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Abstract

Adaptive cluster sampling is usually applied when estimating the abundance of elusive, clustered

biological populations. It is commonly supposed that all individuals in the selected area units are detected

by the observer, but in many actual situations this assumption may be highly unrealistic and some

individuals may be missed. This paper deals with the problem of handling  imperfect detectability in

adaptive cluster sampling by using a pure design-based approach. A two-stage adaptive procedure is

proposed where the abundance in the selected units is estimated by replicated counts.
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1. Introduction

Adaptive cluster sampling offers a suitable solution to the problem of estimating the

abundance of rare, clustered populations. The design involves selecting an initial sample

of area units and then adding neighbouring units whenever a given number of

individuals is recorded within. 
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It is worth noting that adaptive cluster sampling is based on the assumption that every

member of the population in the selected units is observed. In many real situations this

assumption may be unrealistic, such as when dealing with barely detectable animals or

elusive individuals, although the inference is usually made as if detectability were

perfect.

The aim of this paper is to check the performance of adaptive cluster sampling in a

realistic situation in which abundance in the selected units is estimated instead of being

recorded without errors. In Section 2, available model-based suggestions concerning

adjusting for imperfect detectability are described, while in Section 3 a two-stage

adaptive cluster sampling design is proposed in a completely design-based setting. In

the first stage, an initial sample of units is selected by means of simple random

sampling without replacement, while the second stage involves estimating abundance

within the sampled units by means of replicated encounter strategies. Accordingly, the

total number of units included in the final sample depends on the values of the resulting

estimates. The statistical properties of the derived estimator are then considered and

subsequently, in Section 4 a simulation study is carried out to check the performance of

the two-stage strategy. Finally, some remarks on the use of classical adaptive cluster

sampling without  perfect detectability are made in Section 5.

2. Preliminaries regarding Imperfect Detectability

Imperfect detectability is a problem frequently encountered in many surveys of natural

and human populations, i.e. even if an area unit is included in the sample, all the

individuals in the selected unit may not be detected by the observer. Some examples of

imperfect detectability are aerial surveys of wild animals (Caughley, 1974, Caughley

and Goddard, 1972, Routledge, 1981), vessel surveys of cetaceans, trawl surveys of

fish, feasibility surveys of mining resources, surveys of artefacts in archaeological sites,

surveys of homeless people (cfr. Thompson and Seber, 1994 and Seber and Thompson,

1994) and so on.

In conventional adaptive designs, imperfect detectability can influence the selection of

the area units. If this is not taken into account, it may lead to an underestimate of

population abundance. In order to handle imperfect detectability, Thompson and Seber
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(1994) assume a detection probability for each individual of the population and modify

the classical adaptive estimator by taking the detection probabilities into account. If the

probabilities of detection are assumed to be known, the estimator of abundance turns

out to be unbiased and its variance may be decomposed into two parts. It is at once

apparent that one part of the variance depends on the detection probabilities while the

other part depends on both the detection probabilities and the adaptive design adopted to

select units (see Thompson and Seber, 1994, equations (2) and (10),  p.713 and 719). In

a realistic situation in which the detection probabilities are not known and must be

estimated, the authors suppose that a consistent estimator of detectability may be

obtained in a separate study. In this case, the abundance estimator may be proven to be

approximately unbiased with an approximate variance which can be decomposed into

three parts. In addition to the previous two sources of variability, the third term of the

variance simply represents the increase of variability due to the estimation of the

detection probabilities (see Thompson and Seber, 1994, equations (5) and (13),  p.713

and 719).

As to the approach suggested by these authors, much research has been devoted to

estimating detection probabilities both in a parametric and non-parametric setting, but

the proposed solutions provide rather unsatisfactory results. In fact, parametric methods

are very accurate if the model is properly selected but can show poor performance

otherwise. On the contrary, the non-parametric methods give rise to robust estimates

which often are not very accurate.

Hence, in this paper the issue of imperfect detectability is investigated by using a pure

design-based approach, i.e. without assuming any model for the detection function.

Particularly, the abundance in the units is estimated by means of plot sampling and the

performance of the resulting two-stage adaptive estimator is evaluated on the basis of a

simulation study.

