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BACKGROUND AND PURPOSE

The majority of the severe vascular complications in fibrosis are a consequence of a deregulated activity of mediators controlling
vasomotor tone. One of the most important of these mediators is endothelin-1 (ET-1). Here, we have investigated the role of
proteinase-activated receptor 2 (PAR2) in the vascular dysfunction in a model of fibrosis, using tight-skin (Tsk) mice.

EXPERIMENTAL APPROACH

Aortas were collected from Tsk, transgenic over-expressing PAR2 (TgPAR2), PAR2 deficient (PAR2 /™) or the corresponding WT
mice. Histological and immunohistochemistry analysis for a-smooth muscle actin, PAR2 and ET-1 receptors were performed on
aorta sections. Vascular responses to phenylephrine, ET-1 and PAR2 activating peptide (PAR2-AP) were assessed on aortic rings.

KEY RESULTS

In aortas from Tsk mice, responses to phenylephrine were reduced, contractions to ET-1 were increased and vasorelaxation to
PAR2-AP was enhanced. These alterations matched changes observed in whole vessel architecture such as vascular fibre re-
organization, increased collagen deposition and enhanced a-smooth muscle actin expression. Expression of both ET, receptors
and PAR2 was enhanced in Tsk mice. Antagonism of PAR2 potentiated vascular effects of ET-1, whereas antagonism of ET re-
ceptors increased vasorelaxation induced by PAR2-AP. In TQPAR2 mice, responses to ET-1 and ET-1 plasma levels were reduced.
Conversely, PAR2~/~ mice showed enhanced ET-1 induced contraction in aortic rings and higher circulating ET-1 levels.

CONCLUSIONS AND IMPLICATIONS

Our data show that PAR2 counterbalanced enhanced contractions to ET-1 in aortas from Tsk mice. PAR2 could represent a pos-
sible target for novel drugs in the treatment of vascular complications in fibrosis.
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in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/
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Introduction

The proteinase-activated receptor 2 (PAR2) belongs to a
restricted subgroup of the G-protein-coupled receptor super-
family, named PARs. These receptors are activated by certain
extracellular proteases derived from the circulation and
inflammatory cells. PAR2 is activated by trypsin-like serine
proteases through a proteolytic activation that unmask an
N-terminus sequence that auto-activates the receptor
(Macfarlane et al., 2001). Activation of the receptor is mim-
icked by small peptides obtained from the active sequence
known as PAR2 activating peptides (PAR2-AP). PAR2 is
strongly expressed in the endothelium and in vascular
smooth muscle cells (Cottrell et al., 2003; McGuire, 2004).
Activation of PAR2 causes acute vasodilatation, lowers blood
pressure and protects tissues from ischaemic injury (Cheung
et al., 1998; Zhong and Wang, 2009; van den Hengel et al.,
2013). Of particular interest is the finding that PAR2-
mediated vasodilatation persists despite endothelial dys-
function (Hamilton and Cocks, 2000). Under normal
conditions, PAR2 mediates acute vasodilatation of small
calibre resistance arteries via NO and Ca®*-activated K*
channels (Kc,) (Hennessey et al., 2015). Nevertheless, there
are a few changes in the mechanisms underlying PAR2-
AP-mediated vasodilatation during endothelial dysfunction
(McGuire et al., 2002). PAR2 is also up-regulated in human
skin in patients with fibrotic scleroderma-like syndrome
(SLS) (Cevikbas et al., 2011).

SLS is a complex immune-mediated disease associated
with a high mortality rate (Denton et al., 2006). Although
SLS exhibits a complex of interlinked vascular, immunologi-
cal and fibrotic components, one hypothesis suggests that
endothelial damage and vascular dysfunction may character-
ize the earliest pathological alterations (LeRoy, 1996;
Kahaleh, 2004). In particular, several functional and struc-
tural abnormalities occur within blood vessels, including
enhanced vasoconstriction, intimal hyperplasia and vessel
media/adventitia fibrosis. These features are clinically rele-
vant and referred to as Raynaud’s phenomenon. The majority
of severe complications associated to SLS are based on the
vasculature, including pulmonary arterial hypertension and
scleroderma renal crisis. All these events develop from dereg-
ulation of the vasomotor tone, where a key role is played by
endothelin-1 (ET-1), a mediator inducing potent vasocon-
striction through binding to its ET, receptors. ET-1 also trig-
gers vascular cell proliferation, smooth muscle hypertrophy

