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Introduction

Insufficiency fractures (IFs) are defined as a type of stress 
fracture, which can occur if a weakened bone, due to 
decreased elastic resistance and demineralization, is stressed 
with normal and/or physiological force. 

Many pathological conditions are often associated with 

IFs, such as osteoporosis (1-4).
Recently, radiation therapy (RT) has been recognized 

as a risk factor for IFs (5) in many malignancies (6-10), 
ranging from 9% to 11.2% in rectal (11), 8.2% to 45.2% 
in cervical (12-14), and up to 6.8% (10) in prostate cancer, 
respectively. The risk factors for RT-induced IFs that have 
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been identified include post-menopausal state, older age, 
chemotherapy and female sex (8,11,13,14).

Texture analysis (TA) is able to quantify image 
heterogeneities that may not be appreciated with the 
naked eye, and represents a method based on mathematical 
analysis for the evaluation of gray-level intensity and for 
the position of the pixels within the images, providing 
“texture features”, that represent a quantitative measure of 
various imaging techniques (15). Statistical analysis achieves 
and quantifies both distribution and relationships of the 
gray-level values of the image. Actually, many studies have 
considered TA in several areas of cancer imaging, showing a 
potential application in diagnosis, assessment of response to 
treatment as well as characterization of tumors (16-24). In 
regards of bone physiology, TA has been applied mainly for 
densitometry, leading to the development of the trabecular 
bone score (TBS), an analytical tool for gray-level texture 
measurements calculated on dual X-ray absorptiometry 
(DXA) of the lumbar spine, thus providing information 
related to trabecular architecture (25-27).

We have previously studied the efficacy of bone TA, 
using a home-made ImageJ macro and selecting only two 
2D ROI (the vertebral body of L5 and the femoral head) in 
a case-control study (28,29). 

With these premises, we have investigated in the 
present study the potential role of TA based on 3D ROI, 
automatically contoured using the treatment planning 
software Raystation©. TA parameters were calculated using 
LifeX Software© (30), and included parameters from the 
gray-level histogram and from the matrix of GLCM (gray 
level co-occurrence matrix). 

Methods

Patients 

IF cohort of patients (IF-p)
From January 2009 to December 2016, 31 patients that 
were previously treated for pelvic malignancies developed 
pelvic IFs during the follow-up. We collected all the clinical 
data, as well as the pathological and dosimetric information, 
for the present study. 

The IF-p series included 14 patients (46%) with 
endometrial or cervical cancer, 15 patients (48%) with anal 
or rectal cancer and 2 (6%) with prostate or bladder tumors.

A CT simulation for treatment planning calculations 
was done before RT. Previous fractures of the pelvic bone 
and any tumor recurrence were considered as a cause of 

exclusion. 
In this regard, we have excluded twelve patients from 

this analysis (five patients showed evidence of IFs before 
the radiation treatment and seven patients developed bone 
tumor recurrence). 

Controlled patients cohort (C-p)
The IF-p patients were compared (1:1 ratio) with the 
C-p series, which were similarly patients submitted 
to pelvic irradiation in our institution in the same 
time-lapse, but not developing IFs. Each IF-p patient 
was matched with one C-p patient, for the criteria 
of sex, menopausal status, age, localization of tumor, 
chemotherapy and RT dose. The exclusion criteria were 
identical.

In order to limit biases, we also considered the time-lapse 
of RT administration (Jan 2009 to Dec 2012 vs. Jan 2013 
to Dec 2016), the RT total doses and the RT technique 
[intensity-modulated RT (IMRT) vs. three-dimensional 
conformal RT (3D-CRT)].

Radiotherapy and chemotherapy treatment

RT was given with a Linear Accelerator, with 6 or  
15 MeV photon beams. 3D-CRT or IMRT techniques were 
chosen according to the clinician choice. Target volumes 
and organs at risk were identified by diagnostic CT and 
contoured on simulation CT.

Chemotherapy was administered concurrently with, 
or sequentially to, RT, employing standard association of 
platinum, fluoropyrimidine compounds, mitomycin and 
taxanes, according to international guidelines.

