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Abstract. The PVLAS collaboration is presently assembling a new apparatus
(at the INFN section of Ferrara, Italy) to detect vacuum magnetic birefringence
(VMB). VMB is related to the structure of the quantum electrodynamics
(QED) vacuum and is predicted by the Euler–Heisenberg–Weisskopf effective
Lagrangian. It can be detected by measuring the ellipticity acquired by a linearly
polarized light beam propagating through a strong magnetic field. Using the very
same optical technique it is also possible to search for hypothetical low-mass
particles interacting with two photons, such as axion-like (ALP) or millicharged
particles. Here we report the results of a scaled-down test setup and describe
the new PVLAS apparatus. This latter is in construction and is based on a high-
sensitivity ellipsometer with a high-finesse Fabry–Perot cavity (> 4 × 105) and
two 0.8 m long 2.5 T rotating permanent dipole magnets. Measurements with
the test setup have improved, by a factor 2, the previous upper bound on the
parameter Ae, which determines the strength of the nonlinear terms in the QED
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Lagrangian: A(PVLAS)
e < 3.3 × 10−21 T−2 at 95% c.l. Furthermore, new laboratory

limits have been put on the inverse coupling constant of ALPs to two photons and
confirmation of previous limits on the fractional charge of millicharged particles
is given.
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1. Introduction

In the absence of matter, Maxwell’s equations can be obtained from the classical
electromagnetic Lagrangian density LCl (in SI units)

LCl =
1

2µ0

(
E2

c2
− B2

)
, (1)

where µ0 is the magnetic permeability of vacuum and c is the speed of light in vacuum.
A quadratic Lagrangian leads to linear partial differential equations for the fields, and the
superposition principle holds, thereby excluding light–light scattering and other nonlinear
electromagnetic effects in vacuum.

With the introduction of Dirac’s equation for electrons and Heisenberg’s uncertainty
principle, Euler, Heisenberg and Weisskopf in 1936 [1] derived an effective Lagrangian
density which leads to electromagnetic nonlinear effects even in vacuum. For photon
energies well below the electron mass and fields much smaller than their critical
values, B � Bcrit = m2

ec2/eh̄ = 4.4 × 109 T, E � Ecrit = m2
ec3/eh̄ = 1.3 × 1018 V m−1, the

Euler–Heisenberg–Weisskopf effective Lagrangian can be written as

LEHW = LCl +
Ae

µ0

[(E2

c2
− B2

)2
+ 7
( EE

c
· EB
)2
]
, (2)
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Figure 1. Feynman diagrams for four field interactions.

where

Ae =
2

45µ0

α2λ̄3
e

mec2
= 1.32 × 10−24 T−2 (3)

with λ̄e = h̄/mc being the Compton wavelength of the electron, α = e2/(h̄c4πε0) the fine
structure constant, me the electron mass.

This Euler–Heisenberg–Weisskopf Lagrangian allows for four field interactions that can be
represented, to first order, by the Feynman diagrams shown in figures 1(a) and (b). Figure 1(a)
represents light by light scattering whereas figure 1(b) represents the interaction of real photons
with a classical field leading to vacuum magnetic birefringence.

Also quantum electrodynamics (QED) predicts nonlinear effects in vacuum leading
to birefringence and light-by-light scattering through the four-photons box diagram [2–9].
Furthermore, magnetic birefringence (see figure 1(e)) and magnetic dichroism could be
generated by hypothetical axion-like particles (ALPs) [10–13] or millicharged particles
(MCPs) [14–18]. Finally, the coupling of four photons through qq̄ fluctuations is also possible
(see figure 1(d)). In view of the values of the masses of even the lightest hadrons (much heavier
than the electron mass) this hadronic contribution should be very small. However, theoretical
predictions have a very large uncertainty—they span three orders of magnitude [19]; moreover,
it is not possible to evaluate the light by light QED contributions from indirect measurements,
unlike what happened for the hadronic vacuum polarization in the muon g − 2 experiment
[20, 21].

Vacuum magnetic linear birefringence and light–light interaction in vacuum at very low
energies have yet to be observed. Several experimental efforts are underway to detect such
effects [22–30]. Before the present work, the previous bound on four photon interaction was
set by the PVLAS collaboration [31] with an upper bound on vacuum magnetic birefringence
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1n(PVLAS) measured with a magnetic field B = 2.3 T

1n(PVLAS) < 1.0 × 10−19 @ 2.3 T and 95% c.l. (4)

The measurement has been performed at λ= 1064 nm, corresponding to a photon energy
h̄ω = 1.17 eV. The limit translates into an upper bound for unpolarized photon–photon
interaction [5–9] as

σ (PVLAS)
γ γ (1.17 eV) < 4.6 × 10−62 m2. (5)

The predicted QED value of the vacuum magnetic birefringence (see below) 1n(EHW) and
photon–photon elastic scattering cross section σ (EHW)

γ γ are

1n(EHW)
= 2.1 × 10−23 @ 2.3 T, (6)

σ (EHW)
γ γ (1.17 eV)= 1.8 × 10−69 m2. (7)

1.1. Electrodynamics

To calculate the magnetic birefringence of vacuum, one can proceed by determining the electric
displacement vector ED and the magnetic intensity vector EH from the Lagrangian density LEHW

of equation (2) by using the constitutive relations [3]

ED =
∂L
∂ EE

and EH = −
∂L
∂ EB
. (8)

From these one obtains

ED = ε0 EE + ε0 Ae

[
4

(
E2

c2
− B2

)
EE + 14

(
EE · EB

)
EB

]
, (9)

EH =

EB

µ0
+

Ae

µ0

[
4

(
E2

c2
− B2

)
EB − 14

(
EE

c
· EB

)
EE

c

]
. (10)

Let us consider a linearly polarized beam of light propagating perpendicularly to an external
magnetic field EBext. With ED and EH , and using Maxwell’s equations in media, one can describe
light propagation in an external field. It is evident that the equations for light propagation will
no longer be linear due to the nonlinear dependence of ED and EH on EE and EB, respectively.
We substitute EE = EEγ and EB = EBγ + EBext in (9) and (10), where the index γ refers to the light,
assuming EBext � Bγ . One finds the following relations for the relative dielectric constant and
magnetic permeability of vacuum:

ε
(EHW)

‖
= 1 + 10Ae B2

ext,

µ
(EHW)

‖
= 1 + 4Ae B2

ext,

n(EHW)

‖
= 1 + 7Ae B2

ext,


ε
(EHW)

⊥
= 1 − 4Ae B2

ext,

µ
(EHW)

⊥
= 1 + 12Ae B2

ext,

n(EHW)

⊥
= 1 + 4Ae B2

ext,

(11)

where the indices ‖ and ⊥ refer to light polarization parallel and perpendicular to EBext,
respectively.