and irreversible vascular remodelling (Wort et al., 2001;
Lambers et al., 2013; Maier et al., 2014; Kim et al., 2015). The
relevance of ET-1 to systemic sclerosis (SSc) is demonstrated
by the elevated ET-1 circulating levels (Morelli et al., 1995)
and by the finding that the ET receptor pan-antagonist,
bosentan, is used in patients with arterial pulmonary hyper-
tension, secondary to SSc (Heresi and Minai, 2008; Guiducci
etal., 2012; Kawashiri et al., 2014).

A valid preclinical experimental model to study the SLS
syndrome is provided by tight-skin (Tsk) mice. These mice
have been successfully used to study the pathological mecha-
nisms underlying the disease and to test potential therapeutic
treatments (Iwamoto et al., 2011; Takahashi et al., 2015). This
strain of mice expresses an autosomal dominant mutation in
the fibrillin-1 gene, located on chromosome 2, that was first
discovered by Bunker in 1976 (Green et al., 1976). Mice
homozygous for the mutation (T3k/I3k) die in utero by
8-10 days of gestation, whereas heterozygous mice survive
to develop a SLS syndrome. Therefore, the Tsk strain has been
carried forward and theses mice have been extensively char-
acterized. In particular, these mice typically exhibit marked
thickening of subcutaneous dermal tissue, heart fibrotic
abnormalities, distended emphysematous lungs with little
fibrosis and features of SSc autoimmunity, such as a positive
reaction to RNA polymerase 1, anti- Scl70 or antinuclear anti-
bodies. This mouse strain provides a well-known model for
sclerodermia, as it shows many features of this pathology
associated with abnormalities of connective tissue (Green
etal., 1976; Jimenez et al., 1984; Kasturi et al., 1994).

Here, we have defined the role of PAR2 and its interac-
tions with the ET-1 pathway in the vascular dysfunction asso-
ciated with SLS in Tsk mice.

Methods

Animals

All animal care and experimental procedures were in compli-
ance with Italian (D.M. 116192) and EEC (O. J. of E. C. L
358/1-12/18/1986) regulations and followed the ARRIVE
guidelines for the handling and use of laboratory animals
for scientific purposes (Kilkenny et al., 2010; McGrath and
Lilley, 2015). A total of 60 animals have been used in
this study and all experimental protocols have been
carried out in adherence with the BJP guidelines. Male Tsk

British Journal of Pharmacology (2017) 174 4032-4042 4033


http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=219
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=219
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=220
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=220
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=348
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=998
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=2713
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=5213
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3741
http://www.guidetopharmacology.org

m F Roviezzo et al.

(B6.Cg-Fbn1Tsk™* Pldnpa/J), transgenic over-expressing
PAR2 (TgPAR2) and PAR2 deficient mice (PAR27/7) were sup-
plied by at the Biological Service Unit (Siena, Italy) and origi-
nally obtained from Jackson Laboratory (Bar Harbor, USA;
Green et al., 1976). C57Bl/6] and FVB/N wild type mice were
purchased from Charles River (Calco, Italy). C57B1/6] were
used as controls for Tsk and PAR2 ™/~ mice while the FVB/N
mice were used as controls for TgPAR2. Mice were multiply-
housed in macrolon cages in a controlled environment
(22-24°C; 40% humidity; 12 h light-dark cycle). All animals
were allowed food and water ad libitum.

Randomization and blinding procedures

Isolated aorta was collected from a single mouse for each
strain and divided into several rings. Each ring was tested
for a different compound in order to have a complete data
set for each aorta (mouse) used. The experimenter was given
coded vials with the different compounds. The data was
analysed without knowledge of the treatments of each group.
After analysis, the different treatments were disclosed in
order to create the graphs.

