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Introduction
During the last 20 years, over a dozen of disease-mod-
ifying treatments (DMTs) received the approval for 
the treatment of relapsing–remitting multiple sclero-
sis (RRMS), being facilitated by screening the anti-
inflammatory activity of putative treatments using 
active magnetic resonance imaging (MRI) lesions as 
outcomes in phase 2 trials. On the contrary, the pau-
city of active medications for both primary progres-
sive multiple sclerosis (PPMS) and secondary 
progressive multiple sclerosis (SPMS) is striking. In 
view of this, the Progressive MS Alliance recently 
suggested to develop and to validate biomarkers of 
progression that could make clinical trials for pro-
gressive multiple sclerosis (MS) less time- and 
resource-consuming, when compared with conven-
tional clinical measures.1 This could be achieved  
with the identification of reliable, reproducible and  
sensitive-to-change imaging outcomes.

Several MRI measures reflect the neurodegenerative 
pathology of progressive MS and hold promise for 
clinical trial applications in this population. Along 

with the use of conventional MRI metrics (e.g. brain 
volume, lesion count and volume), advanced MRI 
techniques and optical coherence tomography (OCT) 
are also emerging as candidate imaging outcomes of 
MS progression. Indeed, the number of imaging out-
comes included in clinical trials for progressive MS 
has almost doubled from 2.3 ± 1.5, in the decade 
1996–2006, to 4.1 ± 2.6 in most recent years (2007 to 
current) (Figure 1).

In this review, we will discuss imaging biomarkers, 
which have been included in phase 2 and 3 clinical 
trials for progressive MS and those emerging for the 
future. Methodological and statistical drawbacks will 
be also discussed.

Brain lesion count and volume
Lesion counts were the first MRI-derived outcome for 
MS clinical trials and include the number of gadolin-
ium-enhancing and new/enlarging T2 lesions, and 
their related volumes. Lesion measures are the best 
biomarker of active inflammation in MS, allowing the 
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screen for early disease activity in phase 2 clinical tri-
als in RRMS.2 On the contrary lesion-derived meas-
ures play a secondary – but not negligible – role in the 
study of progressive MS. In PPMS, the burden of 
T2-visible lesion load and of gadolinium-enhancing 
lesions is low, despite clinical severity3 and seems to 
have only a minimal impact on the disability accrual 
over time.4

MRI measures of focal brain lesions are the most 
common imaging metric in phase 2 and 3 clinical tri-
als in progressive MS.5–30

Future clinical trials on progressive MS might include 
these outcomes if the presence of inflammation is 
expected and targeted. Indeed, trials might pick popu-
lations with relatively high inflammatory activity, 
depending on inclusion/exclusion criteria (e.g. 24.7%–
27.5% of PPMS patients presented with Gd-enhancing 
lesions at baseline visit of the ORATORIO trial).7 
However, clinical outcomes might be difficult to pre-
dict based on results on lesion measures. Indeed, the 
use of DMTs specifically designed for RRMS in clini-
cal trials in progressive MS can result in a positive 
effect on lesion count and volume measures but not on 
neurodegenerative clinical (e.g. disability progression) 
and imaging outcomes (e.g. brain and spinal cord (SC) 
atrophy), as occurred in the INFORMS trial.5,31 
Similarly, use of interferon-beta in SPMS was associ-
ated with fewer active lesions, but no effect was estab-
lished on clinical disability.32

Global and regional brain atrophy
Brain atrophy is detectable on MRI scans from the ear-
liest clinical stages of MS and is a biomarker of irre-
versible neurodegenerative processes.33 Global brain 
atrophy has been associated with the degree of 

disability in large cohorts of both RR and progressive 
MS.34,35 Besides, improvements in MRI post-process-
ing have allowed to segment white matter (WM) and 
grey matter (GM) (both cortical and deep) separately, 
allowing refinement of association with clinical fea-
tures.36,37 Regional volumes might show a greater 
change over time,12 resulting in higher sensitivity and 
smaller sample size when compared with global 
measures.38

Intriguingly, brain atrophy has not been associated 
with relapse risk in RRMS, suggesting that atrophy is 
probably driven more by (possibly independent) neu-
rodegenerative changes than inflammatory lesions, 
which further support the use of this measure in pro-
gressive MS.33

