation∼H on M̃: for [γ], [λ] ∈ M̃,

[γ] ∼H [λ] ⇐⇒ γ(1) = λ(1), link2(γ λ̄; S) = 0.

We denote by [γ]H the equivalence class of [γ] ∈ M̃ induced by∼H , and we set

MH := M̃/ ∼H .

Letting p̃H : M̃ → MH be the canonical projection induced by ∼H , we endow MH with the corresponding
quotient topology. We set pH,M : [γ]H ∈ MH 7→ γ(1) ∈ M, so that we have the following commutative diagram

M̃ p̃H //

p
  

MH

pH,M

��
M

(2.35)

and the pair (MH , pH,M) is a cover of M, see [9, Proposition 1.36].
Let (Y , πY ) be a cover of M, and let y0 ∈ π−1

Y (x0). By (πY )* : π1(Y , y0) → π1(M, x0) we denote the homo-
morphism de�ned as (πY )*([ϱ]) := [πY ◦ ϱ]. By [9, Proposition 1.36], we have

(pH,M)*(π1(MH , [x0]H)) = H, (2.36)

where π1(MH , [x0]H) is the fundamental group ofMH with base point the equivalence class [x0]H of the con-
stant loop x0.

Proposition 2.12. Let Σ be a pair of cuts. Then YΣ and MH are homeomorphic.
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Proof. By [9, p. 28], we can assume that x0 ∉ Σ ∪ Σ′. Now, let y0 ∈ π−1
Σ,M(x0) and [ϱ] ∈ π1(YΣ , y0). Then, [ϱ]

changes sheet in YΣ an even (or zero) number of times; therefore, assuming without loss of generality ϱ of
class C1 and transverse to Σ, recalling also (2.25), we have

0 ≡ #
(

(πΣ,M ◦ ϱ)−1(Σ)
)
≡ link2(πΣ,M ◦ ϱ; S) (mod 2),

which implies πΣ,M ◦ ϱ ∈ H. Hence, (πΣ,M)*
(
π1(YΣ , y0)

)
≤ H, and since H and (πΣ,M)*

(
π1(YΣ , y0)

)
have the

same index, they must coincide. From (2.36), we deduce

(pH,M)*(π1(MH , [x0]H)) = (πΣ,M)*
(
π1(YΣ , y0)

)
.

By [9, Proposition 1.37], the proof is complete.

The homeomorphism between the two covers, which we denote

fΣ : MH → YΣ , (2.37)

is given for instance in the proof of [9, Proposition 1.33]: for [γ]H ∈ MH , let β ∈ C([0, 1];MH) be a path from
[x0]H to [γ]H; we uniquely lift pH,M ◦ β to a path in YΣ with base point y0. Then, fΣ([γ]H) is de�ned as the
endpoint of the lifted path, which turns out to be independent of β.

Let us de�ne the distance dMH on MH as follows: for [γ]H , [λ]H ∈ MH ,

dMH ([γ]H , [λ]H) := inf
β

sup
{∑

l
|pH,M(β(tl)) − pH,M(β(tl−1))| : (tl)l ∈ Part(β)

}
, (2.38)

where the in�mum runs among all β ∈ C([0, 1];MH) connecting [γ]H and [λ]H; for any such β, Part(β) denotes
the collection of all �nite partitions (tl)l of [0, 1] such that, for every l, there exist [γl] ∈ M̃ and a ball Bl ⊆ M
with U[γl ],Bl ∈ Ũ such that β([tl−1, tl]) ⊂ p̃H(U[γl ],Bl ).