From these sets of equations two important consequences are apparent: the velocity of light
in the presence of an external magnetic field is no longer c and vacuum is birefringent with

1n(EHW)
= n(EHW)

‖
− n(EHW)

⊥
= 3Ae B2

ext. (12)

Numerically this leads to the value given in equation (6). In any respect, a magnetized vacuum
behaves like a uniaxial crystal.
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1.2. Post-Maxwellian generalization

It is interesting to generalize the nonlinear electrodynamic Lagrangian density correction, which
must be parity conserving, gauge and Lorentz invariant, by introducing two free parameters η1

and η2:

LpM =
ξ

2µ0

η1

(
E2

c2
− B2

)2

+ 4η2

(
EE

c
· EB

)2
 , (13)

where ξ = 1/B2
crit, and η1 and η2 are dimensionless parameters depending on the model. With

such a formulation the birefringence induced by an external transverse magnetic field is

1n(pM)
= 2ξ (η2 − η1) B2

ext. (14)

This expression reduces to equation (12) if η1 = α/45π and η2 = 7/4η1. It is apparent that n‖

depends only on η1 whereas n⊥ depends only on η2. It is also noteworthy that if η1 = η2, as
is the case in the Born–Infeld model [32], then there is no magnetically induced birefringence
even though elastic scattering is present [33, 34].

1.3. Higher order quantum electrodynamics corrections

Figure 1(c) shows Feynman diagrams for the α3 contribution to the vacuum magnetic
birefringence. The effective Lagrangian density for this correction has been evaluated by
different authors [35–37] and can be expressed as

Lrad =
Ae

µ0

(α
π

) 10

72

32

(
E2

c2
− B2

)2

+ 263

(
EE

c
· EB

)2
 . (15)

This Lagrangian leads to an extra correction1n(rad) to the vacuum magnetic birefringence given
in equation (12)

1n(rad)
=

25α

4π
3Ae B2

ext = 0.0145 × 3Ae B2
ext (16)

resulting in a 1.45% correction to 1n(EHW).

1.4. Other hypothetical effects

Two other important hypothetical effects could cause n 6= 1 and 1n 6= 0 in the presence of an
external magnetic field transverse to the light propagation direction. They can be due either to
neutral bosons weakly coupled to two photons, like the ALPs [10–13] or to MCPs [14–18].

1.4.1. Axion-like particles. Search for axions or ALPs using laboratory optical techniques was
experimentally pioneered by the BFRT collaboration [38] and subsequently continued by the
PVLAS collaboration with an apparatus installed at INFN National Laboratories in Legnaro
(LNL) [22, 23, 31]. In 2006 the detection of a dichroism induced by a magnetic field in vacuum
was published [39]. Such a result, although in contrast with model-dependent interpretations
of the results of the CAST experiment [40], could have been due to ALPs. Soon after, this
result was excluded by the same PVLAS collaboration [23, 31] after a series of upgrades to the
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apparatus, and almost simultaneously the axion-like interpretation was excluded by two other
groups [41–43] with regeneration-type measurements.

The Lagrangian densities describing the interaction of ALPs with two photons, for
convenience expressed in natural Heaviside–Lorentz units, can be written as

La = gaφa EE · EB and Ls = gsφs

(
E2

− B2
)
, (17)

where ga and gs are the coupling constants of the pseudoscalar field φa or scalar field
φs, respectively. Therefore, in the presence of an external uniform magnetic field EBext the
component of the electric field of light EEγ parallel to EBext will interact with the pseudoscalar
field. For the scalar case the opposite is true: an interaction is only possible for the component
of EEγ normal to EBext.

For photon energies above the mass ma,s of such particle candidates, real production can
follow: the oscillation of photons into such particles decreases the intensity of only one of
the polarization components. On the other hand, even if the photon energy is smaller than the
particle mass, virtual production can take place, causing a phase delay of one component with
respect to the other. The phase difference1ϕ = φ‖ −φ⊥ accumulated in an optical path L inside
the magnetic field region will generate a birefringence

1n =
1ϕ

2π

λ

L
. (18)

We use the complex index of refraction, written as ñ = n + iκ , where n is the index of
refraction and κ is the extinction coefficient, which is related to the absorption coefficient
µ by µ= 4πκ/λ. A dichroism can be described by the difference in extinction coefficient
1κ = κ‖ − κ⊥ of the medium for the two orthogonal polarizations. In the pseudoscalar case,
where na

‖
> 1, κa

‖
> 0, na

⊥
= 1 and κa

⊥
= 0, and in the scalar case, where ns

⊥
> 1, κ s

⊥
> 0, ns

‖
= 1

and κ s
‖
= 0, the dichroism1κ and the birefringence1n can be expressed, in both the scalar and

pseudoscalar cases, as [10, 11, 38]

|1κ| = κa
‖
= κ s

⊥
= 2

(
ga,s BextL

4

)2 (sin x

x

)2

, (19)

|1n| = na
‖
− 1 = ns

⊥
− 1 =

g2
a,s B2

ext

2m2
a,s

(
1 −

sin 2x

2x

)
, (20)

where, in vacuum, x =
Lm2

a,s

4ω , ω is the photon energy and L is the magnetic field length. The

above expressions are in natural Heaviside–Lorentz units so that 1 T =

√
h̄3c3

e4µ0
= 195 eV2 and

1 m =
e

h̄c = 5.06 × 106 eV−1.
In the approximation for which x � 1 (small masses) expression (20) becomes

|1n| = na
‖
− 1 = ns

⊥
− 1 =

g2
a,s B2

extm
2
a,sL2

16
, (21)

whereas for x � 1

|1n| = na
‖
− 1 = ns

⊥
− 1 =

g2
a,s B2

ext

2m2
a,s

. (22)

It is interesting to note that the birefringences induced by pseudoscalars and scalars are opposite
in sign: na

‖
> na

⊥
= 1 whereas ns

‖
= 1< ns

⊥
. The different behavior of ns

⊥
− 1 and na

‖
− 1 with
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respect to L in the two cases where x � 1 and x � 1 leaves in principle, if the magnet length
can be varied, a free experimental handle for distinguishing between the two scenarios: this is in
fact the case of the new PVLAS setup. The dichroism given by equation (19) can be measured
independently; it represents a counter check of the existence of ALPs.