There are several methods to quantify whole-brain 
atrophy. In general, brain tissue volume needs to be 
normalized for head size, and longitudinal changes 
can be detected using registration- and segmentation-
based techniques. Registration-based methods com-
pare longitudinally acquired images and measure 
changes in brain surface; structural image evaluation 
using normalization of atrophy (SIENA) is the most 
popular example. Segmentation-based techniques 
measure brain volume on a single scan and then deter-
mine change over time indirectly and include brain 
parenchymal fraction (BPF) (which is the ratio of 
brain parenchymal volume to the total volume within 
the brain surface contour).33,39 In comparative analy-
ses, brain atrophy measured with registration-based 
techniques showed better reproducibility40 and higher 
power to detect treatment effect, when compared with 
segmentation-based.41,42

Whole-brain atrophy has been included in several 
phase 2 and 3 clinical trials in progressive MS as 
primary8,9,12,15,43–46 or secondary outcome (Table 
1).5–7,11,13,14,16–18,21–24,26,30,50–52

The first trial demonstrating a beneficial effect on 
global brain atrophy (using simvastatin) was a phase 
2 trial study in SPMS.8 Positive results have been 
reported also in the phase 3 ORATORIO study in 
PPMS.7 A number of ongoing trials are measuring 
global brain atrophy, and their results should become 
available over the next several years (Table 2).

Regional brain atrophy has been used as secondary out-
come in a few trials, where measures were obtained 
from GM, WM,12 putamen, thalamus and optic nerve.14 
Considering that MS does not affect the brain uniformly, 
the detection of regional pathology might be predictive 
of more specific clinical features, when compared with 

Figure 1. Clinical trials and imaging outcomes. Scatter 
plot shows the number of imaging outcomes used in clinical 
trials conducted from 1996 up to recent years (the expected 
conclusion date has been used for ongoing clinical trials).
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whole-brain measures.53 However, standardization of 
software for analysis is needed to make widespread 
application in clinical trials possible.54

Overall, measures of global and regional brain atrophy 
are gaining relevance in clinical trials on progressive 
MS, reflective of improvements in measurement tech-
niques allowing good reproducibility and sensitivity to 
change. Nevertheless, there are several possible limi-
tations, including changes in magnet, gradients, coils, 
distortion corrections and image-contrast changes. 
Patients treated with anti-inflammatory treatments 
have a slight decrease in the brain volume in the first 
6–12 months (pseudoatrophy), compared with pla-
cebo, due to the resolution of inflammation and 
oedema.55,56 A possible solution is to re-baseline sub-
jects after 6 months,57,58 although longer periods may 
be required for more toxic types of treatment (e.g. 
chemotherapy during bone marrow transplantation).59 
However, rebaselining carries the risk of losing power 
because of reduced time of observation on treatment. 
In the OPERA II trial (one of the two phase 3 trials for 
ocrelizumab in RRMS), statistical significance in 
brain volume change was lost when analysing data 
from week 24 to 96, instead of baseline to week 96.60

A reversible fluctuation of brain volumes can also 
occur because of variations in dehydration status.61

Advanced MRI techniques
Conventional neuroimaging techniques lack specificity 
with regard to different pathophysiological substrates 

of MS and are not able to explain the heterogeneous 
and long-term clinical evolution of the disease.58,62–64 
Advanced MRI techniques, such as magnetization 
transfer ratio (MTR), diffusion tensor imaging (DTI) 
and magnetic resonance spectroscopy (MRS), may 
provide higher pathological specificity for the more 
destructive aspects of the disease (i.e. demyelination 
and neuroaxonal loss) and be more closely associated 
with clinical correlates.55,65 Moreover, functional mag-
netic resonance imaging (fMRI) is contributing to the 
definition of the role of cortical reorganization after 
MS tissue damage.37

MTR values reflect the efficiency of the magnetiza-
tion exchange between mobile protons in tissue water 
and those bound to the macromolecules, such as mye-
lin. MTR has been associated with disease progres-
sion in PPMS.35,66 In view of this, MTR has been 
included in several clinical trials in progressive MS 
and has been measured in GM, WM, T2 lesions, puta-
men, thalamus and optic nerve.13–15,18