Symmetry, positivity, and the triangular inequality of dMH are direct consequences of the de�nition. Let
us show that dMH ([γ]H , [λ]H) = 0 implies [γ]H = [λ]H . Clearly, we have γ(1) = λ(1). Fix ϵ > 0, and let β ∈
C([0, 1],MH), N ∈ N, (tl)l ∈ Part(β), l ∈ {1, . . . , N}, be such that

∑N
l=1 |pH,M(β(tl)) − pH,M(β(tl−1))| ≤ ϵ. In

particular, for ϵ > 0 su�ciently small, the closed curve ρ de�ned as⁸

ρ := [[γ(1), pH,M(β(t1))]] · · · [[pH,M(β(tN−1)), λ(1)]]

is contractible in M, which implies that
link2(ρ; S) = 0. (2.39)

By de�nition of Part(β), for every l ∈ {1, . . . , N} there exist λl,1, λl,2 ∈ C([0, 1]; Bl), with λl,1(0) = λl,2(0) =
γl(1), and such that β(tl−1) = [γlλl,1]H , β(tl) = [γlλl,2]H; notice that, since [γl−1λl−1,2]H = β(tl−1) = [γlλl,1]H ,
we have

link2(γl−1λl−1,2 λ̄l,1γ̄l; S) = 0. (2.40)

Set ρl := γlλl,1[[λl,1(1), λl,2(1)]]λ̄l,2γ̄l , which is a closed curve in M. In particular,

link2(ρl; S) = link2(λl,1[[λl,1(1), λl,2(1)]]λ̄l,2; S) = 0, (2.41)

where last equality follows recalling that Bl is contractible in M.
Coupling (2.39), (2.40) and (2.41), we get

link2(γ λ̄; S) =link2(γ0λ0,1 λ̄N,2 λ̄; S)

=
N∑
l=1

(
link2(ρl; S) + link2(γl−1λl−1,2 λ̄l,1γ̄l; S)

)
+ link2(ρ; S) = 0.

8 Here by [[x, x′]] we mean the path corresponding to the segment from x to x′, for every x, x′ ∈ M.
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Hence [γ] ∼H [λ], and the conclusion follows.
Now, we are in the position to establish the isometry bewteen the two covers. We endow YΣ with the

distance dYΣ de�ned as follows: for any y, y′ ∈ YΣ, we set

dYΣ
(
y, y′

)
= inf

η
sup

{∑
l
|πΣ,M(η(tl)) − πΣ,M(η(tl−1))| : (tl)l ∈ Part(η)

}
, (2.42)

where the in�mum runs among all η ∈ C([0, 1]; YΣ) connecting y and y′, and Part(η) is the family of all �nite
partitions (tl)l of [0, 1] such that, for every l, η([tl−1, tl]) is contained in a single chart of YΣ.

Proposition 2.13 (Isometry). The map fΣ in (2.37) is an isometry between (MH , dMH ) and (YΣ , dYΣ ).

Proof. Let [γ]H , [λ]H ∈ MH . For ϵ > 0, let β ∈ C([0, 1];MH) be a path from [γ]H to [λ]H , realizing the in�mum
in (2.38) up to a contribution of order ϵ. Now, set η := fΣ ◦ β; accordingly to (2.42), let (tl)l ∈ Part(η) be such
that

dYΣ (fΣ([γ]H), fΣ([λ]H)) ≤
∑
l
|πΣ,M(η(tl)) − πΣ,M(η(tl−1))| + ϵ.

Clearly, it is not restrictive to assume that, for every l, πΣ,M(η([tl−1, tl])) ⊂ Bl, for some open ball Bl ⊂ M.
Therefore, accordingly to (2.38), we have (tl)l ∈ Part(β); hence, for every l,

|πΣ,M(η(tl)) − πΣ,M(η(tl−1))| = |pH,M(β(tl)) − pH,M(β(tl−1))|,

which implies
dYΣ (fΣ([γ]H), fΣ([λ]H)) ≤ dMH ([γ]H , [λ]H) + 2ϵ.

By the arbitrariness of ϵ, we get dYΣ (fΣ([γ]H), fΣ([λ]H)) ≤ dMH ([γ]H , [λ]H). Similarly, we get the converse in-
equality.

Once we have to minimize a functional de�ned on some functional domain, the metric structure (and not
only its topology) of the cover becomes relevant: the distance function on Y is locally euclidean, and the two
methods described above give isometric covers.