Tissue preparation

Male Tsk and wild-type (WT) control mice were used at different
ages (2-10 months old). Animals were anaesthetized by using
enflurane (5%) and then euthanized by using CO, (70%)
chamber, thoracic aorta was rapidly dissected and cleaned from
fat and connective tissue. Rings of 1.5-2 mm length were cut
and mounted on wire myographs (Kent Instruments,
Torrington, USA), filled with gassed (O2/CO2 95%/5%) Krebs
solution at 37°C. Changes in isometric tension were recorded
with PowerLab data acquisition system (Ugo Basile, Varese,
Italy). Krebs solution composition was as follows (mol-L™Y):
NaCl 0.118, KCI 0.0047, MgCl, 0.0012, KH,PO, 0.0012,
CaCl; 0.0025, NaHCO3 0.025 and glucose 0.010 (Sigma-Aldrich,
Milano, Italy). Rings were initially stretched to a resting tension
of 1.5 g and allowed to equilibrate for 40 min. Bathing solution
was periodically changed and tension reset when needed. An
optimal resting tension of 1.5 g was determined in preliminary
experiments.

In vitro experimental protocol

In each set of experiment, rings from six different ani-
mals were first challenged with phenylephrine (1 pM;
Sigma-Aldrich) until the response was reproducible. Cumula-
tive concentration curves to phenylephrine or ET-1 (Tocris,
Bristol, UK) were performed. Conversely, to evaluate tissue
vasorelaxation, cumulative concentration-response curves
to ACh (10 nM-30 pM; Sigma-Aldrich) and to the PAR2
tethered ligand peptide (PAR2-AP, SLIGRL-NH;, 1 nM-1 pM;
synthesized in house) were performed on rings precontracted
with phenylephrine. In order to investigate the involvement
of NO and COX metabolites, concentration-response curves
with ET-1 or PAR2-AP were carried out in presence of the
NOS inhibitor L-N®-nitro-arginine methyl ester (L-NAME,
100 puM, 20 min; Sigma-Aldrich) and the COX inhibitor ibu-
profen (10 puM; Sigma-Aldrich). FR139317 (10 pM; Tocris)
was used as antagonist for ET, receptors while ENMD1068
was used to block PAR2 (100 uM; Sigma-Aldrich).

4034 British Journal of Pharmacology (2017) 174 4032-4042

Western blotting

Samples of the thoracic aorta from six different mouse
genotypes were homogenized in lysis buffer containing
0.5 M B-glycerophosphate, 10 mM sodium orthovanadate,
20 mM MgCl,, 10 mM EGTA, 100 mM DTT and protease
inhibitors. Protein concentration was determined by using
Bradford assay (Bio-Rad Laboratories, Milano, Italy) and
30 pg of total proteins were separated by electrophoresis. Pro-
teins were then transferred onto a nitrocellulose membrane
(Schleicher&Schuell, Munich, Germany), and immunoblots
were incubated as follows: rabbit polyclonal anti-PAR2
(1:500, Santa Cruz,Biotechnology, Heidelberg, Germany),
rabbit anti-ET, or anti- ETy receptor (1:1000, Santa Cruz
Biotechnology). Signal detection was performed by using
ECL System (Amersham Pharmacia Biotech, Amersham, UK).

Histology

Eight-month-old mice (n = 8) were killed, and thoracic aortas
were excised and fixed in buffered formalin (5%) for 24 h. All
tissues were then dehydrated, cleared in toluene and embedded
in paraffin. Transverse sections (6 pm) were cut and stained with
Masson’s trichrome and Weigert’s resorcin-fucsin method.