1.4.2. Millicharged particles. Consider now the vacuum fluctuations of particles with charge
±εe and mass mε as discussed in [14, 15]. The photons traversing a uniform magnetic field may
interact with such fluctuations, resulting in both pair production and phase delay if the photon
energy ω > 2mε , and only phase delay if ω < 2mε . As we are not presenting new rotation
measurements, we are discussing here only the birefringence and hence the (real) index of
refraction. The discussion of the dichroism topic is deferred to a future paper. Moreover, we
consider separately the case of fermions and of bosons.

Dirac fermions. Let us first consider the case in which the MCPs are Dirac fermions (Df).
As derived by Tsai and Erber in [16], the indices of refraction of photons with polarization
respectively parallel and perpendicular to the external magnetic field have two different mass
regimes defined by a dimensionless parameter χ (SI units):

χ ≡
3

2

h̄ω

mεc2

εeBexth̄

m2
εc

2
. (23)

It can be shown that [14, 17]

nDf
‖,⊥ = 1 + I Df

‖,⊥(χ)AεB2
ext (24)

with

I Df
‖,⊥(χ)=


[
(7)‖ , (4)⊥

]
for χ � 1,

−
9

7

45

2

π1/221/3
(
0
(

2
3

))2

0
(

1
6

) χ−4/3
[
(3)‖ , (2)⊥

]
for χ � 1

(25)

and

Aε =
2

45µ0

ε4α2λ̄3
ε

mεc2
(26)

in analogy to equation (3). In the limit of large masses (χ � 1) this expression reduces to (11)
with the substitution of εe with e and mε with me in equation (24). The dependence on Bext

remains the same as for the well known QED prediction.
For small masses (χ � 1) the index of refraction now also depends on the parameter χ−4/3

resulting in a net dependence of n with B2/3
ext rather than B2

ext.
In both mass regimes, a birefringence is induced:

1nDf
=
[
I Df
‖
(χ)− I Df

⊥
(χ)

]
AεB2

ext

=


3AεB2

ext for χ � 1,

−
9

7

45

2

π 1/221/3
(
0
(

2
3

))2

0
(

1
6

) χ−4/3 AεB2
ext for χ � 1.

(27)
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Scalar particles. Very similar expressions to the Dirac fermion case can also be obtained for
the scalar (sc) charged particle case [14, 18]. Again there are two mass regimes defined by
the same parameter χ of expression (23). In this case the indices of refraction for the two
polarization states with respect to the magnetic field direction are

nsc
‖,⊥ = 1 + I sc

‖,⊥(χ)AεB2
ext (28)

with

I sc
‖,⊥(χ)=


[(

1
4

)
‖
,
(

7
4

)
⊥

]
for χ � 1,

−
9

14

45

2

π 1/221/3
(
0
(

2
3

))2

0
(

1
6

) χ−4/3

[(
1

2

)
‖

,

(
3

2

)
⊥

]
for χ � 1.

(29)

The magnetic birefringence is therefore

1nsc
=
[
I sc
‖
(χ)− I sc

⊥
(χ)

]
AεB2

ext

=


−

6

4
AεB2

ext for χ � 1,

9

14

45

2

π1/221/3
(
0
(

2
3

))2

0
(

1
6

) χ−4/3 AεB2
ext for χ � 1.

(30)

As can be seen, there is a sign difference in the birefringence 1n induced by an external
magnetic field in the presence of Df with respect to the case in which scalar particles exist.

2. Experimental method

A birefringence 1n induces an ellipticity ψ on a linearly polarized beam of light given by

ψ(ϑ)=
1ϕ

2
sin 2ϑ = π

L1n

λ
sin 2ϑ, (31)

where L is the optical path length within the birefringent region and λ is the wavelength of the
light traversing it; ϑ is the angle between the light polarization and the slow axis, defined in
our case by the magnetic field direction. The optical path length can be increased by using a
Fabry–Perot cavity; in this case we think of an effective path length Leff and use a capital letter
9 to indicate the total induced ellipticity. In fact, given a birefringent region of length L within
a Fabry–Perot cavity of finesse F , the effective path length is Leff = 2FL/π (see section 2.3
below). Today, finesses F > 400 000 can be obtained.

In the Euler–Heisenberg–Weisskopf case, 1n depends quadratically on the magnetic field
EB. High magnetic fields can be obtained with superconducting magnets but, as we will see
below, it is desirable to have a time dependent field either by modulating its intensity, thereby
changing1n or by rotating the field direction, thereby changing ϑ . This makes superconducting
magnets far less appealing than permanent magnets which, today, can reach fields above 2.5 T.
In the BFRT experiment the first scheme was adopted [38], whereas PVLAS chose to rotate
the magnetic field direction and now uses permanent dipole magnets, which are relatively
inexpensive to buy, have no running costs and have in principle 100% duty cycle, allowing
very long integration times.
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Figure 2. Scheme of the PVLAS ellipsometer.

We are working with a Nd:YAG laser emitting radiation at 1064 nm. Frequency doubled
versions exist and could double the induced ellipticity, but at the moment the highest finesses
have been obtained for infrared light.

The expected ellipticity must be extracted from the noise within the maximum available
integration time. For this reason, the magnetic field is made time dependent, to move away
from dc and limit 1/ f noise. Homodyne and heterodyne detections are two possible detection
schemes. This second technique has been adopted in the PVLAS apparatus.