We conclude this section remarking that a large part of what we have described can be generalized [2]:
• to a cover of Rn \ S having more than two sheets. Allowing three or more sheets has the interesting by-

product of modelling singularities in soap �lms such as triple junctions (in the plane), or triple curves⁹
(in space), quadruple points, etc.

• when S is not smooth, for instance S the one-skeleton of a polyhedron.
We refer to [6], [2] and [4] for a more complete description for covers of any (�nite) degree.

3 Covers of degree larger than two
The use of covers p := πΣ,M : Y → M of degree larger than two, coupled with scalar or even vector-valued
BV-functions de�ned on Y and satisfying a suitable constraint, is of interest since for instance:
• when n = 2, one can model, among others, the Steiner minimal graph problem connecting a �nite num-

ber k ≥ 3 of points in the plane [2];
• when n = 3, one can consider con�gurations with singularities (triple curves, quadruple points etc.), in

particular when S is the one-dimensional skeleton of a polyhedron;

9 Curves where three sheets of the surface meet at nonzero angles.
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• choosing carefully the cover, it is possible to model soap �lms with higher topological genus, as in the
example of the one-skeleton of a tetrahedron¹⁰ discussed in [4]: the resulting soap �lm seems not to be
modelable using the Reifenberg approach [16].

Some remarks to be pointed out are the following:
• in the construction of the cover, and to model interesting situations, it frequently happens to make use¹¹

of what the author of [6] called “invisible wires”: these may have various applications, such as making
globally compatible the cover, or also acting as an obstacle (see also Section 4). They are called invisible
wires because the soap �lm should be supposed towet the initial wireframe S, but not to wet the invisible
wires, so that their actual position becomes relevant. Proving that a soap �lm has no convenience to wet
the invisible wires for special choices of their position, seems to be an open problem, not discussed in
[6]. We refer to [4] for more.

• Instead of describing explicitly the cut and past procedure (as in Section 2) and the parametrizing maps
(which becomes more and more complicated as the degree of the cover increases) now it is often con-
venient to construct the cover �rst by orienting all portions¹² of the cut, then declaring in a consistent
global way the permutations for gluing the sheets along the cut, and �nally to use the local triviality of
the cover, in order to check the consistency of the gluing. Already in the case of triple covers, a relevant
fact is the use of permutations with �xed points.

• Another useful way to describe the cover is the abstract construction (already considered in Section 2.5
for double covers): one has to suitably quotient the universal cover with a subgroup of the fundamental
group of the complement of S¹³. A clear advantage of this approach is its independence of any cut, a fact
that, with the cut and past procedure, requires a proof.

• BV-functions de�ned on Y could be vector valued, as in [2]. Suppose for simplicity to consider a triple
cover; then one choice is to work with BV-functions u : Y → {α, β, γ}, where α, β, γ are the vertices
of an equilateral triangle of R2, having its barycenter at the origin. If x is any point of M and p−1(x) =
{y1, y2, y3} is the �ber over x, then we require {u(y1), u(y2), u(y3)} = {α, β, γ}. Clearly, the constraint
now reads as

∑3
i=1 u(yi) = 0.

Another choice (made also in [4]) is, instead, the following. Again, suppose for simplicity to con-
sider a triple cover. We can consider BV-functions u : Y → {0, 1}, so that if x is any point of M
and p−1(x) = {y1, y2, y3} is the �ber over x, then we require the constraint

∑3
i=1 u(yi) = 1 (so that

{u(y1), u(y2), u(y3)} = {1, 0, 0}). Other choices of the constraint are conceivable, but we do not want
to pursue this issue in the present paper.

Once we have speci�ed the domain of the area functional, i.e., a class of constrained BV-functions u, the
variational problem becomes, as in Section 2, to minimize the total variation of u¹⁴. This turns out to be the
(n−1)-dimensional Hausdor�measure of the projection p(Ju) of the jump set Ju of u, times a positive constant
c, related to the codomain of u and possibly to the number of sheets. For instance, for u(y) ∈ {α, β, γ} as
above, then c = 3`, where ` = |β − α|. For u(y) ∈ {0, 1}, then c = 2.