Specifically, patients with cervical cancer underwent 
chemotherapy with weekly cisplatin (40 mg/m2), patients 
with rectal  cancer underwent chemotherapy with 
capecitabine (825 mg/m2, twice daily for 5 days/week) daily 
throughout the radiotherapy course, and patients with 
anal canal cancer underwent chemotherapy with 5-FU  
(1,000 mg/m2/day) by continuous infusion for 4 days and 
MMC (10 mg/m2) intravenous bolus for two cycles during 
the course of RT.

Authorization for the retrospective analysis was given by 
the Internal Institutional Review Board. 

Each patient signed an informed consent both for the 
treatments and for the anonymous use of clinical data. All 
procedures were in compliance with the ethical statements 
of the Helsinki Declaration (1964, amended most recently 
in 2008).
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Follow-up

After completion of treatment, all patients underwent 
scheduled follow-up visits, according to the primary 
tumor. In patients with gynecological, gastrointestinal and 
bladder malignancies, an imaging with CT and/or MRI was 
performed at 4–6 and 12–16 weeks after the completion of 
RT, then every 6 months. In patients with prostate cancer, 
diagnostic CT and/or MRI was obtained only if justified by 
a rise of the PSA value and/or by emerging symptoms or 
physical signs of recurrence or complications.

The MRI examination was obtained with a 1.5-T system, 
Signa Excite HD, GE Healthcare, Milwaukee, WI, USA, 
whereas the CT was performed with a 64-detector row CT 
scanner (Discovery 750 HD, GE Healthcare, Milwaukee, 
WI, USA).

All the patients underwent a physical examination, 
chemistry and blood counts every 3 months. 

Assessment of IFs

IFs development was confirmed at CT or MR imaging, by 
an expert radiologist (Salvatore Francesco Carbone), with 
15 years’ experience in the oncologic field. CT findings 
of IF included sclerotic linear changes or fracture lines, 
whereas MRI findings included both on T1 and T2-
weighted images the presence of signal intensity changes in 
the bones of >5 mm (8).

In all the patients with IFs the simulation CT scan was 
reviewed, in order to exclude the patients that showed pre-
existent fractures. 

CT simulation

CT simulation was performed before RT, with a 16 slice 
CT-scanner (slice thickness 2.5 mm, beam pitch of 1.375, 
reconstruction interval 2.5 mm, tube voltage of 120 kVp and 
reference mAs ranging from 100 to 440 mA, Index Noise 10). 

Image analysis

We analyzed three regions of interest (ROI) on CT 
simulation: the vertebral  body of L5, the sacrum  
(S1–S3) and the femoral heads (Figure 1). Each ROI 
was automatically contoured using a treatment planning 
contouring workstation (RayStation©) and validated by a 
radiation oncologist (Valerio Nardone).

The TA was performed using a LifeX© (30), and 

included features of gray-level co-occurrence matrix 
(GLCM), sphericity and indices from the gray-level 
histogram. For the femoral heads ROI we calculated the 
mean of the two ROI. 

Statistics

The TA parameters, as described above, were correlated with 
the development of IFs by univariate (Pearson correlation). 
We analyzed the correlation between the significant TA 
parameters and, if a correlation larger than 0.80 was observed, 
then the variable with the lowest univariable correlation with 
the endpoint was omitted, to avoid the risk of overfitting 
the model and of multicollinearity (31) in the multivariate 
analysis (binary logistic regression). After performing the 
multivariate analysis the ROC Curves with these parameters 
were also carried out. The statistical analysis was performed 
using the SPSS software 23.0.

Results

The characteristics of both the cohorts of IF-p and C-p, 
with the localizations of the IFs are reported in Table 1. IFs 
occurred in different pelvic bones, with 17 patients (55%) 
developed multiple IFs.

The median follow-up period was equal to 43.46 months 
(mean 47.21 months, SD 24.26 months, range 12–84 months).