A scheme of the PVLAS ellipsometer is shown in figure 2. The input polarizer linearly
polarizes the laser beam of intensity I0 which then enters the sensitive region delimited by the
Fabry–Perot cavity mirrors. The laser is phase locked to this cavity. After the cavity, the laser
beam passes through an ellipticity modulator which adds a known time dependent ellipticity
η(t) to the beam. This modulator ellipticity adds to the ellipticity 9(t) acquired within the
magnetic field region. After the modulator, the beam passes through the analyser which selects
the polarization perpendicular to the input polarization and finally a photodiode detects ITr. The
sought for information can be extracted from the Fourier spectrum of ITr and from the value of
the intensity Iout before the analyser. To measure the dichroism induced by the existence of new
particles, a quarter waveplate can be added between the cavity and the modulator; in this way
the pseudo-rotation is transformed into ellipticity and can be measured following the procedure
outlined above.

2.1. Estimate of the effect

To better understand what follows, it is useful to present some numerical values of the different
quantities involved in the PVLAS experiment. Considering the vacuum magnetic birefringence
due to the Euler–Heisenberg–Weisskopf Lagrangian, let us determine the ellipticity we expect
in the apparatus under construction. The magnets have a total magnetic field length L = 1.6 m
with a measured field intensity | EBext| = 2.5 T resulting in

∫
B2

ext dL = 10 T2 m. In the estimate
we use the the maximum finesse value we have reached: F = 414 000. Putting these numbers
together leads to

9PVLAS = 2F
3Ae

∫
B2

ext dL

λ
= 3 × 10−11. (32)

Assuming a maximum integration time Tmax = 106 s and a signal to noise ratio (SNR) = 1
implies that the sensitivity must be

sPVLAS <9PVLAS

√
Tmax = 3 × 10−8 Hz−1/2. (33)

In principle this is well above the shot noise limit (see formula (48) below). Unfortunately, as
will be briefly discussed below, other noise sources are present which limit the ellipsometer
sensitivity. We now discuss in detail various issues of the measurement technique and of the
setup.
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Figure 3. Reference frame for the calculations using the Jones matrix formalism.
The birefringent medium has a thickness L .

2.2. Heterodyne technique

Considering the coherence of the light source, a full treatment of the system can be done with
the Jones matrix formalism [44]. For the purpose of our discussion let the laser beam propagate
along the Z -axis and let the incoming (linear) polarization define the X -axis (figure 3). The
Jones matrix for a uniaxial birefringent element of thickness L is given by

BRF(ϑ)=

(
1 + ıψ cos 2ϑ ıψ sin 2ϑ

ıψ sin 2ϑ 1 − ıψ cos 2ϑ

)
, (34)

where ψ =1ϕ/2 (ψ � 1) is now the maximum ellipticity acquired by the light and ϑ

represents the angle between the slow axis (n‖ > n⊥) of the medium and the X -axis.
Let EE in = E0

(1
0

)
be the entrance electric field; after the magnetic field region one has

EEBRF = E0 · BRF ·

(
1

0

)
= E0

(
1 + ıψ cos 2ϑ

ıψ sin 2ϑ

)
.

Assuming no losses and adding the analyser—a polarizer crossed with respect to the entrance

polarizer, with Jones matrix A =

(
0 0
0 1

)
—the intensity ITr will be

ITr = I0 |ıψ sin 2ϑ |
2 . (35)

Given the predicted value, the resulting output power, proportional to ψ2, is immeasurably
small.

By introducing an ellipticity modulator (in our case a photoelastic modulator), which adds
a known sinusoidal ellipticity η(t), the detected signal is linearized in ψ . In fact, the Jones
matrix for the modulator is the same as BRF with ϑ set at an angle of π/4 (ψ � η� 1):

MOD =

(
1 ıη(t)

ıη(t) 1

)
. (36)

The resulting vector describing the electric field after the modulator will be

EEMOD = E0 · MOD · BRF ·

(
1

0

)
= E0

(
1 + ıψ cos 2ϑ −ψη(t) sin 2ϑ

ıη(t)+ ıψ sin 2ϑ − η(t)ψ cos 2ϑ

)
. (37)
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Neglecting second order terms, the intensity ITr after the analyser will be

ITr(t)= I0 |ıη(t)+ ıψ sin 2ϑ |
2
' I0

[
η(t)2 + 2η(t)ψ sin 2ϑ

]
, (38)

which now depends linearly on the ellipticity ψ . To complete the discussion, one finds
experimentally that static and slowly varying ellipticities, indicated as α(t), are always present in
a real apparatus and that two crossed polarizers have an intrinsic extinction ratio σ 2, mainly due
to imperfections in the calcite crystals. Furthermore, losses in the system reduce the total light
reaching the analyser, which we indicate as Iout. Therefore, taking into account an additional
spurious ellipticity term α(t) (since α,ψ, η� 1 these terms commute and therefore add up
algebraically) and a term proportional to σ 2, the total intensity at the output of the analyser
will be

ITr(t)= Iout

[
σ 2 + |ıη(t)+ ıψ sin 2ϑ + ıα(t)|2

]
' Iout

[
σ 2 + η(t)2 +α(t)2 + 2η(t)ψ sin 2ϑ + 2η(t)α(t)

]
. (39)

In PVLAS, to be able to distinguish the large term η(t)α(t) from the term η(t)ψ sin 2ϑ ,
ψsin 2ϑ is also modulated in time by rotating the magnetic field direction (varying ϑ). The final
expression, explicitly indicating the time dependence of ϑ , for the intensity at the output of the
analyser is therefore

ITr(t)= Iout

[
σ 2 + η(t)2 +α(t)2 + 2η(t)ψ sin 2ϑ(t)+ 2η(t)α(t)

]
. (40)

2.3. Optical path multiplier

To increase the ellipticity induced by the birefringent region of thickness L one can increase the
number of passes through it. Either a multi-pass cavity or a Fabry–Perot cavity can be used for
this purpose. In the PVLAS experiment a Fabry–Perot has been chosen. In a multi-pass cavity
the induced ellipticity is multiplied by the number of passes Npass through the region. With a
Fabry–Perot cavity the analogy to a multi-pass cavity is not immediate since one is dealing with
a standing wave.