ET,, a-SMA, AR2 immunostaining

Paraffin-embedded thoracic aorta sections (6 pm) were stained
for ET, receptors, a-smooth muscle actin (a-SMA) and PAR2.
The sections were pretreated with 3% hydrogen peroxide to
block the endogenous peroxidase. For PAR2 detection, no
blocking was performed. Antigen retrieval was performed by
heating in a microwave oven for 20 min in 0.01 M citrate buffer
at pH 6.0 and allowing slow cooling at room temperature. All
sections were incubated with 3% bovine serum albumin for
30 min at room temperature to block non-specific antibody
binding. Tissues were incubated overnight at 4°C with primary
antibodies: goat-polyclonal anti-ET, (1:50, Novus Biologicals,
Cambridge, UK); mouse-monoclonal anti-o-SMA (1:200,
Sigma-Aldrich); and rabbit-polyclonal anti-PAR2 (1:25, Santa
Cruz Biotechnology). For a-SMA detection, no antigen retrieval
was performed. After incubation with primary anti-ET,, tissue
sections were rinsed with TBST and then incubated with
peroxidase-conjugated rabbit anti-goat IgG (1:200, Sigma-
Aldrich) for 30 min at room temperature. Colour development
was performed by using 3,3’-diaminobenzidine (DAB) as
chromogen. The M.O.M. immunodetection kit (Transduction
Laboratories, Lexington, USA) was used for a-SMA determina-
tion. The sections incubated with anti-PAR2 antibody were
rinsed with PBS and incubated with biotinylated goat-
polyclonal anti-rabbit IgG (1:100, Vector Labs, Burlingame,
USA) for 40 min at room temperature. The staining was re-
vealed by adding streptavidin-conjugated AP and NBT/BCIP
(BDPharmingen, Buccinasco, Italy). Zeiss confocal microscope
with selective multitracking excitation (LSMS510, Zeiss,
Germany) was used to determine a-SMA/ET, co-localization
by immunofluorescence. Briefly, antigen retrieval was
performed by heating in a microwave oven for 20 min in
0.01 M citrate buffer at pH 6.0 and allowing to cool slowly at
room temperature. All sections were blocked with mouse IgG
for 60 min at room temperature for non-specific binding.
Sections were incubated overnight at 4°C with both goat-
polyclonal anti-ET, (1:50, Novus Biologicals) and mouse-



monoclonal anti-a-SMA (1:400, Sigma-Aldrich). The primary an-
tibodies were detected by using a mixture of Alexa546-labelled
donkey anti-mouse and Alexa488-labelled donkey anti-goat
antibodies (1:200, 45 min in the dark at room temperature;
Molecular Probes, Eugene, USA). Non-immunized serum was
used as negative control for the all immunostaining performed.

Data and statistical analysis

The data and statistical analysis in this study comply with the
recommendations on experimental design and analysis in
pharmacology (Curtis et al., 2015). All data are reported as
mean + SEM and the number of independent samples was at
least 6 per group, for each data set. Statistical analysis was
carried out with GraphPad Prism 5.0 software (San Diego,
CA, USA) and performed using Student’s t-test to compare
two groups, one-way ANOVA followed by Dunnett’s post test
when comparing more than two groups or two-way ANOVA
for multiple comparisons followed by Bonferroni’s post test.
Post hoc tests were performed when the ANOVA indicated
that a significant difference existed between groups. All statis-
tical tests performed showed no significant variance in data
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set homogeneity. Data were considered statistically signifi-
cant when a value of at least P < 0.05 was achieved.

Results

Vascular reactivity is impaired in T3k mice
We first addressed the vascular responses in aortas from Tsk
mice. Contraction induced by phenylephrine was within
physiological range in aorta from 2 and 4-month-old mice,
while a significant reduction was observed at 6 and 8 months
(Figure 1A). Conversely, ET-1-induced contraction was signif-
icantly enhanced with ageing. Indeed, in 6 to 8-month-old
mice, the contractile response was twice as much that
observed in 2 to 4-month-old mice (Figure 1B). Aortas from
10-month-old Tsk mice lost their ability to contract to
phenylephrine. Conversely, in aortas from control mice there
were no changes in either phenylephrine- or ET-1-induced
contraction until 10 months of age (Table 1).