Regarding the enrollment time-lapse, 15 out of  
31 patients (48%) in IF-p series and 16 out of 31 patients 
(52%) in C-p series were enrolled from Jan 2009 to  
Dec 2012, whereas 16 out of 31 patients (52%) in IF-p 
series and 15 out of 31 patients (48%) in C-p series were 
enrolled from Jan 2013 to Dec 2016 (P>0.05). Regarding 
the RT technique 16 out of 31 patients (52%) in IF-p 
series and 17 out of 31 patients (55%) in C-p series 
underwent intensity modulated radiation therapy (IMRT), 
whereas 15 out of 31 patients (48%) in IF-p series and 
14 out of 31 patients (45%) in C-p series underwent 
3D-conformal RT, 3D-CRT (P>0.05). The period of 
enrollment, as well as the radiation doses between IF-p 
and C-p were well balanced between the groups (see the 
results reported in Table 1).

Univariate analysis

We performed a Pearson correlation analysis between the 
TA parameters and the development of IFs.

Significant TA parameters included: L5-kurtosis (P=0.049), 
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L5-energy (P=0.007), L5-GLCM-energy (P=0.023), 
sacrum-kurtosis (P=0.034), sacrum-compacity (P=0.039, 
this parameters is a measure of compactness of the volume), 
FH-kurtosis (P=0.005), FH-skewness (P=0.001), FH-
energy (P=0.005), FH-GLCM-homogeneity (P=0.006), FH-
GLCM-energy (P=0.020) (Tables 2,3 and Figure 2). 

Multivariate analysis 

The TA parameters that resulted significantly at univariate 

analysis were normalized and tested for co-correlation. The 
parameters L5-GLCM-energy, FH-kurtosis, FH-energy 
were omitted, to avoid the risk of overfitting the model and 
of multicollinearity (31) in the multivariate analysis. 

We performed a logistic regression analysis with the 
group as the dependent variable and all the normalized 
texture parameters, plus all relevant confounding variables 
(sex, radiation doses, and chemotherapy). 

The variables that resulted significant were L5-energy 
[P=0.033, odds ratio (OR): 1.997, 95% CI: 1.059–3.767] and 

2600
2400
2200
2000
1800
1600
1400
1200
1000

800
600
400
200

0

2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

800
600
400
200

0

N
um

be
r

N
um

be
r 

N
um

be
r

Histogram

Histogram

Histogram

Hounsfield

Hounsfield

Hounsfield

5 mm

5 mm

5 mm

–200 200

200

400

400

600

600

800

800

1000

1000

1200 14000

0

450

400

350

300

250

200

150

100

50

0
–100    0      100   200   300    400   500    600

A

B

C

Figure 1 Examples of ROI and histograms of the pixel distribution (CT simulation DICOM images): (A) femoral head ROI; (B) sacrum 
ROI; (C) L5 ROI. ROI, regions of interest; DICOM, Digital Imaging and Communications in Medicine.
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FH-skewness (P=0.014, OR: 2.338, 95% CI: 1.191–4.591), 
with a R2: 0.268 (Tables 2,3).

A ROC curve was generated from the binary logistic 
regression, the AUC was 0.741 (95% CI: 0.627–0.855, 
P=0.001, S.E.: 0.058) (Figure 3). 

Discussion

We have previously studied (28,29) the role of bone TA, 
with an in-house 2D software, and we have decided to 

explore the potential role of 3D Bone TA. Moreover, we 
tested the possibility of automatically obtain 3D ROI 
with the treatment planning contouring workstation 
(Raystation©).

Although the LifeX Software© (30) is able to calculate 
parameters of gray-level co-occurrence matrix (GLCM), 
neighbourhood gray-level dependence matrix (NGLDM), 
gray-level run length matrix (GLRLM), gray-level zone 
length matrix (GLZLM), sphericity and indices from the 
gray-level histogram, we decided to use only parameters 

Table 1 Characteristics of patients in the insufficiency fracture (IF-p) and control (C-p) series 

Characteristics of patients IF-p series C-p series

Sex

Male 9 (29%) 9 (29%)

Female 22 (71%) 22 (71%)

Age: mean (range) 65.7±10.21 (range, 30–81) years 64.9±11.24 (range, 32–80) years