DTI measures brain tissue microstructure by the 
exploitation of the properties of water diffusion. From 
the tensor, it is possible to calculate the magnitude of 
diffusion, reflected by mean diffusivity (MD), and 
diffusion anisotropy, which is a measure of tissue 
organization, generally expressed as fractional anisot-
ropy (FA). In line with this, MD is increased and FA is 
decreased in T2 lesions, WM and GM from MS 
patients.67,68 DTI has been assessed across multiple 
scanners/platforms and is suitable for multi-centre 
studies.69,70 DTI is the most frequently used advanced 

Table 2. Phase 3 clinical trials in progressive MS evaluating brain atrophy.

Clinical trials Sample size recruited 
(treatment vs placebo)

Volume change (treatment vs 
placebo)

Duration Methods Effect size potentially 
detectable

ORATORIO, 
Montalban et al.7

488 vs 244 (PPMS) PBVC: −0.90% ± 1.12 vs 
−1.09% ± 1.15 (p = 0.02)

From week 24 
to 120

SIENA 26.7%

INFORMS, 
Lublin et al.5

336 vs 487 (PPMS) PBVC: −1.49% ± 1.35 vs 
−1.53% ± 1.35 (p = 0.673)

From baseline to 
month 36

SIENA 15.8%

CUPID, Zajicek 
et al.26

329 vs 164 (182 vs 91 in the 
MRI sub-study population) 
(PPMS and SPMS)

PBVC: −1.95% ± 1.51 vs 
−1.82% ± 1.47 (p = 0.94)

From baseline to 
year 3

SIENA 33.5%

OLYMPUS, 
Hawker et al.11

292 vs 147 (PPMS) Volume change: 
−10.8 cm3 ± 40.3 vs 
−9.9 cm3 ± 37.0 (p = 0.62)

From baseline to 
week 96

BPF >99%

ESIMS, Fazekas 
et al.51

159 vs 159 (SPMS) PCF: −0.62% ± 0.88 vs 
−0.88% ± 0.91 (p = 0.0093)

From baseline to 
month 27

Six-slice 
volume

32.5%

MS: multiple sclerosis; PPMS: primary progressive multiple sclerosis; PBVC: percentage of brain volume change; SIENA: structural image evaluation using 
normalization of atrophy; MRI: magnetic resonance imaging; SPMS: secondary progressive multiple sclerosis; BPF: brain parenchymal fraction; PCF: partial 
cerebral fraction.
Phase 3 clinical trials in progressive MS which included brain atrophy as outcome measure. Characteristics of trials (sample size, duration) and of MRI measures 
(results and technique applied) are reported. The effect size potentially detectable has been calculated based on placebo arm results and sample.
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MRI metric in phase 2 and 3 clinical trials in progres-
sive MS, and is able to detect significant variations in 
brain microstructure during typical trial duration.18 
MD and FA have been measured in pyramidal tracts, 
WM, GM and lesions in different trials in progressive 
MS.13,15,16,18,24 More specific measures such as axial 
and radial diffusivity can be calculated as measures of 
the mobility of water along and perpendicular to 
axons (reflecting axonal density and demyelination, 
respectively);65 however, they have not been included 
in clinical trials in progressive MS so far.

fMRI provides signal related to brain activation based 
on blood oxygen consumption and blood flow in the 
brain and has only been included in a single clinical 
trial on progressive MS.24

MRS can measure brain levels of several metabo-
lites.71,72 The most commonly measured is total 
N-acetyl-asparate (NAA), a marker of axonal loss and 
metabolic dysfunction.73 NAA has been included in a 
few clinical trials in RRMS74 and one in PPMS.75

Spinal cord atrophy
SC atrophy is a common and clinically relevant aspect 
of progressive MS. A reduction in the cross-sectional 
area (CSA) of the SC over time is thought to reflect 
the development of atrophy (i.e. demyelination and 
neuronal/axonal loss).76,77