In order to further investigate on the molecular mecha-
nisms underlying vascular dysfunction, 8-month-old Tsk
and control mice were used. Aortic rings from the Tsk mice
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Change in vascular responses to phenylephrine (PE) and ET-1 in aortas from Tsk mice. (A) Concentration-response curve for phenylephrine in
aortas from 2, 4, 6 and 8-month-old Tsk mice; (B) Concentration-response curve for ET-1 in aortas from 2, 4, 6 and 8-month-old Tsk mice; (C)
Concentration-response curve for phenylephrine in aortas from 8-month-old Tsk mice and compared with aortas from control animals; (D)
Concentration-response curve for ET-1 in aortas from 8-month-old Tsk mice and compared with aortas from control animals. *P < 0.05,
significantly different from 2-month-old mice (A and B) or 8-month-old control mice (C and D).
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Table 1

Different relevance of phenylephrine (PE), ET-1 and PAR2 in vascular function in health or fibrosis

Health (normal mice)

Fibrosis (Tsk mice)

PE-mediated contraction Predominant Heavily impaired

ETA receptor-mediated contraction
PAR2-mediated vasodilation

Physiological Heavily increased (predominant)

Physiological Highly enhanced

displayed a significantly reduced phenylephrine-induced con-
traction (Figure 1C), compared with age-matched control vessel
(Figure 1C). Conversely, ET-1 contractile response was signifi-
cantly augmented, compared with those in control rings
(Figure 1D). In addition, no substantial strain-related difference
was found in vasorelaxation induced by ACh (Fig. S1).

13k mice show an altered architecture in aorta
Next, we assessed the structural organization of the aorta,
using Weigert’s resorcin-fucsin stain to evaluate elastic fibre
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organization (Figure 2A). Aortas from Tsk mice showed a
more pronounced staining (Figure 2A; images iii and iv)
compared with control samples (Figure 2A; images i and ii).
In particular, Tsk aortas displayed fibre disorganization
associated with some rupture points, as indicated by the ar-
rowheads. Masson'’s assay revealed a more prominent deposi-
tion of collagen in aortas from Tsk mice (Figure 2B; images iii
and iv), compared with control samples (Figure 2B; images i
and ii). In addition, panels C and D show the quantitative
results for elastin and hydroxyproline content respectively.
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Weigert’s and Masson'’s staining revealed changes in structure of thoracic aortas from 8-month-old Tsk mice. (A) Weigert’s staining for elastic fi-
bres in control (i—if) and Tsk (jii-iv) mice; arrowheads indicate rupture points; (B) Collagen distribution (sea green) in control (i-ii) and Tsk mice
(iii-iv) after Masson’s trichrome staining; (C) Elastin quantification expressed as % of proportional area; (D) Hydroxyproline content shown as

ug-mgf1 of aorta tissue. Scale bar indicates 50 pm length.
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Contraction to ET-1 in thoracic aorta from 8-month-old Tsk mice is mediated by ET, receptors. (A) ET-1-induced contraction of Tsk aortas in pres-
ence of ET, receptor antagonist FR139317; (B) ET-1-induced contraction of Tsk aortas in presence of the COX inhibitor ibuprofen or the NOS in-
hibitor L-NAME; (C) Western blot and densitometry analysis for ET receptor expression in Tsk aortas, compared with control samples. Images are
representative of 6 separate experiments; (D) Immunohistochemical analysis for ET, expression in Tsk compared with control mice; (E) ET recep-
tor quantification reported as % of proportional area. Scale bar indicates 50 um length. * P < 0.05, significantly different from vehicle (A and B) or

control mice (C).

Responses of aortas from T3k mice to ET-1

In order to investigate the role of the ET-1 pathway, we used
the selective ET, receptor antagonist, FR139317, which
abolished the contractile response to ET-1 in aortas from
Tsk mice (Figure 3A). We next evaluated the mechanisms
involved in ET-1-induced contraction, by generating
concentration-response curves with Tsk aortas and ET-1,
in presence of L-NAME or ibuprofen, inhibitors of NOS
and COX respectively. ET-1-induced vasoconstriction was
increased by L-NAME and inhibited by ibuprofen (Figure 3
B). Western blot and immunohistochemistry experiments
revealed that expression of ET, receptors in Tsk mice aortas
was higher than in control mice (Figure 3C and D) and
that this expression was increased throughout the aortic
section (Figure 3D and E). No change was found for ETg
receptor expression (Fig. S2). As ET, receptors are involved
in both a-SMA production and extracellular matrix contrac-
tion, we next evaluated ET, receptor /a-SMA co-localization
in aorta. Immunofluorescence results showed a marked
co-localization of ET, receptors and a-SMA in aortas from
Tsk mice, compared with the control samples (Figure 4).
In particular, in Tsk aorta, positive staining was clearly
visible throughout all the vessel layers, in contrast to the
staining in control samples, where only a sub-endothelial
staining was evident.