Let t , r be the transmission and reflection coefficients, and p the losses of the mirrors of the
cavity such that t2 + r 2 + p2

= 1. Let d be the length of the cavity and δ = 4πd/λ the roundtrip
phase for a beam of wavelength λ. Then the Jones matrix for the elements of the ellipsometer
after the entrance polarizer is

ELL = A · SP · MOD · t2 eıδ/2
∞∑

n=0

[
BRF2r 2 eıδ

]n
· BRF, (41)

where SP describes spurious ellipticities. Because r 2 < 1, ELL can be rewritten as

ELL = A · SP · MOD · t2 eıδ/2
[
I − BRF2r 2 eıδ

]−1
· BRF (42)

with I the identity matrix. With the laser phase locked to the cavity so that δ = 2πm, where m
is an integer number, the electric field at the output of the system will be

EETr = E0 · ELL ·

(
1

0

)
= E0

t2

t2 + p

 0

ıα(t)+ ıη(t)+ ı
1 + r 2

1 − r 2
ψ sin 2ϑ

 (43)
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Table 1. Intensity of the frequency components of the signal after the analyser.

Frequency Fourier component Intensity/Iout Phase

dc Idc σ 2 +α2
dc + η2

0/2 −

νMod IνMod 2αdcη0 θMod

νMod ± 2νMag IνMod±2νMag η0
2F
π
ψ θMod ± 2ϑMag

2νMod I2νMod η2
0/2 2θMod

and the intensity, including mirror losses and polarizer extinction,

ITr(t)= Iout

[
σ 2 +

∣∣∣ıα(t)+ ıη(t)+ ı

(
1 + r 2

1 − r 2

)
ψ sin 2ϑ

∣∣∣2] . (44)

This expression is at the basis of the ellipsometer in the PVLAS apparatus [45]. Small
ellipticities add up algebraically and the Fabry–Perot multiplies the single pass ellipticity
ψsin 2ϑ , generated within the cavity, by a factor (1 + r 2)/(1 − r 2)≈ 2F/π , where F is the
finesse of the cavity. The ellipticity signal to be detected is therefore 9(ϑ)= (2F/π)ψ sin 2ϑ .

The Fabry–Perot as an optical path amplifier works well until the accumulated phase
difference due to birefringences within the cavity is less than π/2. Beyond this value the
interferometer has two separate resonances for two orthogonal polarizations [45] and therefore
elliptically polarized light cannot be resonant. As total birefringence also includes the intrinsic
birefringence of the cavity mirrors, two mirrors with similar characteristics must be used and
their birefringence axes aligned.

2.4. Fourier components

In the PVLAS experiment, η(t)= η0 cos(2πνModt + θMod) and the magnetic field direction is
rotated at a frequency νMag: ϑ(t)= 2πνMagt +ϑMag. A Fourier analysis of the intensity ITr(t) of
equation (44) results in four main frequency components each with a definite amplitude and
phase. These are reported in table 1.

The presence of a component at νMod ± 2νMag in the signal identifies an ellipticity induced
by the rotating magnetic field. Furthermore the phase of this component must satisfy the value
in table 1. In the presence of a signal above background with the correct Fourier phase, the
ellipticity 9 = (2F/π)ψ can be calculated from Iout, from the Fourier components IνMod±2νMag ,
and from I2νMod as the average of the two sideband signals:

9 =
1

2

(
IνMod+2νMag√
2Iout I2νMod

+
IνMod−2νMag√
2Iout I2νMod

)
. (45)

2.5. Noise considerations

Indicating with RνMod±2νMag the noise spectral density at the signal frequencies, and assuming
RνMod+2νMag = RνMod−2νMag , the sensitivity spectral density s of the ellipsometer for a unity signal
to noise ratio is

s =
RνMod+2νMag√
4Iout I2νMod

. (46)
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In principle, the noise limit for such a system is determined by the rms shot noise ishot of
the current idc:

ishot =
√

2eidc1ν =

√
2eIoutq

(
σ 2 +

η2
0

2
+α2

dc

)
1ν, (47)

where q is the efficiency of the photodetector and 1ν the bandwidth. In the case η2
0 � σ 2, α2

dc,
the dc current will depend only on η0 and by substituting RνMod+2νMag = ishot/(q

√
1ν) into

equation (46), the shot-noise sensitivity spectral density sshot becomes

sshot =

√
e

Ioutq
. (48)

Assuming an intensity Iout = 5 mW and the efficiency of the diode q = 0.7 A W−1, the equation
above gives sshot ∼ 7 × 10−9 Hz−1/2.

Other intrinsic noise sources are: photodiode dark current noise idark, which generates an
output noise signal density Vdark = G idark, with G the transimpedance gain of the photodetection
system; Johnson rms current noise spectral density in the transimpedance resistor in the
amplifier of the photodiode iJ =

√
4kBT/G; and relative laser intensity current noise spectral

density iRIN = Iout q RIN(ν), where RIN(ν)= Inoise(ν)/I0 is the relative amplitude noise spectral
density of the laser light. These noises must be kept below ishot at a frequency near νMod in
order to reach the theoretical sensitivity. Complete expressions for these noise contributions
to the ellipticity spectral noise density can be obtained from equation (46) as functions of the
modulation amplitude η0:

sshot =

√
2e

Ioutq

(
σ 2 + η2

0/2

η2
0

)
, (49)

sdark =
Vdark

G

1

Iout q η0
, (50)

sJ =

√
4kBT

G

1

Iout q η0
, (51)

sRIN = RIN(νMod)

√
(σ 2 + η2

0/2)2 + (η2
0/2)2

η0
. (52)

