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AIM 
We present preliminary results of a project supported by ESA (Category 1 n. 3063) and Italian Ministry of 
Education, University and Research (COFIN 2003) in the Lucca plain, central Italy (Figure 1), to study land 
subsidence by integrating satellite radar interferometry with ground-truth leveling surveys. 
The subsidence appears to be related to the withdrawal of groundwater over the last two decades, which caused 
drop of water table (Figure 2) and in turn led to elasto-plastic compaction of fine-grained sediments. 
 

 

Figure 1. Study area and track & fr ame of the ascending and descending paths. Coordinate system: GAUSS-BOAGA 
projection, zone W). 

 

Figure 2. Water table changes in the “Pollino” well field, with in the study area, monitored from 1975 to 2005 (from AdB 
Serchio River Authority). 

GEOLOGY OF THE STUDY AREA 
The Lucca plain is located within one of the extensional tectonic basins which dissect the inner part of the Northern 
Apennines. Recent continental deposits of the plain are made up of thick sandy gravel cropping out in the northern 
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sector of the plain overlain by a clayey silt horizon thickening toward the South. These deposits rest unconformably 
over units related to the Triassic Verrucano, the Triassic-Oligocene Tuscan Nappe, the Ligurides units (Cretaceous-
Oligocene) and the "Villafranchian" sediments (Late Pliocene-Early Pleistocene) (Figure 3). 
Normal faults located to the S and to the N of the area controlled the development of the plain until recent times. 
Hence regional vertical motions can be combined with subsidence caused by anthropogenic actions. 
 

 

5 km 

Figure 3. Geological map of the study area (Carta Geologica d'Italia , sheet 105). Legend of formations: Pf: phyllit es and 
quartzites ("Filladi e quarziti di Buti", ? Carboniferous); Psc: continental conglomerates, phyllit es ("Scisti di S. 
Lorenzo", l. Carb oniferous - e Permian; Pbr: phyllit es, breccias, conglomerates ("Brecce di Asciano", ? Permian); Tcg: 
quartz conglomerates and phyllites ("Formazione della Verru ca, m. Tr ias); Tqz: clorite-seric ite phyllites with quartz ites 
("Qu arziti di M: Serra",  Carnian); gr: dolostones and dolomitic l imestones (" Grezzoni", l. T r iassic); mg: sandstones and 
argill ites ("Macigno", L. Oligocene-E. Miocene); alb + al: clays and marls with limestones, marly limestones, limestones 
("Alb erese", l . Cretaceous - Paleocene); Cmc: marly limestones and sandstones (l. Cretaceous); ar: sandstones with 
marls (? Cretaceous); Ql + Qfl1: gray clays, sandy clays and lacustrin e sands with conglomerates; conglomerates, 
lacustrine clays ("Villafranchi an"); Qt + Qt1: reddish sands, conglomerates and gravels (Pleistocene); Qfl2: fluvial-
lacustrine gravelly, sandy and clayey deposits (Pleistocene); at: terraced deposits (Pleistocene); p + t: peat and marsh 
deposits (Olocene); a: recent continental deposits (Olocene). Blue dashed line: inferred normal fault. Red box: extent of 
the orthophoto in Figure 5. 

DATA 
In order to fulfil th e objectives of the work we used the following data: 
x Digital Elevation Model, cell size: 40 m. 
x ERS 1/2 images: 

- ascending track 873, frame 215 (Figure 1); 
- descending track 165, frame 2727; 

pairs used in this work are listed in Figure 4. 
x Aerial photographs and orthophotos from I.G.M.I. (Istituto Geografico Militare Italiano) and Regione Toscana. 
x Ancillary data from technical reports of local municipalities, Arno and Serchio river basins authorities 

(leveling, soil mechanics, stratigraphic, hydrogeological and geophysical data). 
 

 

Figure 4. The interferometr ic dataset for th e descending and ascending tracks. 



LEVELING SURVEY 
Between September-December 2004, we monumented a leveling network of 22 new benchmarks (indicated as cs in 
Figure 5). In order to allow us to monitor any vertical ground movements (regional geologic or anthropogenic) 
within the plain, the network connects Verrucano and Villa franchian outcrops located out of the south-western and 
nothern borders of the study area. The network integrates an existing network monitored between 1995 and 1996 
(indicated as csv in Figure 5). Both the old and new networks were measured at the beginning of 2005. As ground 
truth we also took into account data from a leveling network located in the north-eastern part of the study area 
(Figure 5). 
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Figure 5: On the left the logical scheme of the network. On the right the leveling networks used in this work s 
superimposed to the orthophotos. Red line: profile of Figure 6. 