13k mice show enhanced vascular responses to
RR2-AP

In order to assess the role of PAR2 in aorta from Tsk mice,
we tested the effect of vasodilating peptide PAR2-AP. We
found that the PAR2-AP-induced vasodilation was increased,
compared with age-matched control animals (Figure 5A) and
that this effect was inhibited by the PAR2 antagonist
ENMD1068 (Figure 5B). Similarly, L-NAME significantly
inhibited PAR2-AP-induced vasorelaxation (Figure S5B).
Expression of PAR2 receptors was increased in aortas
from Tsk mice, compared with those from control mice
(Figure 5C). Immunohistochemical analysis showed that
PAR2 receptor expression was enhanced throughout the
whole vessel thickness in Tsk mice aorta (Figure 5D and E; im-
ages iii and iv), while, in aorta from control mice, these recep-
tors were expressed only within the endothelial area (Figure 5
D and E; images i and ii).

AR2 counterbalances the vascular effects of
ET-1

Next, we wanted to examine the crosslinkage between the
PAR2 and ET-1 pathways. We found that PAR2-AP-induced
vasorelaxation was significantly increased in presence of the
ET, receptor antagonist FR139317 (Figure 6A). Conversely,
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Control

Figure 4

ETA receptors and a-SMA co-localize in Tsk mice thoracic aorta. Immunofluorescence images for ET, receptors (green staining) and a-SMA (red
staining) co-localization (yellow merge) in thoracic aorta sections from control (i-ii) and Tsk (iii-iv) mice. Scale bar indicates 50 pm length.

blockade of PAR2, by ENMD1068, significantly increased ET-1
induced contraction in aortas from Tsk mice (Figure 6B). In or-
der to further support the hypothesis of interactions between
the PAR2 and ET-1 pathways, we evaluated ET-1-induced
contraction in aortas from mice over-expressing (TgPAR2)
or lacking PAR2 receptors (PAR27/7). ET-1-induced contrac-
tions were significantly enhanced in aortas from PAR2™/~
mice, while a significant reduction was observed in vessels
from TgPAR2 (Figure 6C). In parallel, we also measured
the circulating levels of ET-1 in these mice and found that
the plasma concentration of ET-1 was higher in PAR2™/~
mice and lower in TgPAR2 mice, compared with their
respective matched WT controls (Figure 6D). In addition,
there were no significant differences, in terms of ET, recep-
tor expression, between aortas from PAR2™/~ and TgPAR2
mice.

Discussion

SLS is a complex fibrotic autoimmune disease, in which early
vascular and inflammatory changes lead to endothelial
damage and vascular dysfunction (Richard et al., 2008). In
particular, several functional and structural abnormalities
occur within blood vessels, including an enhanced

4038 British Journal of Pharmacology (2017) 174 4032-4042

vasoconstriction (LeRoy, 1996; Kahaleh, 2004). Here, we
investigated on the role of PAR2 in vascular homeostasis in
the Tsk mouse model of SLS. These mice have been widely
reported as the experimental model that, more than others,
displays analogies with the clinical features observed in the
human pathology (Iwamoto et al., 2011; Takahashi et al.,
2015). These features originate from the mutation for the
fibrillin-1 gene. This mutation causes abnormalities in con-
nective tissue and collagen deposition in different tissues, in-
cluding the vascular system (Green ef al., 1976). In particular,
three main phases in the evolution of systemic illness in Tsk
mice have been reported (Kielty et al., 1998; O’Donnell
et al., 1999). During the first phase, until the second month
after the birth, there is a rapid disease progression, followed
by a second phase of stabilization, or slower progression, oc-
curring between 2 and 8 months. A third phase, between 8
and 16 months, is characterized by a further exacerbation
and an irreversible progression.