Menopausal status

Pre-menopausal 8 (36%) 7 (32%)

Post-menopausal 14 (64%) 15 (68%)

Disease

Gynecological 14 (46%) 14 (46%)

Gastrointestinal 15 (48%) 15 (48%)

Urological 2 (6%) 2 (6%)

Chemotherapy Yes: 19 (61%) Yes: 19 (61%)

No: 12 (39%) No: 12 (39%)

RT target dose (PTV): mean (range) 5,030±510 (range, 4,500–5,940) cGy 5,050±540 (range, 4,500–5,940) cGy

Localization of the IFs

Sacroiliac joints 18 (58%)

Pubis 7 (23%)

Acetabulum 4 (13%)

Sacral body 7 (23%)

Lumbar vertebrae 6 (19%)

RT technique

IMRT 16/31 (52%) 17/31 (55%)

3D/CRT 15/31 (48%) 14/31 (45%)

Enrollment period

Jan 2009 to Dec 2012 15/31 (48%) 16/31 (52%)

Jan 2013 to Dec 2016 16/31 (52%) 15/31 (48%)
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L5-kurtosis
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C-p             IF-p

C-p             IF-p C-p             IF-p C-p             IF-p C-p             IF-p C-p             IF-p

C-p             IF-p C-p             IF-p C-p             IF-p C-p             IF-p

P value: 0.001 P value: 0.005 P value: 0.006 P value: 0.020

P value: 0.007 P value: 0.023 P value: 0.034 P value: 0.039
L5-energy

FH-skewness FH-energy FH-GLCM-homogeneity FH-GLCM-energy

L5-GLCM-energy Sacrum-kurtosis Sacrum-compacity

Figure 2 Box Plot in IF-p and C-p patients (univariate analysis). IF, insufficiency fracture. IF-p, insufficiency fracture cohort of patients; C-p, 
controlled patients cohort.

Table 2 Pearson univariate analysis

TA parameters IF-p series (mean ± SD) C-p series (mean ± SD) P value

Kurtosis (L5) 5.98±1.92 5.23±1.23 0.049

Energy (L5) 0.050±0.0098 0.044±0.006 0.007

GLCM-energy (L5) 0.0049±0.0018 0.0041±0.0011 0.023

Kurtosis (sacrum) 6.791±2.42 5.78±1.50 0.034

Compacity (sacrum) 3.86±1.26 3.40±0.50 0.039

Kurtosis (FH) 6.58±1.60 5.73±0.85 0.005

Skewness (FH) 1.86±0.25 1.68±0.19 0.001

Energy (FH) 0.041±0.0059 0.038±0.0041 0.005

GLCM-homogeneity (FH) 0.38±0.026 0.37±0.020 0.006

GLCM-energy (FH) 0.0046±0.0013 0.0040±0.00098 0.020

TA, texture analysis; GLCM, gray-level co-occurrence matrix; IF, insufficiency fracture; FH, femoral head.

Table 3 Binary logistic regression analysis (normalized odds ratio)

Parameter P value Odds ratio 95% CI

Energy (L5) 0.033 1.997 1.059–3.767

Skewness (FH) 0.014 2.338 1.191–4.591

FH, femoral head.
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from gray-level histogram, sphericity and GLCM matrix, 
to reduce the number of TA variables, including TA indices 
that were already used in the imaging of trabecular bone 
structure (32).

At this regard, the major novelties of this paper, in 
comparison to our previous work (28), are the 3D TA, the 

automatic contouring of the ROI and the higher number of 
texture parameters analysed.

Our results showed a co-correlation between many 
variables, as well as the significance of the same TA variables 
between the different ROI (energy, kurtosis), and this aspect 
increases the validity of our results. 

The TA variables that resulted significant at binary 
logistic regression were L5-energy and FH-skewness. 

Energy represents a measure of the uniformity of the 
distribution, and is significantly higher in IF-p than C-p. 
This parameter is inversely correlated to the entropy, in 
accordance with previous works (28,33,34). This might be 
explained by the fibers being more marked in the control 
group, with an increase in the randomness of the pixel 
values, and eventually an increase in the entropy and a 
decrease in energy.