3. Two-stage Adaptive Estimator

Consider a study region partitioned into N spatial units and denote by NTTT ,,, 21 K  the

unit abundance. Let T be the whole abundance over the study area. An initial sample of

n units is selected by simple random sampling without replacement. If
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{ }N,,2,1 K denotes the set of indexes labelling the population units, then the initial

sample may be viewed as a set of indexes { }NS ,,2,10 K⊂ . Note that the abundance in

each selected unit 0Sl ∈  is not observed but is instead estimated through an encounter

sampling strategy. If the encounter procedure is independently replicated lm  times and

the corresponding Horvitz-Thompson abundance estimate is subsequently computed,

then the lm  replications give rise to lm  iid random variables with expectation lT  and

variance 2
lσ . Thus the sample mean of the lm  estimates, say lT̂ , represents the

realization of a random variable with expectation lT  and variance 2
lσ / lm . Moreover,

lT̂  is asymptotically normal ( lm →∞) and an unbiased estimator of its variance is

2
ls / lm , where 2

ls is the unbiased sample variance of the lm  estimates. Whenever lT̂

satisfies a given condition CT̂l ∈  (e.g. lT̂ >0), additional units in the neighbourhood of

the l-th unit are added to the sample. For each additional unit k, if CT̂k ∈ , the

neighbouring units are also observed, and so on until a final sample is obtained. Note

that the final sample is composed of clusters of units, each of which is formed by a

boundary of units in which the estimate does not satisfy the condition (the so-called

edge units) and by a network of units whose estimates satisfy condition C.  Although

lT̂ s are quantified only for units included in the sample, it is mathematically convenient

to define the vector [ ]T21
ˆ,,ˆ,ˆˆ

NTTT K=T . It is worth noting that since the estimation in

each unit is performed by separate surveys, the component of T̂  are independent

random variables.

As suggested by Thompson and Seber (1996), let us consider any unit not satisfying C

as a network of size one, so that the population may be partitioned into networks. 

Let ( ) T̂U  be the random partition of the population of units into networks, in such a

way that, whenever ( ) T̂U ,

( )
∑∑
=∈

==
N

l
l

ˆj

*
j TTT

1TU
 ,
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where *
jT  is the total abundance of the j-th network - that is, the sum of the abundance

of the ( ) ˆn j T  units belonging to the j-th network. Hence, the probability that the initial

sample intersects the j-th network ( )( ) ˆj TU∈  turns out to be

( )
( )



















 −

−=

n

N
n

ˆnN

ˆ

j

j

T

T 1α .

Henceforth, these probabilities will be denote by jα  for sake of simplicity.

Moreover, if ( ) ( ) ˆˆ TT US ⊂  denotes the set of networks intersected by the initial sample,

the two-stage estimator of the total is

( )
∑
∈

=
T̂j j

jT̂
T̂̂

S α

*

,                                                        (1)

where *
jT̂  is the estimator of the abundance of the j-th network, that is 

( )
∑
∈

=
T̂i

ij T̂T̂
jI

*

and ( )T̂I j  denotes the set of indexes labelling the units belonging to the j-th network.

As to the expectation of the two-stage estimator (1) it is at once apparent that





= )(EE)E( TT

ˆ|T̂̂T̂̂ ˆ S

and 
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where SE  now denotes expectation with respect to the probability distribution induced

by the design adopted to select S0 and subsequently ( ) T̂S , while Zj is the indicator

function which is equal to 1 if the initial sample intersects the j-th network and 0

otherwise. Thus, since ( ) T̂U  constitutes a partition of { }N,,2,1 K , it is obvious that

TT̂T̂T̂̂
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Moreover, as to the variance of (1), 
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i.e. the probability that the initial sample intersects both the j-th and the h-th networks.

Note that (2) differs from the variance of the classical adaptive estimator (Thompson

and Seber, 1996). The first term depends on the estimation within all the units while the

second term depends on both the selection of the initial sample and the estimated

abundance in each unit. Moreover, (2) cannot be further developed straightforwardly

since the involved quantities in the second term are random variables. However, an

unbiased estimator of (2) may be straightforwardly obtained by

∑ ∑∑∑
∈ >∈∈

−
+

−
+=

)S()S()S( TTT ˆj jhhj

hjjh

jh

*
h
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j

ˆj j
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ˆj j
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j T̂T̂

T̂sˆ
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ααα
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α
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)(
2

)1(
V 2

2*2

,
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∑
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=
)(I j T̂i i
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is an unbiased estimator of the first term of (2) since 
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Moreover

∑ ∑∑
∈ >∈

−
+

−

)S()S( TT ˆj jhhj

hjjh

jh

*
h

*
j

ˆj j

jj T̂T̂
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ααα
ααα

α

α )(
2

)1(
2

2*

                       (4)

is the Horvitz-Thompson estimator of the term between square brackets in the second

term of (2), and as such it is unbiased with respect to the probability distribution

induced by the design adopted to select S0 and given the realization of T̂ . Thus, (4)

constitutes an unbiased estimator of the second term of (2). 

4. Some Monte Carlo Simulations

In order to check the performance of the two-stage procedure proposed in the previous

section, the artificial population of N=400 squared units of size one described by

Thompson (1992, p.285) was considered and the individuals in each unit were allocated

in the nodes of a regular grid. Then, 10,000 initial samples of size n=5(5)20 were

selected by simple random sampling without replacement. For each selected sample,

both the classical adaptive cluster strategy as well as the two-stage strategy were

performed. As to the two-stage strategy, the abundance within the selected units was

estimated by a plot sampling procedure performed using  mj=10(10)30 circular plots

with radius r=0.06. 