To date, the studies performed with this model have
been mainly focused on the endothelial function, showing
that the vascular NO pathway plays a major role (Marie
and Beny, 2002; Dooley et al., 2008). Furthermore, these
studies have been concentrated on the early phase of the
disease - 2-4 months. Here, we have evaluated the vascular
changes in Tsk mice during the disease progression over a
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greater age range -- 2-10 months. Vascular reactivity in re-
sponse to adrenergic challenge (phenylephrine) decreases
in an age-dependent manner. Indeed, 10-month-old mice
were barely responsive to phenylephrine. This progressive
loss of response to the adrenergic stimulus was paralleled
by an increased vascular susceptibility to the contraction
induced by ET-1. Thus, there is a link between the reduced
adrenergic tone and the increased response to ET-1. This
functional interaction between ET-1 and the adrenergic
system has been already described in other pathological
conditions characterized by vascular dysfunction (Bender
and Klabunde, 2007). In order to further investigate the
molecular and cellular mechanisms involved, we selected
8-month-old Tsk mice, as they still have a residual ability
to contract to phenylephrine and show an enhanced
contractile response to ET-1, compared with age-matched
WT control animals. Changes in vascular reactivity were
coupled to structural modifications that were also observed
in the aortas from Tsk mice. Indeed, the immunohisto-
chemical analysis performed on aortic sections highlighted
a consistent fibre disorganization, associated with several
rupture points, and a prominent collagen deposition in
Tsk-derived aorta, but not in age-matched control mice.
This type of re-organization occurring in smooth muscle
layer was paralleled by an increased expression of the pro-
contractile protein o-SMA, mainly localized within the ad-
ventitial layers. Similarly, we found an increased expression
of ET, receptors and the immunohistochemistry studies

clearly showed that ET, receptors co-localized with a-SMA.
In addition, this staining was clearly visible throughout
the structural layers of aortas from Tsk mice. Therefore, vas-
cular alterations occurring in Tsk mice are mainly associated
with activation of the ET-1/ET, receptor axis.

Interestingly, the changes in vasculature that we observed
were also found to be relevant in many clinical investigations
and gene association studies published in the recent literature
that defines a key role for endothelin in fibrosis and SLS.
Thus, in the human pathology there is an increase of the
circulating and tissue ET-1 levels coupled to a parallel over-
expression of ET, receptors (Vancheeswaran et al., 1994;
Silver, 2008). These clinical findings have been substantiated
by the therapeutic application of ET receptor antagonists to
treat the vascular complications associated with SSc (Heresi
and Minai, 2008; Cutolo et al., 2013). Indeed, bosentan, a
non-selective endothelin receptor antagonist, shows benefi-
cial therapeutic effects in the treatment of vasculopathy asso-
ciated with fibrosis by improving peripheral circulation and
restoring the natural blood flow (Guiducci et al., 2012). How-
ever, there are two major concerns related to the use of
bosentan, namely potential liver injury and teratogenicity.

Activation of ET, receptors has been associated with
COX-2 driven prostanoid release, which might be responsible
for contraction of vascular tissues(Zhou et al., 2006), though
other mechanisms involved cannot be ruled out (Plante
et al., 2002). Conversely, activation of ETy receptors has an
opposite beneficial effect, triggering NO release. Therefore, a
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PAR2 activation counterbalances ET-1/ET, signalling in aortas from Tsk mice. (A) PAR2-AP-induced vasorelaxation of Tsk aortas in presence of the
ETA receptor antagonist FR139317; (B) ET-1-induced contraction of Tsk aortas in presence of PAR2 antagonist ENMD1068; (C) ET-1 induced con-
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*P < 0.05, significantly different from vehicle group (A and B) or corresponding WT mice (C and D).