In the next section we construct triple covers, in some interesting cases not considered in [4], and only
partially considered in [6].

10 The triple cover constructed in [4] used to realize a soap �lm with two tunnels is not normal. Roughly, this means that one of
the three sheets is treated in a special way; this is also related to the Dirichlet condition imposed on the cover in correspondence
of the boundary of Ω.
11 Invisible wires can be useful also for covers of degree two.
12 It is worth noticing that it may happen that now the cut surface is immersed, and not embedded.
13 or, if necessary, of the union of S and the invisible wires.
14 In the case of u(y) ∈ {α, β, γ}, the total variation is computed using the Frobenius norm |T| =

√∑
(tij)2 onmatrices T = (tij).
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b

a

Figure 2: Left: an unknotted boundary (bold curve). The dotted loop represents an invisible wire that is not part of the problem
but essential for the cover construction. Right: a striking example of minimal �lm that only partially touches the boundary, due
to Almgren [1, �g. 1.9].

4 Examples
In this section all covers are of degree three; moreover, we consider BV functions u : Y → {0, 1} with the
constraint that the sum of the values of u on the three points of each �ber equals 1.

We start with the example of Figure 2, due to F.J. Almgren [1, Fig. 1.9].

Example 4.1 (A partially wetted curve). Let S be the (unknotted) bold curve in Figure 2 (left). We want to
construct a cover ofR3 \S compatible with the soap �lm in Figure 2 (right), where the lower part is not wetted.
The presence of the triple curve suggests to use a cover of degree at least three, and indeed three will su�ce.
Removal of the unknotted curve from R3 leaves a set with in�nite cyclic fundamental group (isomorphic to
Z).

The only possible cover with three sheets that can be constructed on such a base spacewould necessarily
imply a cyclic permutation of the three points of the �berwhen looping around the lower portion of the curve,
forcing anundesiredwetting. Similarly to the constructiondescribed in [4] and in the same spirit as inmanyof
the examples in [6], we then add an “invisible wire” in the form of a loop circling the pair of nearby portions
of S in the upper part. This is represented by the dotted loop C in Figure 2 (left). The base space M is then
de�ned as R3 \ (S ∪ C).

A cut and past construction of the cover p : Y → M can now be de�ned by cutting M along two surfaces
bounded by S and by C respectively. The �rst one resembles the �lm of Figure 2 (right), but it has a sel�nter-
section along the dashed (lower) segment and continues below the disk-like portion touching the whole of
S; the second one is a small disk bounded by C, intersecting the �rst cutting surface along the dashed seg-
ment.We now take three copies, numbered 1, 2, 3, of the cutted version ofM and glue them along the cutting
surfaces according to given permutations of the three sheets, that we now describe.

The permutation along the lower portion of S is chosen as (2 3), namely stratum 1 glues with itself, while
strata 2 and 3 get exchanged. This choice is justi�ed because we do not want to force wetting of that portion,
indeed a function in D(F) de�ned equal to 1 in sheet 1 does not jump along a tight loop around that part of
S. This choice in turn requires that we �x the Dirichlet-type condition u = 1 out of a su�ciently large ball on
stratum 1 of the cover.

The permutations on the remaining parts of the cut can then be chosen consistently as follows:
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(2 3) (as already described) in the lower tongue-like portion of the surface bordered by S;
(2 3) when crossing the disk-like surface bordered by C;
(1 2) when crossing the large disk-like portion of the surface bordered by S;
(1 3) when crossing the ribbon-like portion of the surfaces between the two dashed crossing curves.

Note that corresponding to portions of the surface that are wetting the bold curve, stratum 1 is exchanged
with a di�erent stratum.

It is a direct check that with this de�nition the local triviality of the triple cover around the triple curves,
namely that a small loop around the dashed curvesmust be contractible inM, is satis�ed. This check consists
in showing that the composition of the three permutations associated with the crossings must produce the
identity: (2 3)(1 2)−1(1 3)−1(1 2) = (). The construction is actually unique up to exchange of sheets 2 and 3.