In clinically definite MS, the rate of cord atrophy has 
been reported to vary between 1% and 5% per year.77–81  
Higher rates were found in progressive patients.77,82 
Development of cord atrophy is considered to be one 
of the main substrates of disability accumulation. It 
can account for 77% of disability progression after 
5 years.83–85

A few clinical trials in progressive MS have included 
SC atrophy as outcome measure (Table 1).12,13,24,31,47–49  
Its more widespread use has been hampered by chal-
lenges to obtain high reproducibility and responsive-
ness to changes when measuring such a small 
structure. Small absolute changes in SC area are dif-
ficult to detect in a multi-centre setting, where there 
may be a great variability of imaging protocols and 
scanners.40 The acquisition of high-quality SC MRI 
can be affected by artefacts (e.g. breathing, pulsation 
of blood and cerebrospinal fluid (CSF)), and this may 
limit the precision of SC atrophy measurements. As a 
consequence, sample size estimates obtained for cur-
rent measurement techniques are fairly large and gen-
erally prohibitive, when compared with brain atrophy. 
Development of registration-based techniques to 

measure SC atrophy may address this concern as will 
be discussed below.86

Position emission tomography
Position emission tomography (PET) is a quantitative 
imaging technique, which investigates cellular and 
molecular processes in vivo using positron-emitting 
molecules, ideally binding a selective target.72,87,88 As 
MS is a complex and multifactorial disease, various 
radioligands have been tested. Amyloid tracers, meas-
uring myelin loss and repair, and11 C-flumazenil, 
reflecting neuronal integrity, might be of interest for 
clinical trials on neuroprotective compounds.63,88–91

To date, no large MS clinical trials have included 
PET, reflecting its invasive nature and high costs. In 
the future, the development of standardized and less-
expensive procedures might represent a trigger for the 
application of this technique in small phase 1 and 2a 
clinical trials.6

OCT
OCT is a non-invasive method to obtain high spatial 
resolution images of the retina, measuring retinal 
nerve fibre layer (RNFL) thickness and macular 
volume.

RNFL is thinner in patients with MS than in healthy 
controls, even in patients with MS who have not 
experienced episodes of optic neuritis.92 Therefore, 
OCT measures a more diffuse pathological process 
which better corresponds to overall central nervous 
system damage.93,94

RNFL and macular volume have been included in a 
few clinical trials on progressive MS (Table 1),14–16,24 
so far without demonstrable neuroprotective effects.

OCT is a fast, non-invasive, easy-to-use imaging 
method producing quantitative measures reliably, with 
great potential in MS for testing neuroprotective strat-
egies over a short time frame.33 Like brain volume, 
RNFL is sensitive to biological variations. However, 
there is the need for high-quality acquisitions and 
appropriate image processing, performed by trained 
examiners following specific consensus criteria.

Design issues

Measurement sensitivity
Quantitative MRI measures are strongly dependent not 
only on acquisition parameters but also on processing 
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methods, presenting with different sensitivity to 
change, reproducibility and measurement error.

Clinical trials results can be affected by the analysis.41 
For instance, in a clinical trial of teriflunomide in 
RRMS, changes were measured by BPF, a segmenta-
tion-based technique, and no significant effect was 
found initially.95 However, in a post hoc analysis, the 
use of a registration-based automated technique 
(SIENA) revealed that teriflunomide was associated 
with significant reductions in brain volume loss.96

Similarly, the conventional way of estimating SC 
atrophy is using segmentation-based methods, such as 
the cervical cord CSA97,98 and the upper cervical cord 
area (UCCA),99 that are measured at each time point 
with subsequent calculation of percentage change 
between time points. More recently, GBSI (general-
ized boundary shift integral) has been suggested as a 
novel registration-based method to estimate cervical 
SC atrophy directly between scans, possibly reducing 
sample sizes.86

The number of observations over time can increase 
sensitivity to change. However, at least for brain atro-
phy, the effect of increasing the number of observa-
tions is modest, when compared with the effect of 
increasing the duration of follow-up.100

Sample size
Sample size calculation is a pivotal aspect of planning 
clinical trials and is based on the primary outcome of 
the study, generally being imaging for phase 2 and 
clinical for phase 3 trials.101,102 Imaging outcome 
measures are often included as secondary or explora-
tory variables in all patients in phase 3 clinical trials, 
even though they might require a smaller sample size 
to detect significant difference. A caveat though is 
that the size of the treatment effect may differ between 
clinical and imaging outcomes; that is, 30% reduction 
in rate of brain volume may not equate in 30% reduc-
tion in disability progression.