We followed the procedures suggested by the I.G.M.I. for high precision leveling survey (Muller, 1986):  
a. leveling methodology is backward-forward. 

b. misclosure error between forward and backward surveying should be less than L5.2  mm (where L is 
distance expressed in Km);  

c. all the benchmarks are closer than 1 Km;  
In Figure 6 the results of leveling are reported: 

x vertical benchmark displacement rates decrease with time (non-linear subsidence process); 
x quite high spatial variability of subsidence; 
x mean velocities measured: ca. 2-6 mm/year (higher rates close to the water pumping station of the so 

called “Pollino” wells field (Figure 2 and csv13 in Figure 5). 
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Figure 6. Vertical benchmarks displacement measured through leveling. Purple dots: benchmarks measured between 95 
and 96; blue dots: benchmarks measured between 1995 and 2005 

 



InSAR and TEMPORAL  ADJUSTMENT 
We calculated the interferograms (Figure 7) using the software DIAPASON developed by CNES, choosing the two-
pass approach (Massonnet e Feigl, 1998). We used the following criteria for pair selection: 
x abs(Ha) > 100 m 
x abs(dDop) < 0.2 PRF 
x Dtdays < 1000. 
 

 

Figure 7. Examples of the interferograms calculated. 

We unwrapped the phase values in a single spatial dimension (profi le) using the Matlab routine unwrap. 
Accordingly, we converted the wrapped interferometric phase I  from the integer 8-bit value range [-128; +127] to 

an unwrapped range change U'  in mm. 

For the temporal approach, we analysed the difference in range change ( U' ) between point K and point 1 of a 

profile denoted by 1][][ ijkijij UUU '�' ''  (Feigl, et al., 2000) where i represents the index of the master 

epoch (ti) and j the index of the slave epoch (tj). The double delta denotes two differences, one in time (ti - tj) and 
one in space (point K - Point 1). We then performed a simple inversion of the linear model 

ijU'' Ax  

where the parameters x pertain to epochs and the data ijU''  pertain to the time intervals spanned by the 

interferometric pairs. The design matrix A links the data and the parameters. For each row of A, the values are zero 
except for the columns corresponding to epochs i and j which are –1 and 1, respectively (Usai, 2003). For each 
pixel K, the problem is described by n parameters and m observations. The last line of A is filled by 1’s to introduce 

a supplementary independent equation ( 0 6'' ijU ) to regularize the solution. 

1D phase unwrapping becomes unreliable or difficult to interpret in poorly correlated areas like the southern part of 
the Lucca plain. For this reason we selected Pseudo Invariant Features (PIF) from amplitude multilook images: we 
took into account, for each pixel, the ratio s between the mean of the image stack and its standard deviation. The 
PIF were located by choosing those pixels which have highest values of s. An example of the results for PIF 
extracted as described above is shown in Figure 8. We finally applied the inversion procedure to PIF (Figure 9). 
 
CONCLUSIONS 
Displacements obtained by inversion of InSAR data within the best PIF areas allowed us to recognise both long 
term, low velocity subsidence processes (about 20-30 mm for the 1992-2003 time span) and recurrent short term 
(seasonal) subsidence and rebound displacements (about 10-20 mm). The latter phenomena can be better recognised 
from 1996 to 1999, probably as effect of interferograms coherence. The results reasonably agree with leveling data, 
which provide maximum subsidence values of about 35 mm for the 1995-2005 time span. Peaks of seasonal vertical 
ground displacements inferred in Figure 9 are strongly correlated to peaks of seasonal water table variations (Figure 
2). The results suggest that the aquifer under study probably is subjected to unrecoverable consolidation connected 
to the long term water table depletion and near-elastic deformation caused by seasonal water table variations. 
Anyway, considering the significant spatial and temporal decorrelation of InSAR ERS 1/2 data within the study 
area, the above hypothesis should be checked. So interesting topics for future investigations could be estension of 
InSAR analysis to ENVISAT, leveling measurements with higher temporal resolution and ground vertical 
displacement monitoring by means of extensometers. 



 

Figure 8. Location of PIF (green pixels) over 
orthophotos related to '94 (left) and '00 (right). 

 

Figure 9. Examples of displacements calculated from I nSAR for 
selected PIF. 
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