The fundamental group π1(M) of M is readily seen to be free of rank 2. It can be generated by the two
Wirtinger generators schematically denoted by a and b in Figure 2 left. We can then �nitely present π1(M)
with two generators and no relation as

π1(M) =< a, b; > .

An abstract construction of the cover can be obtained by considering the homomorphism φ : π1(M) → S3
(permutations of the set {1, 2, 3}) de�ned by the position φ(a) = (1 2), φ(b) = (2 3) and then de�ning the
subgroup H < π1(M) as

H = {w ∈ π1(M) : φ(w) : 1 7→ 1}.

It contains all reducedwordsw ∈ π1(M)whose imageunderφ is either the identity () ∈ S3 or the transposition
(2 3). It is a direct check that H has index 3 in π1(M) and that it is not normal.

As discussed in [4] for the example of the tetrahedralwire, also in this examplewe cannot exclude a priori
that a minimizing surface wets the invisible wire: we have already remarked that this is a di�culty present in
any example constructed using invisible wires.

Finally, we recall that soap �lms that partially wet any knotted curve have been proven to exist in [15].

The soap �lm of the next example can be found for instance in [11, pag. 85 and Fig. 4.14].

Example 4.2 (Soap �lm with triple curves on a cubical frame). Let S be the one-dimensional skeleton of
the cube (Figure 3). We want to construct a cover of M = R3 \ S which is compatible with the soap �lm in
Figure 3; note that here the soap �lm wets all the edges of the skeleton.

Again, we want to model a soap �lm with triple curves, but not with quadruple points, and indeed, as
we shall see, a triple cover of M will su�ce. Also, there will be no need of any invisible wire. First of all, we
orient the three pairs of opposite faces of the cube from the exterior to the interior, as in Figure 4 (left). It turns
out that we can make use of the cyclic permutations of {1, 2, 3}. We imagine a cut along the six faces of the
cube, and we associate the same permutation to opposite faces: the identity permutation () is associated to
the frontal and back faces, in order to model the presence of the tunnel. The three powers (), (1 2 3), (1 3 2)
of the cyclic permutation (1 2 3) are depicted in Figure 4. The presence of the identity permutation on a pair
of opposite faces has the e�ect of actually not having a cut there. On the other hand, a tight loop around an
edge turns out in the composition of a power of (1 2 3) with the inverse of a di�erent power of (1 2 3), so that
the result is either (1 2 3) or (1 3 2), hence a permutation without �xed points, which forces to wet that edge.

Observe that a curve entering a face and exiting from the opposite oneproduces the identical permutation
of the strata of the cover, hence it does not necessarily have tomeet the projection of the jump set of a function
u.

The fundamental groupofM turns out to be a free groupof rank5, and it canbe generatedby the elements
of π1(M) schematically displayed in Figure 4 (right) as a, b, c, d, e; the correspondingWirtinger presentation
is

π1(M) =< a, b, c, d, e; >

(�ve generators and no relations). Observe that the orientation of the edges in the �gure is chosen such that
all �ve generators loop positively around the corresponding edge and result in the permutation (1 2 3) of the
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Figure 3: A non-simply connected minimal �lm spanning a cube. Image obtained using the surf code by E. Paolini.
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Figure 4: Left: orientation of the cut (the faces of the cube), and permutations of the sheets along the cut. Right: the Wirtinger
presentation of the fundamental group of the complement of the one-skeleton of a cube.
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Figure 5: A minimal �lm that retracts to its boundary. Image provided by E. Paolini. An example of a �lm that deformation re-
tracts to its boundary can be found in [14, �g. 3], the same example can also be found in [6, �g. 14]

three sheets when compared with the cut/paste construction. This allows an abstract de�nition of the cover
by considering the homomorphism φ : π1(M)→ S3 that maps all �ve generators onto the cyclic permutation
(1 2 3) and take the normal subgroup H < π1(M), kernel of φ. A word w ∈ π1(M) belongs to H whenever the
exponent sum with respect to all generators is a multiple of 3.