In order to further explore this issue, we estimated the 
treatment effect on brain atrophy which could have 
been detected in populations recruited in phase 3 clin-
ical trials in progressive MS (Table 2), based on the 
actual sample size and the measured rates of brain 
atrophy in the placebo arm (we accepted a power of 
80% and the α error was set at 0.05). Most recent 
studies would have been able to detect 15%–30% 
treatment effects on brain atrophy,5,7,26 in line with 
actual detected statistical effect (17.5% relative dif-
ference in the ORATORIO trial).

Inclusion criteria can also impact sample size. For 
instance, in RRMS populations, the rate of inflam-
matory activity is high, and measures of inflamma-
tory activity (new or enlarging T2 lesions, new T1 
lesions and Gd-enhancing lesions) can lead towards 
relatively lower sample sizes, compared with pro-
gressive MS.103,104 For instance, when considering 
the number of enhancing lesions, the detection of 
50% treatment effect for interferon-beta treatment 
requires about 120 patients per arm in RRMS trials 
and a threefold number in SPMS.105 By contrast, use 
of imaging markers more specific for progressive 
features (e.g. brain atrophy) will reduce the sample 
size needed in clinical trials in PPMS and SPMS. 
Advanced MRI techniques, such as MTR, might also 
require smaller sample sizes,106,107 in particular when 
trials with neuroprotective agents are conducted in 
selected populations.

Sample size can be affected also by variability of 
imaging outcomes. For instance, BPF measurement 
can have up to 0.00283% variance due to patient 
repositioning, physiological variations and inflamma-
tory lesion occurrence.108 Measurement precision can 
affect the standard deviation of the measure which is 
a major determinant of the sample size.42 Increasing 
the number of scans performed in clinical trials and 
improving imaging analysis techniques (e.g. registra-
tion vs segmentation) can reduce these sources of 
variability and, accordingly, sample size.

Overall, DMTs can have a specific effect on each 
MRI outcome and thus the sample size should be esti-
mated depending on the expected efficacy profile in 
the selected population. As such, MRI may be partic-
ularly useful in early-phase clinical studies on novel 
therapeutic agents, where drugs can be easily screened 
before they are taken forward to larger scale stud-
ies,109 as is common practice for anti-inflammatory 
drugs in phase 2 RRMS studies.

Conclusion and future perspectives
Progressive MS represents a unique opportunity for 
studying imaging markers of neurodegeneration, 
with equal bearing on relapsing forms of the disease. 
Several imaging candidates hold promise for filling 
the unmet need of biomarkers in progressive MS, by 
capturing the effect on neurodegeneration, although 
inflammatory markers remain important in this stage 
of the disease. Brain volume loss is the best exam-
ined and most robust outcome with attainable sample 
sizes and first positive results, though treatment 
effects tend to be more modest than those seen for 
inflammatory MRI markers. Brain volume is already 
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being applied as primary outcome measure in phase 
2 trials and as secondary exploratory measure in 
phase 3 trials in progressive MS. Results from these 
trials will help establish the importance of brain atro-
phy in tracking MS progression.46 SC MRI holds 
great promise for future trials due to higher rates of 
atrophy and better sensitivity to change compared 
with brain volume changes. However, robust applica-
tion in clinical trials requires implementation of tech-
niques with lower measurement noise, such as 
registration-based methods; in part, these can be vali-
dated using historical data sets. Advanced MRI 
measures (such as MTR, DTI and fMRI), due to their 
greater specificity, might shed light on mechanisms 
of action of new medications and should be included 
when clinical trials aim at exploring drug potentials 
for neuroprotection and tissue repair. In clinical trial 
design, the inclusion/exclusion of patients with spe-
cific MRI characteristics might help in identifying 
groups who are more likely to respond to a given 
medication and, so, in further reducing the sample 
size needed.
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