Skewness, on the other hand, measures the asymmetry 
of the gray-level distribution in the histogram, and this 
parameter was higher in IF-p than C-p. This result could be 
correlated to a lower density (35) and mineralization of the 
bone, thus reflecting a higher asymmetry in the histogram.

We have summarized the various studies of bone TA in 
Table 4.

However, the interpretation of TA parameters on the 
grounds of bone pathophysiology is incomplete, thus our 
study is still awaiting an exhaustive scientific background. 

In fact, radiation-induced bone damage has been 
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Figure 3 ROC curve generated from binary logistic regression. 
AUC 0.741 (95% CI: 0.627–0.855, P=0.001, S.E.: 0.058). ROC, 
receiver operating characteristic curve; AUC, area under the curve.

Table 4 Comparison of different studies regarding bone texture analysis

References Texture parameters Findings

Current work L5-energy Measure of the uniformity of the distribution, and is 
higher in patients developing IFs

FH-skewness Measure of the asymmetry of the gray-level 
distribution in the histogram, and is higher in 
patients developing IFs

Nardone et al. (28) L5—entropy and uniformity Entropy was lower in IFs, and uniformity was higher

FH—mean and standard deviation CT Mean and standard deviation were significantly 
lower in the IF-p

Uezono et al. (35) CT density of bone and bone marrow Lower density of bone and bone marrow in the IF-p

Harvey et al. (25) TBS, a measure of grey-level texture measurements on 
lumbar spine dual X-ray absorptiometry (DXA) images

Measure of trabecular microarchitecture, is lower in 
patients developing IFs

Rachidi et al. (33) Mean, standard deviation and entropy All these parameters were significantly lower in 
patients developing IFs

Thevenot et al. (34) Entropy Entropy was lower in IF-patients

IF, insufficiency fracture.
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described since the early years of the twentieth century, 
but the pathophysiology is still unclear. Irradiation seems 
to reduce osteoblast number, arrest osteoblast cell cycle 
progression and promote apoptosis, leading to a reduced 
bone formation (36-38). Data for osteoclasts effect are in 
some way contradictory (39,40), whereas the damages on 
bone matrix and on the vascular supply are established 
(41,42). The combination of these effects results in a 
reduction in the bone mineral density (BMD) in patients 
undergoing pelvic RT (43).

The incidence of IF seems to be higher than expected, 
although there are many discrepancies in the various 
study (5,10-14,44-46), probably due to the differences in 
the follow-up, as the choice of imaging may increase the 
detection of asymptomatic IFs. One study reported 89% 
of patients had findings compatible with IF after pelvic RT 
using magnetic resonance imaging (47), while another study 
reported 34% using bone scintigraphy (48).

It is noteworthy that currently there is no recommendation 
for the diagnosis and the management of radiation-related IF 
in patients undergoing pelvic radiotherapy.

Very recently (25-27), the TBS measurement of 
gray level texture on DXA images has provided some 
information on microarchitecture of the trabecular bone, 
and these parameters seem associated with an increase in 
both prevalent and incident fractures. These information, 
also, seem to be independent from the clinical risk factors 
and BMD. 

Limitations of the study

Although our method of TA has improved with the use of 
automatically contoured ROI, 3D TA and a higher number 
of TA parameters, our results still need methodological and 
technical refinements, as wells as a validation in larger series 
and prospective trials. 

The low number of patients enrolled, as well as the 
matched analysis comparison, also represent a limit of our 
study.

Conclusions

Insufficiency fractures represent an important cause 
of morbidity for cancer survivors undergone pelvic 
radiotherapy and there is a need to develop robust clinical 
interventions that are evidence-based.

Our results appear to be promising since the knowledge 
of the predictive factors of this kind of RT toxicity could 

drive the selection of the best appropriate preventions in 
the population at risk. 

We’re planning to start a prospective trial, integrating 
bone mineralometry and serum markers, to further 
substantiate this field of investigation.
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