The abstract construction shows that this cover is normal. Note that this construction is invariant (up
to isomorphisms) under the symmetry group of the cube, hence a minimizer will not be unique unless it is
invariant under such symmetry group, which we do not expect to be true in view of the �lm displayed in
Figure 3.

Minimizers with this topology were also obtained by real experiments [11].

The next example (Figure 5, found by J.F. Adams in [16, Appendix]) concerns a soap �lm which retracts to its
boundary.

Example 4.3. Let S be the curve of Figure 5: we would like to consider the soap �lm of the �gure as a cut,
but in order to construct a consistent triple cover, this is not su�cient. Indeed, we add an invisible wire in
the form of a loop C circling around the Moëbius strip on the right; next we consider as a cut the union of the
soap �lm in the �gure and a disk bounded by C. Of course, this cut has a sel�ntersection along a diameter of
the disk. Now, take as usual three copies 1, 2, 3 of the cutting surface and glue them using the permutations
as follows:

(2 3) when crossing the disk bounded by C;
(1 2 3) on the remaining part of the cut.
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Observe that the part of the cut on the right hand side is not orientable: the invisible wire acts in such a way
to revert the cyclic permutation (1 2 3) when crossing the disk.

It turns out that a presentation of the fundamental group of M = R3 \ (S ∪ C) is

π1(M) =< a, b; abab = baba >,

where a corresponds to a small loop circling around S, and b corresponds to a short loop circling around the
invisible wire C.

The abstract de�nition of the cover is obtained by considering the homomorphism φ : π1(M)→ S3 that
maps a to (1 2 3) and b to (2 3)¹⁵. A word belongs to H < π1(M) whenever it consists of the words of π1(M)
that are mapped through φ in a permutation of {1, 2, 3} which �xes 1: namely, either the identity () or the
transposition (2 3).

Figure 6: Three examples of non-simply connected minimal �lms spanning the boundary of a regular octahedron. Top-left:
trivial nonconnected surface consisting in four of the eight faces; Top-right: surface obtained by starting from �ve of the eight
faces, the result consists in an isolated triangular face F (after removing its boundary) plus a �lm with three triple curves wet-
ting all the edges of the octahedron that are not edges of F; Bottom: surface obtained by starting from six of the eight faces.
Note the presence of six triple curves. Images obtained using the surf code by E. Paolini.

Example 4.4. Let S be the one-skeleton of a regular octahedron. The fundamental group of M = R3 \ S is a
free group of rank 5. After suitable orientation, each of the 12 edges of the octahedron can be associated to

15 One veri�es that φ is well de�ned with respect to the relation of the presentation.
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an element of π1(M) corresponding to a loop from the base point (at in�nity) that circles once in the positive
sense around it.

Imposing a strong wetting condition [4] at all edges for a cover with three sheets amounts in forcing the
permutation of sheets corresponding to a positive loop around that edge to be either (1 2 3) or its inverse
(1 3 2). Upon possibly reversing the orientation of some edge we can assume all such permutations to be
(1 2 3).

Local triviality of the cover at points near a vertex then corresponds in requiring that exactly two of the
four edges concurring at that vertex to be “incoming”, the other two being “outgoing”.

A choice of the orientation of the edges consistentwith the requirement above corresponds to travel clock-
wise along theboundary edges of four of the eight faces selected in a checkerboard fashion. The resulting soap
�lm in Figure 6 (top-left) simply consists in those four faces or on the four remaining faces.

Another consistent choice of orientation consists in travelling around the three diametral squares in a
selected direction. Two relative minimizers corresponding to this choice are shown in Figure 6 (top-right and
bottom), the latter consists in a tube-shaped surface with six lunettes attached along six triple curves.

It turns out that there are at least two other non isomorphic 3-sheeted covers of the same base space,
which however seem not to provide minimizers di�erent from the ones described above.
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