3. Experimental studies

3.1. PVLAS at National Laboratories of INFN in Legnaro: main features and limitations

The previous PVLAS apparatus was set up at LNL in Legnaro, Italy and took data from 2002 to
2007. It featured a vertical assembly of the ellipsometer with a 6 m long Fabry–Perot cavity, the
injection and detection optics installed on different optical benches resting on the ground and
on the top of a granite tower nearly 8 m high, respectively. A superconductive dipole magnet
about 1 m long, installed in a cryostat resting on a turntable, provided a rotating magnetic field
orthogonal to the light path in the Fabry–Perot cavity. The magnet was operated with magnetic
fields up to 5.5 T. The magnet support and the optics tower had different foundations, and were
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hence mechanically decoupled. Although this apparatus has set best limits on magnetic vacuum
birefringence and photon–photon elastic scattering at low energies [31], it suffered from several
limitations:

• high stray field when operating the superconducting magnet above 2.3 T, due to saturation
of the iron return yoke;

• limited running time due to liquid helium consumption;

• high running costs for liquid helium;

• the granite tower could not be seismically insulated, due to its size and configuration;

• with a single magnet, a zero ellipticity measurement was only possible with field off, hence
not in the same experimental condition as in the magnetic birefringence measurements.

To solve the first three problems, we have now chosen to work with permanent magnets
instead of superconducting ones. In permanent magnets the stray field can be made much
smaller and the duty cycle can be as high as 100%. Seismic noise also limited the sensitivity
of the LNL setup; instead, a large improvement of this parameter can be obtained by installing
the whole ellipsometer on a single seismically isolated optical bench, as shown in [46]. The last
point in the list above is extensively addressed in a separate section.

A completely new setup has been designed according to these lines and is being installed
in a clean room of the Ferrara section of INFN. The new set up is built using a single 4.8 m long
granite optical bench actively isolated and two identical rotating permanent dipole magnets
in Halbach configuration, each 0.8 m in length with magnetic field strength B = 2.5 T and
2 cm bore. The magnets, design features a magnetic field shield strongly reducing stray fields.
We plan to rotate them at νMag = 10 Hz, thanks to their reduced mass and good balancing.
The optical setup features a 2 W tunable Nd:YAG laser frequency-locked to a 3.2 m long
Fabry–Perot cavity using a modified Pound–Drever–Hall scheme [47] and an entirely non-
magnetic optomechanical setup. The motion of the in-vacuum optical elements is based on
stepper piezo motors which maintain their position when powered off. The whole ellipsometer
is kept in a vacuum chamber pumped with non-evaporable getters, which are intrinsically non-
magnetic. Two 1 m long glass tubes traverse the bore of the magnets; each tube is pumped at
both ends.

3.2. Two-magnet configuration

As reported in [23], the rotating stray magnetic field and the vibrations associated with the
masses in rotation can act on the optics and fake ellipticity signals. It is therefore desirable to
perform measurements of the zero of the ellipticity scale in conditions as close as possible
to those in which an authentic signal is expected. This is not possible with one single
superconducting magnet, because when there is no field in the magnet bore the stray field is
also absent. By using two identical magnets and orienting their fields at 90◦ the net ellipticity
generated by the magnetic birefringence is zero. Running the system with the magnets parallel
and perpendicular will allow the identification of a real physical signal with respect to some
spurious signal due to stray field.

This idea has been verified with the scaled down test setup using the Cotton–Mouton effect
of oxygen [48]. The principle of the test ellipsometer is identical to that of the final system
in construction. Figure 4 (top) shows the scheme of the test apparatus and figure 4 (bottom)
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Figure 4. Optical scheme (top) and photograph (bottom) of the test apparatus in
Ferrara. At the center one can see the two dipole permanent magnets. The optics
is supported by antivibration stages whereas the magnet supports are on the floor.

a picture of it. At the center one can see the two permanent magnets each generating a 20 cm
long magnetic field of maximum intensity B = 2.3 T. For these magnets the measured

∫
B2 dL

is 1.85 T2 m. The whole optical setup is placed on a seismically isolated optical bench,
whereas the magnets are supported by a separate structure resting on the floor and are thereby
mechanically isolated from the optics. The finesse of the cavity wasF = 240 000 and the oxygen
pressure inside the apparatus was 0.278 mbar.
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ω

Figure 5. Fourier spectrum around the carrier frequency νMod. Ellipticity
measurements with the magnetic fields of the two magnets parallel (red)
and perpendicular (black). The large sidebands at 2νMag are due to the
Cotton–Mouton effect in oxygen gas. No error is given on the measured value of
1nu (for a definition see [49]), as we could not control gas composition.

Figure 5 shows the ellipticity Fourier spectrum around the carrier frequency νMod. Clear
sidebands can be seen at twice the rotation frequency of the magnets (νMag = 1.5 Hz). Shown in
red is the spectrum with the magnets in a parallel configuration whereas the black curve refers to
a perpendicular configuration. The signal attenuation factor in the perpendicular configuration
with respect to the parallel one is about 80: we can conclude that the parameter B2

extL for the
two magnets is the same to within about 1–2% and, most important, that the principle is correct.
The presence of the unwanted sidebands at νMag indicates that a small spurious component could
also contribute to the 2νMag peak, thus limiting the cancellation of the signal in the perpendicular
configuration.

We believe the improvement of using two magnets instead of one will be crucial in
understanding the ellipsometer, and that such a measurement with two rotating magnets
whose relative field directions can be changed is imperative. This is a straightforward way of
guaranteeing the authenticity of a signal.

3.3. Vacuum ellipticity measurements with the test setup

With the test setup (figure 4), featuring two small magnets, measurements have been performed
to understand its limits and optimize the new apparatus in construction. Two different noise
sources exist and are under study: wide-band noise and spurious signals at the magnet rotation
frequency and its harmonics. Below we briefly report some results in the two cases.