The empirical variances (EV) of the two-stage abundance estimator were computed

together with the empirical expectations of the effective surveyed surface (ESS) - that

is,  the surface of the circular plot multiplied by the overall number of plots allocated in

the selected units - arising from the adaptive procedure on the basis of the 10,000

samples. Moreover, the exact variance (V) and expected sample sizes (SS) of the

classical adaptive estimator were theoretically determined. It is at once apparent that in

the classical adaptive procedure the expected sample size corresponds to the expected

effective surveyed surface, since the surface of each selected unit is completely

investigated.
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Note that an empirical evaluation of the variability due to the estimation of the totals

within the units is given by the difference between the empirical variance of the two-

stage estimator and the exact variance of the classical estimator, which is EV-V.

The results of the simulation are reported in Table 1, where in order to emphasize the

performance of the two-stage procedure with respect to its classical counterpart, the

relative increase in variability (RIV) due to estimation within the sampled units is

reported together with the average relative decrease of the effective surveyed surface

(RDS). 

Table 1

5. Concluding Remarks 

From the previous results it is at once apparent that the variance of the two-stage

estimator is dramatically higher than the variance of the classical estimator and the

increase in variability cannot be explained even by taking into account the decrease in

the effective surveyed surface. Obviously, as the initial sample size increases, the

variance of the classical adaptive estimator considerably decreases, while both the initial

sample size and the number of plots allocated for each selected unit affect the values of

the variance of the two-stage estimator.

On the basis of the simulation results, it is worth noting that the average increase of

variability due to the estimation of  abundance (RIV) is about 25 when 10 plots are

allocated to each selected unit and falls to 12.11 and 7.20 when 20 or 30 plots are

considered. Moreover, from an analysis of the last column of Table 1, the reduction of

the effective surveyed surface is found to be quite stable with respect to the initial

sample size and varies from about 0.94 for 10 plots to about 0.80 for 30 plots.

It should be noted that the increase in variability of the two-stage adaptive estimator

may also be explained by taking into account that, since the abundance in each selected

unit is estimated, even if a network is intercepted by the initial sample, it is possible that

some of the units belonging to the network are not included in the final sample.
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Thus, in accordance with these considerations, when adopting adaptive cluster sampling

without perfect detectability, the increase of the variance due to the estimation within

the selected units should not be neglected, as this involves unreliably evaluating the

precision of the resulting estimates. Accordingly, since the assumption of perfect

detectability may be highly unrealistic when dealing with elusive populations, the

estimation of the overall variability, including that due to the estimation of the

abundance in the selected units, would appear imperative in order to avoid dangerous

underestimation of the sampling variance and subsequent excessive confidence in the

effectiveness of the sampling strategy.

These results seem to be in great contrast with those reported in the paper by Jensen

(1996) where a simulation study on the performance of  two-stage line-transect

sampling is described. The simulation results suggest that the variance due to the

estimation procedure within the selected units is insignificant when compared to the

overall variance if the number of selected units is very small compared to the number of

units partitioning the study area. Hence, the author suggests estimating the total

variance “using only the replications among transects”.

It is worth noting that the apparent contrast between Jensen’s and our remarks may be

explained by considering that his results depend heavily on the detection function

adopted in the simulation. Different results might have been obtained with less

favourable detection functions, e.g. when adopting functions in which visibility

markedly falls as distance increases.
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Table 1: Empirical comparison of the two-stage adaptive procedure with respect to the classical adaptive

procedure.

Two-stage Adaptive

Procedure

Classical Adaptive

Procedure

n number of

plots

EV ESS V SS

RIV RDS

10 2,644,895.33 0.58 131,257.92 9.39 19.15 0.94

20 1,408,257.42 1.18 131,257.92 9.39 9.73 0.875

30 1,090,103.64 1.83 131,257.92 9.39 7.30 0.81

10 1,799,755.19 1.15 61,848.27 18.26 28.10 0.94

20 817,594.05 2.36 61,848.27 18.26 12.22 0.8710

30 463,358.77 3.63 61,848.27 18.26 6.49 0.80

10 1,056,190.22 1.73 38,805.13 26.67 26.22 0.94

20 530,972.40 3.55 38,805.13 26.67 12.68 0.8715

30 308,223.99 5.44 38,805.13 26.67 6.94 0.80

10 756,059.64 2.31 27,355.20 34.66 26.64 0.93

20 405,427.28 4.72 27,355.20 34.66 13.82 0.8620

30 248,325.45 7.24 27,355.20 34.66 8.08 0.79