selective blockade of ET, receptors should remove the un-
wanted effect associated with its activation but, at the same
time, should spare the NO component triggered by ET-1
through ETjy receptors. The existence of such a mechanism
within the vasculature was confirmed by the finding that
L-NAME, an inhibitor of the NO biosynthesis, further in-
creased ET-1-induced contraction, while COX inhibition sig-
nificantly suppressed ET-1 contractile response. Therefore, a
selective inhibition of ET, receptors blocks the deleterious
contractile effect sparing, at the same time, the beneficial ef-
fect operated by ET-1 through ETjy receptors. Such a key role
for ET, receptors in our experimental model finds a match
in the human therapeutic approach. Indeed, clinical studies
have shown that the selective ET, receptor antagonist,
sitaxsentan, improved the clinical status in more than one
third of patients with pulmonary hypertension, secondary
to SSc, where the non-selective antagonist bosentan was inef-
fective (Barst et al., 2004, 2006).

In several pathological conditions, the existence of some
type of backup system is quite intuitive. Indeed, it is reason-
able that changes, occurring during development of a disease,
can, in turn, activate alternative pathways to mitigate or
counterbalance the pathological effect(s). In this context,
the PAR2 receptor represents a feasible candidate to be taken
in consideration. Indeed, its expression is up-regulated in vas-
cular tissue in different diseases (Roviezzo et al., 200S5;
Cevikbas et al., 2011; Kagota et al., 2011), and recently, it has
been shown that PAR2 levels are markedly enhanced in the
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skin of patients affected by SSc (Soumyakrishnan et al.,
2014). Taking advantage of Tsk mice as a feasible predictive
model for vascular changes in SSc, we evaluated the involve-
ment of PAR2 in Tsk aortas. The enhanced vasorelaxation to
PAR2-AP, coupled to an increased expression of the receptor
observed in Tsk mice confirmed that PAR2 plays a role in
the control of vascular homeostasis. In particular, the finding
that PAR2-AP mediated vasorelaxation in Tsk aorta started at
concentrations (30-100 nM) which were ineffective in aortas
from WT control mice implies that the increased expression
of PAR2, during disease progression, may represent an endog-
enous functional response triggered by the disease itself.
Therefore, we hypothesized that the over-expression of
PAR2 could counterbalance the excessive activation of the
ET-1/ET, receptor axis. This hypothesis is sustained by phar-
macological modulation studies, where we found that the
ET4 receptor antagonist FR139317 significantly potentiated
PAR2-AP-mediated relaxation and the PAR2 antagonist
ENMD1068 exacerbates ET-1-induced contraction. In other
words, the removal of the PAR2 endogenous “tone” translates
into an enhancement of the ET-1 contractile effect,
highlighting a functional antagonism between ET, receptors
and PAR2 in regulation of vascular reactivity. In order to fur-
ther confirm the presence of this interaction, we evaluated
the response to ET-1 in aortas from mice over-expressing
(TgPAR2) or lacking PAR2 (PAR27/7). Our hypothesis of a
compensatory role for PAR2 when the ET-1 system was over-
active was confirmed by the finding that aortaa from



micewith PAR2 deletion showed an increased contraction to
ET-1. Conversely, aortas from mice over-expressing PAR2 re-
ceptors displayed a significant reduction of ET-1-induced
contractile response. The alterations of ET-1 effects
observed at vascular level also matched the changes in circu-
lating ET-1 levels, which were reduced in TgPAR2 mice
whereas they were increased in PAR2™/~ mice.

In conclusion, the vascular dysfunction occurring in Tsk
mice is an age dependent process that mimics the alterations
present in fibrotic scleroderma syndrome in humans. The
finding that the altered vascular response is endogenously
counterbalanced by PAR2 defines a novel pharmacological
target to develop as an alternative and/or additive therapeutic
approach to endothelin antagonists in order to control vascu-
lar function.
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Figure S1 Western blot and densitometry analysis for ETy
expression in Tsk compared with control mice. Images are
representative of 6 separate experiments.

Figure S2 Concentration-response curve for ACh in aortas
from 8-month old Tsk mice and compared with aortas from
control animals. Data are shown as mean + SEM of % of relax-
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