3.3.1. Sensitivity—wide-band noise. Noise measurements were first performed without the
Fabry–Perot cavity. In this configuration we successfully excluded noise sources from readout
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Figure 6. Calculated noise contributions for the PVLAS test apparatus
(solid curves). The green curve is the Johnson noise contribution from the
transimpedance resistor in the current to voltage converter, the red curve is the
dark current noise contribution from the photodiode, the blue curve is the shot
noise contribution and the brown curve is the relative intensity noise contribution
measured at the output of the cavity. The circle represents the measured ellipticity
sensitivity of the apparatus.

electronics and optical elements other than the cavity mirrors, practically reaching the expected
sensitivity of sno cavity = 6 × 10−9 Hz−1/2, dominated by sRIN, and a noise floor of ψfloor =

1.5 × 10−10 with 1600 s integration time.
With the introduction of a cavity with finesse F = 240 000 the noise increased to scavity =

3 × 10−7 Hz−1/2 at about 6 Hz. This was significantly more than what was expected from the
reduction of Iout due to cavity losses (see equation (48)). The actual ellipticity noise budget
situation is depicted in figure 6 as a function of the modulation amplitude η0 [31]; in the
figure, relative intensity noise (RIN), Johnson noise in the amplifier transimpedance, intrinsic
current noise in the photodiode and shot noise are summed quadratically. The circle marks
the observed noise level. This unexplained noise is under study. We suspect variations of the
intrinsic birefringence of the mirrors.

We also observed that rotation of the magnets did not contribute to the wide-band noise,
indicating good isolation between the magnet support and the optical setup.

3.3.2. Spurious peaks. With the magnets in rotation we often observe ellipticity peaks varying
from a few 10−8 to a few 10−7 whereas sometimes such peaks are not present. The frequencies
of these peaks are at harmonics of the magnet rotation frequency. The variability of these peaks
from one run to another seems to depend (in a non-reproducible way) on the adjustment of
the input and output polarizers which is done with motorized stages. To study the dependence
of such peaks on the magnet orientation, a field probe is present near the output side magnet.
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Changing the relative orientation of the two magnets does not change the amplitude of these
peaks but does change their phase; the result of this study indicates that the more sensitive part
of the apparatus is the entrance optics. All the motorized stages have small electric motors which
might couple to the rotating stray magnetic field and may introduce beam jitter and therefore
ellipticity. The substitution of all these stages is under way.

3.3.3. Noise floor measurements. With the test apparatus in a condition in which the peak at
2νMag was not present, measurements of a few hours have been done. The magnet rotation
frequency was νMag = 3.25 Hz. In the top panel of figure 7 we report the amplitude Fourier
noise spectrum of the ellipticity in a frequency band of 0.20 Hz centered at 2νMag for the best
measurement; phase information is not reported. The total integration time was 8192 s acquired
in a single time record.

In the bottom panel of the figure, a 50 bin histogram of the same data is given. A
vertical arrow in the same figure indicates the ellipticity value in the Fourier spectrum bin
at exactly 2νMag = 6.5 Hz. The probability density function for a noise signal with equal
standard deviations σ for the ‘in phase’ and quadrature components is the Rayleigh function:

P(r)= N r
σ 2 e−

r2

2σ2 . A fit with the Rayleigh function is superimposed on the histogram. The
resulting ellipticity standard deviation is σ = 3.35 × 10−9, which translates, at 95% c.l., as a
birefringence limit induced by the magnetic field of

1n <
√

−2 ln(1 − 0.95)
σλ

2FL
= 4.5 × 10−20. (53)

The limits obtained for the parameter Ae and the photon–photon total elastic scattering cross
section (at 95 % c.l.) are:

Ae <
1n

3〈B2
ext〉

= 2.45
σλ

6F
∫

B2
ext dL

= 3.3 × 10−21 T−2, (54)

σγ γ < 1.2 × 10−62 m2 @ 1064 nm. (55)

As shown in figure 8, the ellipticity measurement presented here also sets new laboratory
limits on the existence of ALPs for masses above 5 meV. Below this value the best laboratory
limit is given by the ALPs’ regeneration experiment [50]. In the case of MCPs we confirm the
best exclusion limits set by the 2008 rotation measurements (see figure 9) for both fermions and
scalars.

4. Other experimental efforts

Three other experiments aimed at studying vacuum magnetic birefringence exist: the
Q & A experiment, the BMV experiment and the OSQAR experiment. All of them study
the propagation of a laser beam through a magnetic field region and use a Fabry–Perot
interferometer to increase the optical path length. A number of other proposals have been put
forward to measure vacuum magnetic birefringence [26, 52–55] or other related quantities [56]
with different techniques: they will not be described here. As far as the OSQAR experiment [29]
is concerned, the information available in the literature at the time this paper was written was
rather incomplete.
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Figure 7. Top: ellipticity noise spectrum in a 0.20 Hz frequency band around
2νMag. The spectrum is demodulated with a lock-in amplifier with respect to
the νMod carrier. The integration time was T = 8192 s. Bottom: histogram of
the ellipticity noise values plotted above. A fit with the Rayleigh distribution is
superimposed with an ellipticity standard deviation σ = 3.35 × 10−9. The arrow
indicates the value of the ellipticity Fourier spectrum at exactly 2νMag = 6.5 Hz.

As shown before, vacuum magnetic birefringence appears in a number of different theories.
In the case of the Euler–Heisenberg–Weisskopf Lagrangian, 1n is proportional to B2

ext through
the parameter Ae =1n/(3B2

ext). On the other hand, the optical quantity the experiments are
measuring is the ellipticity generated by the induced birefringence. The relation between
birefringence and ellipticity is given in formula (31). The three experiments have therefore two
distinct parts: the optical ellipsometer and the magnetic field source. Figures of merit for the
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Figure 8. Existence bounds for ALPs. The excluded region is above the
curves. For ma,s . 5 meV the best limit is given by the ALPs’ regeneration
measurement [50] (green line). Above this mass value a new limit is set by the
measurement presented in this work (red line). For the sake of comparison, the
outdated 2008 PVLAS rotation and ellipticity curves are drawn (dashed red and
dashed blue, respectively).

optical setup are the ellipticity sensitivity s at the frequency of interest, the signal amplification
factor defined by the Fabry–Perot cavity finesse and the wavelength used.

In table 2 the main features of the ongoing experiments are summarized with an estimated
running time necessary to reach this goal. As the scheme of the Q & A experiment [28]
closely resembles that of PVLAS, the interpretation of its parameters is straightforward. The
BMV experiment deserves a few more words: it employs an intense pulsed magnetic field
lasting Tpulse = 2 ms full-width at half-maximum (total duration about 4 ms), with a repetition
rate of five shots per hour to allow the magnets to cool down. Therefore, on average the
effective duty cycle with the magnetic field ON is Dt = 2 ms × (5/3600 s)≈ 3 × 10−6. The
analysis correlates the measured ellipticity during each pulse, assumed to be proportional to
B2

ext, with the magnetic pulse shape, also taking into account the dynamical response of the
Fabry–Perot whose decay time is of the order of the magnetic pulse rise time [57]. The analysis
gives 1nB =1n/B2

filtered for each pulse, where Bfiltered is the effective field filtered by the first
order response of the Fabry–Perot cavity. The BMV collaboration therefore presents results in
terms of the birefringence per tesla squared per pulse. At present BMV has obtained a best
1nB = 5 × 10−20 T−2 per pulse and claims that a future upgrade will be able to reach SNR = 1
in the QED measurement with 1000 pulses. Given a number of pulses Npulses with equivalent
noise, the limit on 1nB will scale with 1/

√
Npulses. In the detection of a birefringence much

smaller than 1nB many pulses will be needed and therefore, to compare their method with the
Q & A or PVLAS capability, it is reasonable to rescale 1nB per pulse to the average sensitivity
in1n achievable in 1 s:1neff =1nB B2

ext

√
Tpulse/Dt . Since BMV has a small duty cycle Dt their

effective optical sensitivity reduces to seff = s/
√

Dt .
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Figure 9. PVLAS existence bounds for MCPs. The excluded regions are above
the curves. Top: Dirac fermions; bottom: scalar bosons. In both cases the best
limits are still set by the 2008 rotation measurement. The continuous blue
rotation curves are taken from [51]. The four ellipticity curves, drawn according
to equations (27) and (30), correspond to the outdated 2008 limit (dashed red)
and to the new ellipticity limit (continuous red). The two branches of each of the
ellipticity curves are not connected in the mass range around χ = 1 (dotted black
line), where the difference of the indices of refraction changes sign.
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Table 2. Main parameters of the three ongoing experiments to measure vacuum
magnetic birefringence. Effect modulation frequency fmod is 2νMag for PVLAS
and Q & A, and 1/Tpulse for BMV.

Experiment PVLAS Q & A BMV
Status Achieved/planned Achieved/planned Achieved/planned

Wavelength (nm) 1064 1064/532 1064
Magnetic dipole Permanent Permanent Pulsed∫

B2 dL (T2 m) 1.85/10 3.2/19 25/600
Average Bext (T) 2.15/2.5 2.3/2.3 14/30
Finesse 2.4 × 105/ > 4 × 105 3 × 104/1 × 105 5 × 105/1 × 106

QED ellipticity (equation (31)) 3 × 10−12/3 × 10−11 7 × 10−13/3 × 10−11 9 × 10−11/5 × 10−9

Detection scheme Heterodyne Heterodyne Homodyne
Effect mod. freq. fmod 6 Hz/20 Hz 26 Hz 500 Hz
Duty cycle Dt ∼1 ∼1 3 × 10−6

s @ fmod (Hz−1/2) 3 × 10−7/3 × 10−8 1 × 10−6/1 × 10−8 5 × 10−8/7 × 10−9

seff @ fmod (Hz−1/2) 3 × 10−7/3 × 10−8 1 × 10−6/1 × 10−8 3 × 10−5/4 × 10−6

1neff sensitivity (Hz−1/2) 1.7 × 10−18/2.5 × 10−20 3.0 × 10−17/7.4 × 10−21 2.6 × 10−16/3.0 × 10−18

Ae sensitivity (T−2 Hz−1/2) 1.2 × 10−19/1.3 × 10−21 1.8 × 10−18/4.7 × 10−22 4.4 × 10−19/1.1 × 10−21

Time for SNR = 1 260 yr/12 d 63 × 103 yr/1.4 d 3.6 × 103 yr/8.3 d

It is apparent that all the experiments are still far from their goal, the chance of their
eventual success relying on improvements of the optical sensitivity that, unlike hardware
upgrades, cannot be taken for granted, as they would require complete understanding of
the noise sources limiting the sensitivity. Indeed the shot noise limited sensitivity of all
the experiments, given by formula (48), is about a factor between 10 and 100 below the
current achieved sensitivities. No clear explanation of this discrepancy has yet been given.
Note that the best value of sensitivity in ellipticity in ellipsometers using high finesse
Fabry–Perot interferometers has been reported by PVLAS in a small test ellipsometer without
the implementation of a magnetic field [46] of 2 × 10−8 Hz−1/2 above 5 Hz. The best reported
sensitivity of a complete apparatus is by BMV with a sensitivity of 5 × 10−8 Hz−1/2 over a time
span of 2 ms. If in table 2 the QED ellipticity planned by each experiment is combined with the
presently achieved sensitivities, the last line in the table would become (3.2, 39, 1.5) years for
the three experiments, respectively, instead of (12, 1.4, 8.3) days.

5. Conclusions

We have presented the physics the PVLAS experiment is aiming at studying and have briefly
discussed the experimental method. Noise sources are being studied on a bench-top small test
apparatus in Ferrara, Italy, in view of the construction of the final apparatus with which we hope
to measure for the first time the magnetic birefringence of vacuum due to vacuum fluctuations.

We have discussed the importance of using not one, but two dipole magnets whose relative
field directions can be made perpendicular to each other in order to have a zero effect condition
with the magnetic field present. This is vital to study and eliminate spurious signals generated by
the rotating field. A proof of principle measurement using the Cotton–Mouton effect in oxygen
gas has been done with the test apparatus.
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Noise floor measurement results have been presented. A new limit on the parameter
Ae describing nonlinear electrodynamic effects in vacuum has been obtained: Ae < 3.3 ×

10−21 T−2. This value, obtained by using two small compact permanent magnets, improves the
previous limit by a factor 2.

Finally, the perspectives of the three different experiments based on similar techniques
active in this subject have been discussed. Ellipticity noise sources are under study by all
groups so as to improve their optical sensitivity. Without such improvements the measurement
of vacuum magnetic birefringence is still out of reach.
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